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On the zero-free region and the distribution of
zeros of the prime zeta function

Igoris Belovas, Rugile C̆epaitytė and Martynas Sabaliauskas

Abstract

The prime zeta function is one of the most under-researched varieties
of the class. Very little is known about the irregular distribution of its
zeros. The presented study aims - albeit partially - to fill the gap in our
understanding of the subject. We consider the zero-free region of the
prime zeta function and verify statistically certain conjectures regarding
the distribution patterns of the zeroes of the prime zeta function.

1 Introduction

Zeta functions are important analytical tools employed to address underlying
problems of number theory. Some of these functions, e.g., the Riemann zeta
function, the Hurwitz zeta function, the Lerch zeta function, Dirichlet L-
functions or zeta functions of the Selberg class, have been extensively studied,
while others have received minimal attention.

A perfect example of such a function is the prime zeta, one of the most
under-researched varieties of the class. The behavior of the prime zeta function
may hold significant insights into the underlying properties of prime numbers
and their distribution. It is important to note that while all known nontrivial
zeros of the Riemann zeta function are located on the critical line (the famous
Riemann hypothesis states that all the nontrivial zeros belong to the line
σ = 1/2), the zeros of the prime zeta function are scattered not only in the
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critical strip (0 < σ 6 1) but also in its outside (see Section 2). Thus, their
distribution is more sophisticated. Very little is known about the zero-free
region of the prime zeta function.

Let s = σ + it be a complex variable and P stand for the set of prime
numbers. The prime zeta function, denoted by ζP(s), is a function of a complex
variable defined as the following Dirichlet series,

ζP(s) =
∑
p∈P

1

ps
,

in the half-plane σ > 1 and its analytic continuation in the critical strip
0 < σ 6 1. The prime zeta function can be expressed in terms of the Riemann
zeta function,

ζP(s) =

∞∑
n=1

µ(n)

n
log ζ(ns), (1)

where µ(n) stands for the Mbius function. Formula (1) provides an analytic
continuation of the prime zeta function to the critical strip 0 < σ 6 1. Landau
and Walfisz showed that the prime zeta function cannot be continued to the
half-plane σ 6 0 (see [5]). This is due to the clustering of singular points along
the imaginary axis emanating from the nontrivial zeros of the zeta function on
the critical line. On the real axis, the prime zeta function has singularities at
reciprocals of square-free positive integers. In this study, we consider the zero-
free region of the prime zeta function and statistically verify certain conjectures
regarding the distribution of its zeros.

The paper is organized as follows. The first part is the introduction. In
Section 2, the theorem about the zero-free region of the prime zeta function is
proved. In Section 3, we formulate some conjectures regarding the properties
of the zeros of the prime zeta function. Chapter 4 is dedicated to algorithms for
calculating the prime zeta function. Chapter 5 covers the process of searching
for zeros. In Chapter 6, we study numerically the conjectures regarding the
distribution of zeros of the prime zeta function.

Throughout this paper, U × V stands for the Cartesian product of sets U
and V , and U(0, 1) stands for the standard uniform distribution. All limits in
the paper, unless specified, are taken as t→∞.

2 The zero-free region of the prime zeta function

The distribution of zeros of the prime zeta function is highly irregular. In
contrast to the Riemann zeta function, with its nontrivial zeros lying on the
critical line, the zeros of the prime zeta function are scattered in the complex
plane without an apparent regular pattern. They belong both to the critical
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strip and its outside. It can be noted, however, that the density of the zeros
increases while approaching the imaginary axis, though not uniformly, cf. the
plot of 10318 zeros we have found in the rectangle 0.1 < σ < 1.65, 0 < t < 104

(Fig. 1).

Figure 1: Zeros of ζP(s) in the rectangle 0.1 < σ < 1.65, 0 < t < 104. The
number of zeros is 10318.

We can see that the density of zeros tends to zero while σ increases. Indeed,
there exists a constant σ0 such that the half plane σ > σ0 is the zero-free region.
The following theorem gives the value of σ0.

Theorem 1. The prime zeta function has no zeros in the half-plane σ > σ0.
Here σ0 = 1.77954465354699... is the zero of the function U(σ) = 21−σ−ζP(σ).

First, we prove an auxiliary lemma describing the function’s U(σ) behavior.

Lemma 1. Let the function U(σ) be defined as above and σ1 = 2.18, then{
U ′(σ) > 0, if 1 < σ 6 σ1,

U(σ) > 0, if σ > σ1.

