
DOI: 10.2478/auom-2025-0025

An. Şt. Univ. Ovidius Constanţa Vol. 33(2),2025, 179–193

On topological quotient hyperrings and
α∗-relation

A. Zare and B. Davvaz

Abstract

In this research, we first introduce the concept of a topological Kras-
ner hyperring and then proceed to investigate its properties. By apply-
ing relative topology to subhyperrings, we analyze the properties associ-
ated with them. In other words, the aim is to utilize specific topologies
to identify the diverse substructural characteristics of this type of hy-
perring. Additionally, we examine the quotient topology resulting from
an interesting relation on the discussed spaces to understand how this
relation influences the topological structure of the hyperring. Finally,
we demonstrate that the topological Krasner hyperring induced by τα,
which is the finest and strongest topology on H, ultimately forms a ring.
In summary, this research not only analyzes the structural properties
of these hyperrings but also examines, from a topological perspective,
how different relations impact this structure, proving that the resulting
topology is strong enough to form a ring.

1 Introduction and basic definitions

Hyperrings are a generalization of algebraic structures like rings, where hy-
peroperations are used instead of conventional operations. In a typical ring,
addition and multiplication operate as functions that take two elements and
produce a new element. However, in hyperrings, at least one of these opera-
tions (usually addition) is defined as a hyperoperation. This means that when
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you add two elements together, the result is not a single element but a set of
elements.

In Krasner hyperrings, addition is defined as a hyperoperation. This means
that when you add two numbers, instead of obtaining a specific number, a set
of numbers appears as the result. Therefore, the addition structure in this
system takes the form of a hypergroup, which is a generalization of groups.

In Krasner hyperrings, multiplication is defined as a regular operation,
forming a semigroup structure. This means that multiplication always yields
a specific result, whereas addition can yield multiple possible results. These
types of algebraic structures are used in various fields of modern mathematics,
particularly in cryptography, algebraic geometry, and dynamical systems.

In algebraic hyperstructure theory, a hyperoperation is a generalized oper-
ation defined as + : T × T −→ P∗(T), where P∗(T) represents the collection
of all non-empty subsets of T. Unlike standard operations, a hyperoperation
assigns a non-empty subset of T to each pair of elements from T. For any sub-
sets U,D ∈ P∗(T) and an element r ∈ T, we define, U + D =

⋃
a∈U,b∈D(a+ b)

and r+U is symbol of {r}+U and U+r is U+{r}. A structure (T,+) is called
a semihypergroup if the hyperoperation is associative, i.e., for all r, s, t ∈ T,
the following holds, (r + s) + t = r + (s + t). A semihypergroup is called a
hypergroup if for any element r ∈ T, r + H = T + r = T. This means adding
any element to the whole set does not change the set. A non-empty subset
J ⊆ T is a subhypergroup if for every k ∈ J, it holds that k + J = J + k = J.
This condition ensures closure of the subset under the hyperoperation.

A nonempty subset C of a hyperring H is said to be a complete part of H if
for any nonzero natural number n and for all r1, r2, . . . , rn of H, the following
implication holds:

C ∩
n∑
j=1

rj 6= ∅ ⇒
n∑
j=1

rj ⊆ C.

2 Topological Krasner hyperrings

Krasner hyperrings generalize rings in mathematics, allowing flexible opera-
tions with outputs that can be sets of values. They share features with rings,
such as an additive identity and the ability to perform addition and multipli-
cation. Hyperrings have applications in number theory and algebra, leading
to new insights and advancements in mathematics.

Definition 2.1. [6] A Krasner hyperring is an algebraic satisfying the follow-
ing axioms:
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(1) (H,+) is canonical hypergroup, i.e, “ + ” is a hyperoperation on H so
that

(a) for every r, s and z in H, r + (s + z) = (r + s) + z,

(b) for all r, s ∈ H, r + s = s + r,

(c) there is 0 ∈ H so that 0 + r = r for every r ∈ H,

(d) for all r ∈ H is only a s ∈ H so that 0 ∈ s + r,

(e) when t ∈ r + q, then q ∈ −r + t and r ∈ t− q, for any t, r, q ∈ H

(2)(H, ·) is a semigroup with zero as a two-way absorbing element ,i.e.,
0 · r = r · 0 = 0 for all r ∈ H,

(3) the multiplication operation denoted by “ · ” distributes over the hy-
peroperation represented by “ + ”.

