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About instability in an elastic Cosserat body 
with pores

L. Codarcea-Munteanu, M. Marin and A. E. Abouelregal

Abstract

This article is centered on the study of the isotropic, porous Cosserat
elastic media, realized by means of a parallel with the media of the same
type, but anisotropic, by following the rewriting in a new form of the
equations that govern this theory, respectively the equations of motion
and the equation of equilibrated forces balance, dependent only on the
displacements, respectively on the volume fraction, correlated to the
pores, useful for future practical implementations.

1 Introduction

The deformation, in the continuous micropolar theory, is characterized both
by the instrumentality of the displacement vector, as well as by the instrumen-
tality of an independent vector of rotation, which particularizes the direction
of the three vectors associated with each material point, a particle that can
confront a microrotation unaccompanied by its subjection to a macrodisplace-
ment.

The transmission of a force and a couple-vector by an infinitesimal element
of surface leads to the appearance of a non-symmetric stress tensor, correlated
with a non-symmetric strain tensor, and a couple-vector, correlated with a
non-symmetric tensor of curvature, expressed as the gradient of the vector of
rotation.

The elasticity theory in its classical form is inadequate to represent accu-
rately the comportament of media equipped with an internal structure, see
[4, 20, 21, 22, 24], precisely because it does not consider this particularity of
materials composition, a fact that is included in the analysis of these media
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by the theory of micropolar elasticity, which gives it the appropriate character
for their study.

The media with microstructure theories are based on the polar theories,
where the material points are endowed with director vectors.

The identification of the polar nature of crystalline materials is attributed
to Voigt, who explores in [34] their properties, elaborating the equilibrium
equations for such crystals. Later, through a variational principle, the Cosserat
brothers extended an elasticity theory, see [8]. The Cosserat pattern repre-
sents a reduced variant of the theory of micropolar media, more precisely, the
coupled stress theory, which is based on the interdependence between the dis-
placement and rotation vectors. The use of rigid director vectors, both by the
Cosserat brothers and by the successors of that theory, led to the emergence
of difficulties in the sphere of the development of symmetry rules, which be-
long to the characteristics of the materials and are directly correlated with the
constitutive equations, see [13].

This theory was deepened by Mindlin and Tiersten in [26], by Nowacki in
[27], who extends the heat conduction equation for isotropic media, obtains a
fundamental system of equations characterizing coupled thermoelasticity and
deduces the reciprocity theorem, by Eringen in [12], which renames Cosserat
elasticity as micropolar elasticity and by Boschi and Iean in [1], which gener-
alized the thermoelasticity linear theory introduced by Green and Lindsay to
the case of continuous homogeneous micropolar media.

The theory of porous media is present in extremely varied areas of everyday
life, such as geology, the drugs and medical devices industry or the fabrication
process of porous materials, examples in this sense being ceramics, mineral
wool or materials granulations superimposed on solid materials.

The theory foundation of the elastic media that present voids was made by
Goodman and Cowin in [14], where they extend the concept of mass distribu-
tion to include granular media. The mass distribution must be correlated with
the volume distribution of the granules, and for this purpose, an independent
kinematic variable, namely the function of volume distribution, is considered.

The elastic materials theory, in its non-linear form, was researched and
developed by Nunziato and Cowin in [28], work whose linear variant was pre-
sented by them in [9].

Porous media can be found everywhere in the environment, starting with
construction materials, ceramics or foamed metal. The variety of materials
that are endowed with voids have determined the research of their implemen-
tation in different senses, from the therapeutic prosthesses, which use these
compositions, to engineering, where the modeling of soils sediments or re-
newable resources are some samples of the theory of media with voids use in
everyday life.
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The theory of elasticity and thermoelasticity research results of porous
media various aspects are expressed by [2, 3, 5, 6, 18, 23, 32, 33].

The theories of micropolar and porous micropolar media are developed,
under multiple regards, in numerous works, some examples being: [11, 30],
respectively [7].

In this article, the study of the porous Cosserat media instability is pur-
sued in the isotropic case, compared to the anisotropic one, the goal being
that of reformulating the equations of motion and that of the balance of the
equilibrated forces equation depending only on the displacements, respectively
on the volume fraction, necessary for ulterior numerical applications.

2 Couple-stress elastodynamics

Considering an open region occupying the domain D in the three- dimensional
Euclidean space R3, it corresponds, in the reference configuration, to an elastic,
anisotropic and homogeneous Cosserat media with voids.