Proof. Let us consider the first statement of the lemma. Calculating the
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derivative, we receive, for 1 < σ 6 σ1,

U ′(σ) = − log 2

2σ
+
∑
p>3

log p

pσ
> − log 2

2σ
+

log 3

3σ
+

log 5

5σ
+

log 7

7σ

> − log 2

2σ
+ 3

3

√
log 3

3σ
log 5

5σ
log 7

7σ︸ ︷︷ ︸
:=A1(σ)

> 0.

Indeed, A1(σ) > 0 follows from the inequality(
2

3
√

105

)σ
>

log 2

3 3
√

log 3 log 5 log 7
= 0.1530466... , σ 6 σ1,

yielding us the first statement of the lemma.
Next, let σ2 = 2.46 and σ > σ2. Considering the function U(σ) we get

U(σ) =
1

2σ
−
∑
p>3

1

pσ
>

1

2σ
−
∞∑
n=3

1

nσ
.

Applying the EulerMaclaurin summation formula,

b∑
n=a

f(n) =

∫ b

a

f(x)dx+
f(b) + f(a)

2
+
f ′(b)− f ′(a)

12
+R2,

where the remainder term

|R2| 6
1

12

∫ b

a

∣∣∣f (2)(x)
∣∣∣ dx,

we receive
∞∑
n=3

1

nσ
6

(
3

σ − 1
+

1

2
+

σ

18

)
1

3σ
,

thus

U(σ) >
1

2σ
−
(

3

σ − 1
+

1

2
+

σ

18

)
1

3σ
=

1

3σ

((
3

2

)σ
− 3

σ − 1
− 1

2
− σ

18

)
︸ ︷︷ ︸

:=A2(σ)

> 0,

σ > σ2.
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Indeed, considering the derivatives of the function A2(σ), we get

A′2(σ) =

(
3

2

)σ
log

3

2
+

3

(σ − 1)2
− 1

18

A
(2)
2 (σ) =

(
3

2

)σ
log2 3

2
− 6

(σ − 1)3
,

A
(3)
2 (σ) =

(
3

2

)σ
log3 3

2
+

18

(σ − 1)4
> 0.

Thus A′2(σ) is convex. Solving the equation A
(2)
2 (σ) = 0 we express its unique

minimum point using the Lambert W function,

σmin = arg min
σ
A′2(σ) = 1 +

3

log(3/2)
W

(
1

3
3

√
4 log

3

2

)
= 3.1631259788... .

Noticing that
A′2(σmin) = min

σ
A′2(σ) > 0,

we conclude that A2(σ) is a monotonic (increasing) function, positive in the
interval σ > σ2, since A2(σ2) > 0.

Next, let us consider the behavior of the function U(σ) if σ1 6 σ 6 σ2.
From the definition of the function U(σ) we get

U(σ) =
1

2σ
− 1

3σ
− 1

5σ
−
∑
p>7

1

pσ
>

1

2σ
− 1

3σ
− 1

5σ
−
∞∑
n=7

1

nσ
.

Applying the EulerMaclaurin summation formula, we receive

∞∑
n=7

1

nσ
6

(
7

σ − 1
+

1

2
+

σ

42

)
1

7σ
,

thus, for σ1 6 σ 6 σ2,

U(σ) >
1

2σ
− 1

3σ
− 1

5σ
−
(

7

σ − 1
+

1

2
+

σ

42

)
1

7σ

=
1

7σ

((
7

2

)σ
−
(

7

3

)σ
−
(

7

5

)σ
− 7

σ − 1
− 1

2
− σ

42

)
︸ ︷︷ ︸

:=B(σ)

> 0.

Indeed, we have

B1(σ) :=

(
7

2

)σ
>

(
7

2

)a
+

(
7

2

)a(
log

7

2

)
(σ − a),
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since B1(σ) is a convex function (hence its graph lies above the tangent). Next,
the functions B2(σ), B3(σ), B4(σ) are concave, thus secant lines, connecting
points (a,Bj(a)) and (b, Bj(b)), lie below the functions,

B2(σ) := −
(

7

3

)σ
> B2(a) +

B2(b)−B2(a)

b− a
(σ − a),

B3(σ) := −
(

7

5

)σ
> B3(a) +

B3(b)−B3(a)

b− a
(σ − a),

B4(σ) := − 7

σ − 1
> B4(a) +

B4(b)−B4(a)

b− a
(σ − a).