Consider (H, τ) as a space that τ is a topology. Then we Consider a
topology on power set H which is generated by B =

{
ST | T ∈ τ

}
, where

ST =
{
S ∈ P∗(H) | S ⊆ T, S ∈ τ

}
[5].

In [3, 4], Heidari et al. defined the notion of topological polygroups and
topological hypergroups. By considering the relative topology on subpoly-
groups they proved some properties of them. Nodehi et al. [9] and Singha and
Das [10] studied topological hyperrings and presented some of their properties.
Now, we investigate more results on topological Krasner hyperrings.

Definition 2.2. Let H be Krasner hyperring endowed with some topology τ .
Then H is said to be topological Krasner hyperring, indicated by (H,+, ·, τ),
if with respect to the product topology on H × H and the topology τ∗ on
P∗(H), the following maps

(1) (h,h1) 7→ h + h1 from H ×H to P∗(H) ;
(2) h 7→ −r from H to H;
(3) (h,h1) 7→ h · h1 from H ×H to H;

are continuous.

Lemma 2.3. Let H be a topological Krasner hyperring. Then, the hyperop-
eration + : H×H −→ P∗(H) is continuous if and only if for all r, s ∈ H and
S ∈ τ so that r + s ⊆ S then there are T,Q ∈ τ so that r ∈ T and s ∈ Q and
T + Q ⊆ S [9].

Example 1. Suppose (χ,+, ·) is a topological ring. where r⊕s =
{
r, s
}

then,
(χ,⊕, ·) is a topological Krasner hyperring.
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Example 2. Consider the hyperring (R,+, ·), where R =
{
q, s
}

, the hyper-
operation “ + ” and the binary operation “ · ” defined as follows :

+ q s

q
{
q
} {

s
}

s
{
s
} {

q, s
} . q s

q q q
s q s

Then, (R,+, ·, τ) is a topological Krasner hyperring, where τ =
{
∅,
{

q
}
, R
}

.

Example 3. Consider R as a set of real numbers. Consider the Krasner
hyperring (R,+, ·), where r + s = R and r · s is common product. (R,+, ·) is
a topological Krasner hyperring by desired topology on R.

Example 4. Consider R =
{
o, q, s

}
, where the hyperoperation “ + ” and the

binary operation “ · ” defined as follows:

+ o q s
o

{
o
} {

q
} {

s
}

q
{
q
} {

q
}

R

s
{
s
}

R
{
s
}

. o q s
o o o o
q o q s
s o s s

For a Krasner hyperring (R,+, ·), let R be topological with

T =
{
∅, R,

{
o
}
,
{
o, q
}
,
{
o, s
}}
.

Then (R,+, ·,T) is a topological Krasner hyperring.

Remark 1. In the above example A =
{

0, 1
}

is a open set (
{

0, 1
}
∈ τ), but

is not complete part, because

A ∩ 1 + 2 6= ∅ but 1 + 2 * A.

Lemma 2.4. Let H be a topological Krasner hyperring. Then, the mappings

a% : H −→ P∗(H) with r 7→ a+ r,
%a : H −→ P∗(H) with r 7→ r + a,

are continuous , for all a ∈ H.

Lemma 2.5. Let K is a subset of H that is topological Krasner hyperring and
S be a member of topology that is defined on H. Then, K ⊆ −r + S if and
only if r +K ⊆ S for all r ∈ H.

Proof. Consider K ⊆ −r + S and t ∈ r + a for some a ∈ K. Then, a ∈
−r + t ∩ −r + S. So a ∈ −r + u for some u ∈ S. Thus, u ∈ r + a ∩ S as a
result r + a ⊆ S. Thus, r +K ⊆ S. Conversely, consider r ∈ H and r +K is
subset of H. Then (−r + r) +K = −r + (r +K) ⊆ −r + S.
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Lemma 2.6. Let S be a member of topology that is defined on a topological
Krasner hyperring so that S is a complete part. For all w ∈ H, w+W is open
subsets of H, also is W + w.

Proof. Consider W as a subset of H such that is open and w ∈ H. Then, by
Lemma 2.5, we have

%−1−w(W ) =
{
r ∈ H | −w + r ⊆W

}
= w +W

So, by Lemma 2.4, the mapping %−w is continuous; thus, w + W is open.
In a similar manner, is also W + w.