Here a = σ1 and b = σ2. Combining the above inequalities, we receive

B(σ) >

(
7

2

)a
+

(
7

2

)a(
log

7

2

)
(σ − a)− 1

2
− σ

42

+ (B2 +B3 +B4)(a) +
(B2 +B3 +B4)(b)− (B2 +B3 +B4)(a)

b− a
(σ − a)

= Pσ +Q.

Calculating the constants, we obtain P = 16.46873847... and
Q = −35.46121108... . Thus B(σ1) > 0, yielding us the second statement
of the lemma.

Now, we can turn to the proof of Theorem 1.

Proof. First we note that

|ζP(s)| =
∣∣∣∣ 1

2s
+

1

3s
+

1

5s
+ ...

∣∣∣∣ > 1

2σ
− 1

3σ
− 1

5σ
− ... = 21−σ − ζP(σ) = U(σ).

Next we prove that U(σ) > 0 for σ > σ0. Indeed, by Lemma 1, the function
U(σ) is increasing for 1 < σ 6 σ1. Next, U(1.77) < 0 and U(1.78) > 0, thus
we have a root 1.77 < σ0 < 1.78. Moreover, since, by Lemma 1, the function
U(σ) is positive for σ > σ1, the root (note that we can calculate it numerically
with any necessary precision) is unique.

Remark 1. Let M = 200000 and define

σT = max
|t|<T
{ σ | ζP(σ) = 0 }, (2)

then we receive
σM = 1.682628788045196... .

Thus, the result of Theorem 1 can not be refined by more than ∆ = 0.097.
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3 Conjectures

The intricate behavior of the prime zeta function obstructs the analytical
investigation of its properties. Under these circumstances the application of
the methods of experimental mathematics and mathematical statistics appears
to be promising. We can put forward (and later test and falsify) the following
conjectures:

Conjecture 1. The estimate for the zero-free plane given by Theorem 1 can
not be improved, that is, if σT is defined as above (see (2)), then

lim
T→∞

σT = σ0. (3)

Conjecture 2. Let 0 < γ < σ0 and

Lγ(x, T ) = #{s | ζP(s) = 0, σ > γ, 0 < t/T < x},

then the imaginary parts of the zeros of the prime zeta function =s are dis-
tributed uniformly, i.e., for γ > 1 and 0 < x < 1, we have

lim
T→∞

Lγ(x, T )

Lγ(1, T )
⇒ U(0, 1). (4)

Conjecture 3. Let 0 < γ < σ0 and

Mγ(T ) = #{s | ζP(s) = 0, σ > γ, 0 < t < T},

then there are positive constants c and C (maybe depending on γ), such that
the inequality

cT < Mγ(T ) < CT (5)

holds, for γ > 1 and T large enough. The weaker proposition is M1(T ) =
O(T ).

Remark 2. The behavior of the function Nβ(T ),

Nβ(T ) = #{s | ζP(s) = 0, 0 < β < σ < σ0, 0 < t < T}

is more complicated, the limiting distribution seems to be bimodal (see Section
6).

Remark 3. It remains unclear whether there is any regularity in the distri-
bution of the zeros of ζP(s), akin to the log ζ(s) (cf. Section XI.8 in [6]).
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Indeed, the behaviour of ζP(s) is closely connected to the log-zeta function,

log ζ(s)− ζP(s) =

∞∑
n=2

1

n

∑
p∈P

1

pns
, σ > 1/2.

Estimating the difference, we obtain

|log ζ(s)− ζP(s)| 6
∞∑
n=2

ζP(nσ)

n︸ ︷︷ ︸
:=G(σ)

<
ζP(2σ)

2
+
ζP(3σ)

3
+
ζP(4σ)

4

(
1 +

1

2σ
+

1

22σ

)
︸ ︷︷ ︸

<ζP(2σ)(2−1+2−σ−1)

.

The function G(σ) is convex and monotonically decreasing, and for σ > 1 we
have |R(s)| 6 G(σ) < G(1) = γ − B1 = 0.31571845205... . Here, γ and B1

stand for the EulerMascheroni and the MeisselMertens constants respectively.

4 Calculating the prime zeta function

We implemented and examined ten earlier proposed algorithms to calculate
the prime zeta function and introduced some modifications. We also utilized
two built-in algorithms for the prime zeta function as benchmarks. All the
approaches are outlined in this section and stored in [7]. Note that the com-
putational difficulties increase tremendously as σ → 0 and t→∞.

• Algorithm 1: Prime Zeta Froberg1. The first algorithm under consider-
ation was proposed by Fröberg [4]. It is comprised of two main blocks:
(1) the Riemann zeta function calculation block ("ZETA1") and (2) the
prime zeta function calculation block.

• Algorithm 2: Prime Zeta Mobius1. This algorithm relies on (1), employ-
ing the Möbius function and the Riemann zeta function. The Möbius
function for n ∈ N, is calculated as follows,

µ(n) =


1 if n = 1,

0 if n contains a square factor,

(−1)q if n is the product of q different prime factors.

For the calculation of the Riemann zeta function, we took the ZETA1

algorithm.

• Algorithm 3: Prime Zeta Cohen1. Note that log ζ(ns) = O(2−nσ).
Hence, (1) converges rapidly enough to allow precise calculations.Cohen,
however, recommended (see [2]) a more refined approach: to compute the
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series’s partial sum first and use the Riemann zeta function expansion
only for the remainder term. Indeed, let us set

ζp>A(s) = ζ(s)
∏
p6A

(
1− 1

ps

)
,

then, we can modify (1) in the following way,

ζP(s) =
∑
p6A

1

ps
+

∞∑
n=1

µ(n)

n
log ζp>A(ns).

Since log ζp>A(ns) = O(A−nσ), the series converges much faster than
the original series if A is not too small. The optimal value of A depends
on the desired accuracy and is selected empirically (values from 20 to
100 are reasonable if high precision is necessary [2]).

• Algorithm 4: Prime Zeta MobiusPython. Replacing the ZETA1 block
with the built-in Python function "zeta", we receive a modified version
of Algorithm 2, now referred to as Algorithm 4.

• Algorithm 5: Prime Zeta CohenPython. By applying the above modifi-
cation to Algorithm 3, we obtain Algorithm 5.

• Algorithm 6: Python’s primezeta. Additionally, we have utilized Python’s
built-in function "primezeta" for calculating the prime zeta function.

• Algorithm 7: Prime Zeta FrobergX. This modification uses the EMB-
algorithm (proposed in [1]) for the calculation of the Riemann zeta func-
tion. We use this block, named ZETAX, to replace ZETA1 in Algorithm 1,
thus attaining Algorithm 7.

• Algorithm 8: Prime Zeta CohenX. Replacing ZETA1 block with ZETAX in
Algorithm 3, we receive the next modification, named Algorithm 8.

• Algorithm 9: Prime Zeta Froberg Fast. Replacing ZETA1 block in Algo-
rithm 1 with block zetafast, containing Fischer’s Zetafast algorithm
(see [3]), we receive Algorithm 9.

• Algorithm 10: Prime Zeta Mobius Fast. Replacing ZETA1 with zetafast

in Algorithm 2, we obtain Algorithm 10.

• Algorithm 11: Prime Zeta Cohen Fast. Replacing ZETA1 with zetafast

in Algorithm 3, we receive Algorithm 11.
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• Algorithm 12: Wolfram’s Cohen-Lenstra-Martinet. In Wolfram’s Math-
ematica, one can access the prime zeta function using the PrimeZetaP

function. This function is built into Mathematica and leverages efficient
algorithms, including the Cohen-Lenstra-Martinet approach, to compute
the values of the prime zeta function. Note that Wolfram PrimeZetaP is
faster than Python’s built-in function primezeta and provides the most
accurate results; that is why we have usedWolfram’s results as a bench-
mark.

To determine the most efficient approach, we standardized the accuracy of
the algorithms to the same number of decimal places. Next, we subdivided the
domains of interest into smaller rectangles Si, generating for every rectangle
Si a set of 100 random points, and calculated the prime zeta function values
at each point. Using the above algorithms, we executed three test trials. Note
that in different parameter regions, the efficiency of the algorithms varies in
the following way:

1. In the range (σ, t) ∈ (0.1, 1) × (102, 104), Algorithm 11 (Cohen Fast)
exhibited the best computation time.

2. In the range (σ, t) ∈ (0.1, 0.3)× (101, 102), Algorithm 8 (CohenX) was
the most efficient.

3. In the range (σ, t) ∈ (1, 1.78)×(103, 104), Algorithm 6 (Python Primezeta)
provided the best performance.

4. In the remaining domains, Algorithm 7 (FrobergX) outperformed other
competitors.

The benchmarking experiments were conducted using Python 3.12.1 on a Win-
dows 11 operating system, running on a single core of an AMD Ryzen 9
5950X CPU with 32 GB RAM. Each random value of the prime zeta function
was taken over 100 uniformly distributed values, and the average computation
time in seconds was recorded. The corresponding results are illustrated in
Figure 2.