Theorem 2.7. Consider H as a topological Krasner hyperring. Also V and
U be open subsets of H. If V or U is a complete part, then V + U is open.

Proof. Consider V as a complete part. Based on 2.4, the set V + b is open.
Since the union of any collection of open sets remains open, this proves the
proposition.

Lemma 2.8. Consider H as a topological Krasner hyperring so that every
open subset of H is a complete part. Let S be an open basis at 0. Then, the
collections {r + S} and {S + r}, Where r varies over all elements of H and
S ranges over all members of S, they constitute an open basis for H.

Proof. Consider Q as an open subset of H and a ∈ Q. Since 0 ∈ −a + Q, it
implies that there is S ∈ S so that 0 ∈ S ⊆ −a + Q. Since Q is a complete
part we conclude that a ∈ a + S ⊆ Q. Thus, Q is a union of open subsets
a + S. This means we have shown that

{
r + S

}
is a collection of open sets

such that every open set in the space can be written as a union of sets from
this collection. for H. As the same way, the sets

{
S + r

}
is a basis for H.

Theorem 2.9. Let H be a topological Krasner hyperring and S be a basis at
0. Then, the following assertions hold:

(1) for all S belonging to S and r ∈ S there is T ∈ S so that r + T is subset
of S;

(2) for all S belonging to S there is T ∈ S so that T + T is subset of S;

(3) for all S ∈ S there is T ∈ S so that −T ⊆ S.

In the context of topological spaces, neighborhoods refer to open sets. An
open set S within a topological Krasner hyperring H is defined as a symmetric
neighborhood if −S = S.

Theorem 2.10. Each topological Krasner hyperring contains an open basis
at 0, including a symmetric open basis at 0.
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Proof. Consider S as an open basis at 0. Then, for every T ∈ S, put A =
T ∩ −T . Then, A = −A and A ⊆ S.

Theorem 2.11. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part. Then, for all neighborhood S of 0 there is a
neighborhood T of 0 so that T ⊆ S, where T is the closure of T.

Proof. Consider T as a symmetric neighborhood of 0 so that T +T ⊆ S. Now,
if r ∈ T, then r + T ∩ T 6= ∅. So there is v1, v2 ∈ T so that v2 ∈ r + v1. Thus,
r ∈ v2 − v1 ⊆ T +−T = T + T ⊆ S.

Theorem 2.12. Consider H as a topological Krasner hyperring so that every
open subset of H is a complete part. Also S be a neighborhood of 0 and C

be any compact subset of H. Then, there is a neighborhood T of 0 so that
r + T − r ⊆ S for all r ∈ C.

Proof. Consider S as a neighborhood of 0 so by Theorem 2.9, there is a
symmetric neighborhood I of 0 so that I + I ⊆ S. Applying Theorem 2.9
for I, there is a symmetric neighborhood Q of 0 so that Q + Q ⊆ I. So
Q + Q + Q ⊆ I + I ⊆ S. Since C is compact and C ⊆

⋃
r∈C Q + r, it follows

that there are r1, . . . , rn so that C ⊆
⋃n
j=1 Q + rj .

Let T = ∩ni=1−ri+Q+ri. We claim that −ri+T+ri ⊆ Q, for i = 1, . . . , n.
Since Q is a complete part and ω ∈ (ri + (−ri)) + ω + (−ri + ri) ∩ Q for
i ∈

{
1, ..., n

}
and ω ∈ Q, is obtained (ri + (−ri)) + ω + (−ri + ri) ⊆ Q. Now

for The natural number k ranges from 1 to n we have

rk + T + (−rk) = rk +

(
n⋂
i=1

(−ri + Q + ri)

)
+ rk

⊆ rk + (−rk) + Q + rk + (−rk) ⊆ Q.

Thus, for all r ∈ C there is ω ∈ Q and 1 ≤ k ≤ n so that r ∈ ω + rk. As a
result we have r+T+(−r) is in (ω+rk)+T+(−rk +(−ω)) and this is subset
of ω + (rk + T + (−rk)) + (−ω) ⊆ ω + Q + ω ⊆ Q + Q + Q ⊆ S.

Theorem 2.13. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part, S be any neighborhood of 0 and C be any
compact subset of H so that C ⊆ S. Then there is a neighborhood T of 0 so
that (C + T) ∪ (T + C) ⊆ S.

Proof. Consider C as a compact subset of H and S be a neighborhood of 0
so that C ⊆ S. Then, for all r ∈ C there is a neighborhood Qr of 0 so that
r+Qr ⊆ S and a neighborhood Tr of 0 so that Tr+Tr ⊆ Qr. Since C is compact
and C ⊆

⋃
r∈C r + Tr, so there are r1, . . . , rn ∈ C so that C ⊆

⋃n
j=1 rj + Trj .
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Let T1 = ∩nj=1rj + Trj . As a result, we have

C+ T1 ⊆

(
n⋃
j=1

rj + Trj

)
+ T1 ⊆

n⋃
j=1

rj + Trj + Trj ⊆
n⋃
j=1

rj +Qrj ⊆ S.

3 Subhyperring of topological Krasner hyperring

In this paragraph, we present the notion of a subhyperring within a topological
Krasner hyperring. We examine the relative topology on a subhyperring. A
nonempty subset J of the hyperring H is considered a subhyperring of H if
the structure (J,+, ·) forms a hyperring itself. The subset J qualifies as a
hyperideal of H if, for every h ∈ H and k ∈ J, the products h · k and k · h are
both in J. Furthermore, J is termed a normal hyperideal in H if and only if,
for all h ∈ H, the set h+ J− h is contained in J.

Lemma 3.1. Let M and M1 and M2 be subsets of a topological Krasner
hyperring H. Also every open subset of H is a complete part. Then, the
following assertions hold:

(1) M1 +M2 ⊆M1 +M2;

(2) −M = −M .

Proof. (1) Consider t ∈M1+M2. Then t ∈ r+s for some r ∈M1 and s ∈M2.
We prove that each neighborhood S of t has a non-empty intersection with
M1 + M2. Since S is a complete part, it follows that r + s ⊆ S. Thus, there
is neighborhoods T that r ∈ T and Q that s ∈ Q so that T + Q ⊆ S. From
r ∈ T∩M1 and s ∈ Q∩M2 we conclude that there is a ∈ T∩M1 and d ∈ Q∩B.
Now, we have a+ d ⊆ S ∩M1 +M2. Thus, t ∈M1 +M2.

(2) Consider r ∈ −M . Then , −r ∈M . If r ∈ S ∈ τ , then−r ∈ −S so there
is s ∈ M ∩ −S thus −s ∈ −M ∩ S. As a result, r ∈ −M . Thus, −M ⊆ −M .
As the same way, we can prove that −M ⊆ −M . Thus, −(M) = (−M).

Theorem 3.2. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part. Then, the following assertions hold:

(1) If J is a subsemihypergroup of H ,then J is a subsemihypergroup of H;

(2) If J is a subhyperring of H,then J is a subhyperring of H.

Proof. (1) Consider J as a subsemihypergroup of H. Since J is a subsemihy-
pergroup, it is closed under the semihypergroup operation “ + ”; then J plus
J is subset of J. Denote J as the closure of J in H, we have J plus (hyperop-
eration) J is subset of J + J and this set is subset of J; thus, The first part of
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the theorem is obtained.
(2) Consider J as a subhyperring of H; According to the definition of a

subhyperring for any a, z ∈ J; a− z ⊆ J and a.z ∈ J, then −b is member of J
for any b ∈ J. So −J = −J and −J ⊆ J; thus, J is a subhyperring of H.

Theorem 3.3. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part. Then, every subhyperring M of H is open if
and only if its interior is not empty.

Proof. Consider M that its interior is non-empty, Then, there is point p and
a open set S of 0 so that p + S ⊆M. Now, for all s ∈M we have

s + S ⊆ s + (−p + p) + M = (s− p) + (p + M) = (s− p) + M = J

Thus, s is a point inside M. As a result, M is open.

Theorem 3.4. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part. Then, every open subhyperring is closed.

Proof. Consider J as an open subhyperring of H, then H equals the union of
r (where r belongs to H) plus J, which amounts to J union the union of r
(where r does not belong to J) plus J. So Jc =

⋃
r/∈J r+J. By assumption J is

a complete part, it follows that r+J is open. Thus, Jc is open and it conclude
that J is closed.