5 The calculation of zeros of the prime zeta function

We use a bivariate target function and the differential evolution algorithm for
global optimization to find the zeros of the prime zeta function. The prime zeta
function exhibits significant irregularity (see Figure 3). This irregularity makes
it infeasible to search for its zeros using currently available tools. To address
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Cohen Fast

0.396 s

Re

Im

Figure 2: The diagram of the most efficient algorithms for specific domains
(the average calculation time of a single prime zeta function value is given).

the challenge, we employ a bivariate target function, the squared modulus of
the prime zeta function,

F (σ, t) = |ζP(s)|2 = (<ζP(s))2 + (=ζP(s))2. (6)

By squaring the modulus of the prime zeta function, we smooth our target
function, thereby facilitating optimization. The target function surface is vi-
sualized in Figure 4 (note that the blue dots correspond to the minima). A
2D plot of these zeros is given in Figure 5.

The task of searching for zeros is now equivalent to the problem of finding
the minima of the target function. An alternative - well suited for the verifi-
cation of the optimization - approach relies on the examination of intersection
points of the curves =ζP(s) = <ζP(s) with the zero-plane.

Given that the target function F (σ, t) has multiple local optima (i.e.,
it is multi-modal), we applied the global optimization methods. The dif-
ferential evolution algorithm for global optimization, specifically from the
scipy.optimize (ver. 1.11.4) Python library, has been found to be the most
suitable for our task. We employed three approaches to improve the calcu-
lation time. First is parameter fine-tuning (to perform faster in particular
domains). Second, originally implemented in Python, the Cohen Fast al-
gorithm was rewritten in C++, accelerating the computation of prime zeta
values approximately 9 times. Using the Cython (ver. 3.0.6) library, we
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Figure 3: The real surface of ζP(s) is yellow, the imaginary surface is red, the
complex plane is green, the zeros are blue, (σ, t) ∈ (0.1; 2)× (9980; 10000).

created a module that allows the Cohen Fast C++ implementation to be
seamlessly integrated into the Python environment. Third, we achieved an
additional speedup of approximately 20 times by parallelizing the algorithm
using Python’s multiprocessing module. By applying these optimizations and
utilizing all 32 threads of the AMD Ryzen 9 5950X CPU, we were able to
compute the 10,318 zeros presented in Figure 1 in less than a week.

To ensure that no significant quantities of zeros were missed, we examined
the intervals between previously identified zeros. Each interval between two
consecutive zeros was divided into ten parts, and the optimization algorithms
were rerun. We noticed that the computational time increases exponentially,
as σ → 0. This phenomenon is closely related to the conjecture that the density
of zeros also grows exponentially as σ → 0. Given the limited timeframe, this
fact restricted our domain to σ ∈ (0.1;σ0). The prime zeta function zeros
database we have compiled is stored in [7].

Remark 4. Visualizations are important for a deeper understanding of the
sophisticated behavior and properties of the prime zeta function. By graphi-
cally representing surfaces and curves associated with ζP(s), we can identify
unobvious patterns, singularities, and characteristics of the function. This
visual approach not only aids in the intuitive grasp of the function’s dynam-
ics but also facilitates the communication of complex mathematical ideas to a
broader audience. Furthermore, these visualizations can serve as a foundation
for future research, providing a visual context for hypotheses and guiding the
development of new techniques. See the following online links with interactive
3D views:
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Figure 4: |ζP(s)|2 in the rectangle (0.1; 1.4)× (9980; 10000).
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Figure 5: Zeros in the rectangle (0.1; 1.4)× (9980; 10000).

• Visualization of real and imaginary ζP(s) surfaces: https: // skfb. ly/ oUMnn .

• Visualization of real ζP(s) surface: https: // skfb. ly/ oUMns .

• Visualization of intersections of real and imaginary ζP(s) surfaces: https: // skfb.

ly/ oUMIP .