Theorem 3.5. Let G be a family of neighborhood of 0 in a topological Krasner
hyperring H so that

(1) for all S ∈ G, there is T ∈ G so that T + T is subset of S;

(2) for all S ∈ G, there is T ∈ G so that −T is subset of S;

(3) for every S,T ∈ G, there is Q ∈ G so that Q ⊆ S + T.

Let J = ∩{S | S ∈ G}. Then, the desired result is obtained.

Proof. Consider r, s ∈ J and S ∈ G. Then, by (1) there are T ∈ G so that
T + T is subset of S. Therefor r and s, members of T there are such that
r + s ⊆ T + T ⊆ S. As a result, r + s ⊆ J. So we can prove that if r ∈ J,
then −r ∈ J. Thus, J is a subhyperring of H .Now we prove that J is closed.
Let r ∈ H \ J. Then, r /∈ S for some S ∈ G. So by (1),(2) and (3) there
are T1,T2,T ∈ G so that T1 + T1 ⊆ S,−T2 ⊆ T1 and T ⊆ T1 ∩ T2. Thus,
T + (−T) ⊆ S. As a result, if r + T ∩ T 6= ∅, then we have r ∈ T + (−T) ⊆ S
so r ∈ J, and it is a cotradiction. Thus, r ∈ H + T ⊆ H \ J. Thus, H \ J is
open, that is, J is closed.
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Theorem 3.6. Consider S as a symmetric neighborhood of 0 in a topological
Krasner hyperring H. Also every open subset of H is a complete part. Then,
if S is a hyperideal the set L =

⋃∞
n=1

∑n
j=1 S acts as a subhyperring that is

both open and closed within H for all n ∈ N.

Proof. Consider e, f ∈ L, so there are e ∈
∑t
j=1 S and f ∈

∑k
j=1 S for some

k, t ∈ N. Then −f ∈
∑k
j=1(−S) =

∑k
j=1 S and so e − f ⊆

∑m
j=1 S for some

m ∈ N and it is easy that e.f ∈ L. As a result, L is a subhyperring of
H. By considering the results of the previous theorems, the desired result is
obtained.

Theorem 3.7. Let H be a topological Krasner hyperring so that every open
subset of H is a complete part. Then, a subhyperring J of H is closed if and
only if there is an open subset S of H so that S ∩ J = S ∩ J 6= ∅ .

Proof. If J is closed subhyperring of H, then it is sufficient to consider S as
a neighborhood of 0. Conversely, suppose there is an open subset S of H so
that S ∩ J = S ∩ J and S ∩ J 6= ∅. Let r ∈ J and s ∈ S ∩ J. So there is
h ∈ J∩r−s+S. Thus, h ∈ r−s+u for some u ∈ S. As a result u ∈ s−r+h.
So u ∈ S ∩ J, since by Theorem 3.3, J is a subhyperring of H, then u ∈ S ∩ J.
As a result r ∈ h − u + s ⊆ J. Thus, J = J, that is, J is closed subhyperring
of H.

Definition 3.8. We say that a subset A in the space T , which has a topology,
is dense in T if and only if for any point r in T , any neighborhood of r contain
at least one point from A. Equivalently, A is dense in T if and only if the only
closed subset of T including A is T itself.

Theorem 3.9. Let H be a topological Krasner hyperring and every open subset
of H is a complete part. If J is a non-closed subhyperring of H, Then, for
J ∩ Jc, It satisfies the conditions of Definition 3.8 in J.

Proof. Let J be considered as a non-closed subhyperring of H. According to
Theorem 3.7, for any open subset S of H, we have either S∩J = ∅ or S∩J 6= ∅
and S ∩ J ( S ∩ J. Now, take r ∈ J and let S be a neighborhood of r. This
implies that S ∩ J 6= ∅. Consequently, there exists some u ∈ S ∩ J \ S ∩ J.
Therefore, u lies in S ∩ (J ∩ Jc). Hence, for J ∩ Jc, It meets the requirements
of the previous definition in J.

4 Topological quotient hyperrings

In this section we study topological quotient hyperring and state isomorphism
theorem for topological Krasner hyperring.



ON TOPOLOGICAL QUOTIENT HYPERRINGS AND α∗-RELATION 188

Definition 4.1. Let Q represent a hyperideal within a Krasner hyperring
denoted as (H,+, ·). The quotient H/Q =

{
b + Q : b ∈ H

}
is classified as a

Krasner hyperring, specifically termed the quotient Krasner hyperring formed
by H and Q. The operations for this hyperring are defined in the following
manner: for any b, s ∈ H,

(b + Q)⊕ (s + Q) =
{
t + Q : t ∈ b + s

}
and

(b + Q)� (s + Q) = (b · s) + Q.

Now, consider a hyperideal Q associated with a topological Krasner hyper-
ring (H,+, ·, τ). We define a function φ : H −→ H/Q by setting φ(r) = r + Q

for each r in H. To establish a topology on H/Q, we assert that φ is a quotient
map. This indicates that a subset U of H/Q is considered open if the preimage
φ−1(U) is open in the topology that has been defined for H [1, 10].

Lemma 4.2. Let H be a topological Krasner hyperring and Q be a normal
hyperideal of H. Let π : H −→ H/Q such that π(r) = Q+r. Thus π−1(

{
Q+m :

m ∈ N
}

) = Q+N for every N ⊆ H and If every open subset of H is a complete
part, then the natural mapping π is open.

Proof. Suppose that y ∈ Q+N. Then there exsist n ∈ N and q ∈ Q such that
y ∈ q + n and π(y) ∈ π(q + n) =

{
π(z) : z ∈ q + n

}
=
{
Q + z : z ∈ q + n

}
is subset of

{
Q + n : z ∈ n + q

}
. Now let y ∈ π−1(

{
Q + n | n ∈ N

}
), thus

π(y) = Q + y ∈
{
Q + n | n ∈ N

}
. Then for some n ∈ N, Q + y = Q + n and

Q is a normal hyperideal, thus n − q ∩ Q 6= ∅. Thus, there is q ∈ Q such that
q ∈ y − n, thus y ∈ q + n ⊆ Q + N. Therefore, the proof is complete. Now in
next part If S is a subset of H that has theorem’s condition, by previous part
we have π−1(π(S)) = Q + S. Since S is a complete part, it follows that Q + S
is open in H. Thus, the proof is finished.

Theorem 4.3. Let H be a topological Krasner hyperring and every open subset
of H is a complete part. Then (H/M,⊕,�) is a topological Krasner hyperring.

Proof. We prove that the hyperoperation ⊕ and operation � and the map
r + M → −(r + M) are continuous. Consider r + M, s + M ∈ H/M, and J is
an subset of H/M so that has necessary condition and r + M ⊕ s + M ⊆ J.
Then, r + s ⊆ π−1(J). Since π−1(J) is open in H, there is open subset T and
Q of H including r and s, respectively, so that T +Q ⊆ π−1(J). It follows that
π(T) and π(Q) are open in H/M including r + M and s + M, respectively, so
that π(T)⊕ π(Q) ⊆ J. Thus, the hyperoperation ⊕ is continuous.

Consider −(r + M) = −r + M ∈ J. Then, −r ∈ π−1(J). Thus, there is
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an open subset S in H so that −r ∈ −S ⊆ π−1(J) so π(−r) = −r + M ∈
π(−S) ⊆ J and π(−S) is open in H/M.

In the continue, consider H as a topological Krasner hyperring and Q be
a hyperideal of H. Then, H/Q is a ring if and only if Q is a hyperideal of H
and also is normal. Thus (H/Q,⊕,�) is a topological Krasner ring [1].

Now, we state the isomorphism theorems for topological Krasner hyper-
rings. the proofs of theorems are in [10].

Definition 4.4. Let (H,+, ·, τ1) and (L,⊕, •, τ2) be topological Krasner hy-
perrings. A mapping % from H into L is known as a good topological homo-
morphism if

(1) %(0H) = 0L;

(2) %(h1 + h2) = %(h1)⊕ %(h2) when h1, h2 ∈ H;

(3) %(h1 · h2) = %(h1) • %(h2) when h1, h2 ∈ H;

(4) % is continuous;

(5) % is open.

Theorem 4.5. Let (H,+, ·, τ1) and (L,⊕, •, τ2) be topological Krasner hyper-
rings and Υ : H −→ L be a homomorphism. If the map Υ at 0H is continuous,
then is continuous and opposite is correct.