• Visualization of |ζP(s)|: https: // skfb. ly/ oUMny .

• Visualization of the target function https: // skfb. ly/ oUMHZ .

6 Properties of the distribution of zeros of the prime zeta
function

We identified a total of 10318 zeros within the rectangle S4 = (0.1;σ0)×(0; 104)
(see Figure 1). Next, we proceed with the statistical analysis and visualization
of the empirical data. Through various graphical representations, we aim to
elucidate the underlying patterns and trends present in the data. Addition-
ally, we will test our hypotheses to validate the statistical significance of the
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observed results. These analyses will form the foundation for our subsequent
analytical research.

Besides the scatter plot, another way to have a quick and insightful glimpse
is to look at the data in a histogram form. A histogram showing the distribu-
tion of zeros by σ is given in Figure 6 (cf. Figure 1).

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Sigma

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

Figure 6: Histogram of ζP(s) zeros distribution by σ, s ∈ S4.

We observe that the majority of zeros is concentrated within the interval
(0.3; 0.7), with a pronounced peak in the histogram at σ ≈ 0.6 and another
significant peak near the left boundary. Beyond the critical strip 0 < σ 6 1,
the occurrence of zeros becomes increasingly rare. The mean value (0.503)
is slightly higher than the median (0.493); thus the distribution appears to
be right-skewed. Next, we turn to Conjecture 2 (4) and Conjecture 3 (5) to
statistically analyze the distribution of the imaginary parts of the zeros of the
prime zeta function.

Conjecture 2.

We applied Kolmogorov, Anderson-Darling, and Cramr-von Mises tests to
falsify the hypotheses of uniformity of the imaginary parts of the zeros of the
prime zeta function. The results support the conjecture outside the critical
strip (see. Table 1).
However, for γ = 0.1 (i.e., we have σ > 0.1), the conjecture is rejected. The
conjecture begins to fail, starting at γ ≈ 0.61. Moreover, it is conclusively
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Table 1: Testing the hypotheses of the uniformity of the imaginary parts of
the zeros of the prime zeta function in different half-planes for T = 104. The
significance level α = 0.05.

Half-plane Test Statistic Critical value Result

σ > 0.1

Kolmogorov 0.037 0.013 Rejected

Anderson-Darling 39.890 2.492 Rejected

Cramr-von Mises 7.330 0.461 Rejected

σ ≥ 0.61

Kolmogorov 0.020 0.026 Not rejected

Anderson-Darling 2.832 2.492 Rejected

Cramr-von Mises 0.414 0.461 Not rejected

σ ≥ 0.62

Kolmogorov 0.015 0.027 Not rejected

Anderson-Darling 1.644 2.492 Not rejected

Cramr-von Mises 0.212 0.461 Not rejected

σ > 1

Kolmogorov 0.011 0.063 Not rejected

Anderson-Darling 0.057 2.492 Not rejected

Cramr-von Mises 0.008 0.461 Not rejected

rejected within the critical strip, 0.1 < σ < 1. Thus, there is strong evidence
that Conjecture 2 with σ > 1 cannot be rejected. However, to strictly prove
the hypothesis, a further analytical study is required.

Conjecture 3.

Let γ = 1 in (5), then we have

M1(T ) = #{s | ζP(s) = 0, σ > 1, 0 < t < T}.

Do there exist positive constants c1 and C1, such that the inequalities

c1T < M1(T ) < C1T,

hold for T large enough? We can see (cf. Figure 7) that numerical experiments
conducted for T < 104 comply with the conjecture.
Moreover, we can indicate such constants b̂1 and B̂1, that the inequalities

k1 T + b̂1 < M1(T ) < k1 T + B̂1.

hold. Here, the slope and intercepts of the line bounds are

k1 = 0.046, b̂1 = −4.667, B̂1 = 3.949.
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Figure 7: M1(T ) plot for T ∈ (0; 104) and its line bounds.

Next, considering the case γ = 0.1 and T < 104, we obtained the following
slope and intercepts of the line bounds, k0.1 = 1.05, b̂0.1 = −290, B̂0.1 = 50.

A visual representation of M0.1(T ) with its upper and lower bounds is given
in Figure 8. Note, however, that the apparent curvature of M0.1(T ) hints that
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Figure 8: M0.1(T ) plot for T ∈ (0; 104) and its line bounds

the conjecture is false in the critical strip.
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