Proof. Specifically, if Υ is continuous, then Υ is continuous at 0H. Conversely,
if Υ is continuous at 0H and Υ(r) ∈ S2 for some r ∈ H and open subset S2

of L. Now, we have Υ(0) ∈ Υ(r + (r∗)) = Υ(r) +′ Υ(r∗) ⊆ S2 +′ Υ(r∗),
(so that 0 ∈ r + (r∗)) , so there is an open subset S1 of H including 0H so
that Υ(S1) ⊆ S2 +′Υ(−r). As a result, by Lemma 2.5, we have Υ(S1 + r) =
Υ(S1) +′ f(r) ⊆ S2. Thus, Υ is continuous at r.

Theorem 4.6. Let (H,+, ·, τ1) and (L,⊕, •, τ2) be topological Krasner hyper-
rings so that every open subset of H is a complete part. Let % be an open and
continuous good topological homomorphism from H onto L so that N = ker%
is a normal hyperideal of H. Then, H/N and L are topologically isomorphic.

Theorem 4.7. Let K and N be hyperideals of topological Krasner hyperring
H and K open in H and every subset of H that is open, is a complete part.
Then, K/(N ∩K) and (N + K)/N are topological isomorphic.

Theorem 4.8. Let J and N be hyperideals of topological Krasner hyperring
H so that every subset of H that is open, also is a complete part and N ⊆ J.
Then, (H/N)/(J/N) and H/J are topologically equivalent and have topological
isomorphism.
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Theorem 4.9. Consider hyperideals N,K of topological Krasner hyperrings
H and M, respectively. N × K is a normal hyperideal of H ×M and (H ×
M)/(N ×K) and H/N ×M/K are topologically equivalent.

Proof. It is straightforward.

5 The α∗- relation on topological Krasner hyperrings

In [11, 12], Vougiouklis introduced the fundamental relation γ∗ on a hyperring
R as the smallest equivalence relation on R such that the quotient R/γ∗ is a
fundamental ring. Then, in [2], Davvaz and Vougiouklis defined the relation
α∗ as the smallest equivalence relation on R such that the quotient R/α∗ is
a commutative ring, also see [8]. In [7], Mirvakili and Davvaz applied this
relation to Krasner hyperrings.

This relation is one of the important and interesting relations that appears
in hyperrings, and through it is possible to create a commutative ring, which
we need, meaning the definition of the α relation that is mentioned in the
references [1].

Let α∗ be defined as the transitive closure of the relation α. This means
that α∗ encompasses not only the original pairs in α but also all pairs that
can be reached through a finite sequence of applications of α. As a result, this
relation naturally establishes a strongly regular relation on both (H,+) and
(H, ·). A strongly regular relation has the property that the equivalence classes
partition the set in such a way that the structure of the operation remains
well-defined across these classes. Furthermore, the quotient H/α∗ forms a
commutative ring, meaning that it supports both addition and multiplication
operations that are commutative and associative, and that there exists an
additive identity and a multiplicative identity.

Notably, α∗ is the smallest equivalence relation that guarantees H/α∗ is a
commutative ring. This property is significant because it allows for the con-
struction of the quotient structure while maintaining the necessary algebraic
properties that define a ring. The equivalence relation α∗ allows us to identify
elements of H that are related in a way that preserves the operations defined
on the set.

In the context of a semihypergroup (H, ◦) with a strongly regular relation
R defined on H, each equivalence class associated with an element t in H
constitutes a complete subset of H. This means that for every element within
a given equivalence class, the operation ◦ produces results that remain within
the same class, highlighting the internal consistency and closure properties of
the operation relative to the equivalence relation.

Now, consider (H,+, ·, τ) as a topological Krasner hyperring, which in-
tegrates both algebraic and topological structures. Here, α∗ serves as the
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fundamental relation that organizes the elements of H based on the equiva-
lences defined by α. The structure (H/α∗, τ) then forms a topological space,
where τ denotes the quotient topology induced by the natural mapping π :
H −→ H/α∗.

In this context, the mapping π plays a crucial role by associating each
element in H with its corresponding equivalence class in H/α∗. Specifically, a
subset A of H/α∗ is deemed open if and only if the preimage π−1(A) is open
in H. This condition ensures that the topological properties of the quotient
space (H/α∗, τ), thus allowing for a coherent interplay between the algebraic
structure and the topological structure.

Theorem 5.1. Let (H,+, ·, τ) be a topological Krasner hyperring so that every
open subset of H is a complete part. Then, (H/α∗,⊕,�, τ) is a topological
ring.

Theorem 5.2. Consider (H,+, ·, τ) as a topologica Krasnerl hyperring and
W ∈ τ such that W is a complete part. If H be a commutative hyperring then
W =

⋃
w∈W α∗(w).

Proof. Obviously, W is subset of
⋃
w∈W α∗(w). Suppose that w ∈ W and

x ∈ α∗(w). Then, ∃n ∈ N and there exists (ν1, . . . , νn) ∈ Nn,∃δ ∈ Sn and
∃(xi1, . . . , xiνi) ∈ Hνi ,∃δi ∈ Sνi , (i ∈

{
1, . . . , n

}
such that

x ∈
n∑
i=1

(
νi∏
j=1

xij

)
and w ∈

n∑
i=1

Aδ(i),

where A be defined as the product of xiδi(j) for j ranging from 1 to νi. Since W

is complete part, it follows that x ∈
n∑
i=1

(
νi∏
j=1

xij

)
⊆ W and so α∗(w) ⊆ W .

Therefor, W =
⋃
w∈W α∗(w).

Lemma 5.3. Let (H,+, ·) be a Krasner hyperring. The set B =
{
α∗(r) | r ∈

H
}

is a base for a topology on H and this topology display by τα. Also every
open subset of H is a complete part.

Proof. Since by the definition H =
⋃

r∈H α∗(r), it follows that B is a base for
a topology on H. It is easy to see that every open subset of H is a complete
part.

Theorem 5.4. Let (H,+, ·) be a commutative Krasner hyperring and α∗ be
the fundamental relation on H. Then, τα is the a topology on H so that H

becomes a topological Krasner hyperring.
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Proof. We analyze Definition 2.2. Consider a, d ∈ H so that a + d ⊆ S for
some open subset S of H. So by Theorem 5.2, S =

⋃
r∈S α

∗(r). Thus, there is
r ∈ S so that a+d ⊆ α∗(r). As a result, α∗(a)⊕α∗(d) is a subset of α∗(r) ⊆ S
and α∗(a) and α∗(d) are open subsets of H including a and d. Thus, the
hyperoperation “ + ” is continuous.

Consider a, d ∈ H so that a · d ⊆ S for some open subset S of H. S =⋃
r∈S α

∗(r). Thus, there is r ∈ S so that a · d ⊆ α∗(r). So α∗(a) · α∗(d) is
subset of α∗(r) ⊆ S and α∗(a) and α∗(d) are open subsets of H including a
and d. Thus, the operation “ · ” is continuous. Now, Consider τ as a topology
on H so that every open subset of (H, τ) is a complete part and (H,+, ., τ)
is a topological Krasner hyperring. Let a ∈ S and S ∈ τ . Then, by Theorem
??, we have S =

⋃
r∈S α

∗(r). Thus, α∗(a) ⊆ S and α∗(a) is an open subset of
(H, τα). Thus, τα is the finest topology on H so that H becomes a topological
Krasner hyperring.

By using Theorem 5.4, let (H,+, ·) be a commutative Krasner hyperring
and α∗ be the fundamental relation on H. Then, topology τα on H is defined
as the collection of all possible unions of sets α∗(u) for subsets S of H and
every element u of S, along with the empty set, and (H,+, ·, τα) is a topological
Krasner hyperring.

Remark 2. A T0 represent topological space where for any two different
points, there is at least one open set that contains one point but not the
other. In simpler terms, in a T0 space, distinct points can be differentiated
topologically. That means, for any pair of distinct points, there is always an
open set that includes one while excluding the other.

Theorem 5.5. Let (H,+, ·, τα) be a T0 topological Krasner hyperring. Then,
H is a ring.

Proof. We prove that |r+s| = 1 for all r, s ∈ H. Assume for the contradiction
that q , v ∈ r + s and q 6= v . Then according to the assumption, there is an
open subset S of H including exactly one of v or q . Let q ∈ S and v /∈ S.
Then, q ∈ α∗(z) for some z ∈ S. Thus, v ∈ α∗(v) = α∗(q) = α∗(z). As a
result, v ∈ S, and it is a contradiction. So, we have |r + s| = 1. Thus, H is a
ring.
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