Utilizing a fixed orthogonal Cartesian system of axes Oxi, i = 1, 3, three
orthogonal coordinates characterize each domain D point, with the mention
that the notation x will be used for (x1, x2, x3) and t for time.

In what follows, the functions will be considered as functions of (x, t), these
arguments being omitted when no confusion can be made.

Throughout this article we will use the Einstein summation convention if
an index is repetitive inside a monomial and the Latin indices values will be
1, 2, 3.

A dot above the function represents the partial derivative of this function

with respect to time, i.e. ḟ =
∂f

∂t
, and a comma followed by an index will

represent the partial derivative with respect to the corresponding Cartesian

coordinate, i.e. f,i =
∂f

∂xi
.

Bold symbol will be utilized to represent vectors, tensors and matrices.
Using the notations vl(x, t) and ϕl(x, t) for the displacement vector com-

ponents, respectively for the rotation vector components at the material point
x and at the time t, the kinematic energy, in accordance with the adopted
model, which differs from the classical form by the presence of the structural
symmetric tensor I2lm, can be written in the following form, see [15]:

K =
ρ

2
v̇lv̇l +

ρ

6
I2lmϕ̇lϕ̇m. (2.1)

Along with the displacement and the rotation vectors vvv = vl(x, t), respectively
ϕϕϕ = ϕl(x, t), the volume fraction ννν = ν(x, t), associated with the pores, is the
third independent variable that designates a porous Cosserat media.
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The fundamental system which governs the elasticity linear theory of the
Cosserat media with voids consists of, see [15, 18]:

– the equations of motion:

tkl,k + Fl = ρv̈l, in D × (0,∞)

elkrtkr +mkl,k + Ll =
ρI2kl

3
ϕ̈k, in D × (0,∞);

(2.2)

– the balance of the equilibrated forces:

σl,l + χ+G = ρKν̈, in D × (0,∞) (2.3)

–the geometric equations:

εlk = vk,l + eklrϕr,

γlk = ϕk,l,

Φl = ν,l.

(2.4)

The notations used in the above equations are as follows:
• tkl and mkl represent the components of the stress, respectively the

couple- stress tensors, both asymmetric,
• ρ is the mass density in the reference configuration,
• σl are the equilibrated stress vector components,
• Fl and Ll are the body force and the couple body force vectors compo-

nents, these being measured per volume unit,
• K is the coefficient of the inertia,
• χ is the intrinsic equilibrated body force,
• G is the extrinsic equilibrated body force, associated to the voids,
• the tensors εlk, γlk and the vector Φl are the kinematic strain character-

istics,
• elkr represent the Levi-Civita symbol.
In the linear theory of the anisotropic Cosserat media, in the absence of the

initial stress and couple-stress in the case of the centrosymmetric materials,
we have the form of the free energy as follows:

U =
1

2
Alkspεlkεsp +

1

2
Clkspγlkγsp +

1

2
AlkΦlΦk +

1

2
gν2. (2.5)

The coefficients Alksp, Clksp, Alk and g, which represent the functions char-
acteristics of the material, are prescribed functions of class C1(D) and are
presumed to verify the following symmetry relations:

Alksp = Asplk = Aklps,

Clksp = Csplk,

Alk = Akl.

(2.6)
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The constitutive equations are obtained from the relations (2.5), applying an
usual procedure, so we have:

tlk =
∂U

∂εlk
= Alkspεsp,

mlk =
∂U

∂γlk
= Clkspγsp,

χ = −∂U
∂ν

= −gν,

σl =
∂U

∂Φl
= AlkΦk.

(2.7)

Following the method described by Gourgiotis and Bigoni in [15], the fur-
ther aim is to rewrite the two equations of motion in the form of a single
displacements-dependent equation of motion.

The stress tensor can be written in relation to its symmetric part, respec-
tively its antisymetric part tkl = ςkl + ζkl, where ςkl = ςlk is the symmetric
part, and ζkl = −ζlk is the antisymmetric part.

Theorem 2.1. The antisymmetric part components of the stress tensor, re-
lated to an anisotropic, homogeneous, Cosserat porous media, can be expressed
in the form of the following relation

ζkl = −1

2
eklr (mpr,p + Lr) +

ρeklrI2pr
6

ϕ̈p. (2.8)

Proof. By decomposing the stress tensor according to the symmetric and an-
tisymmetric parts, it is well known that the equalities below are fulfilled:

ςkl =
1

2
(tkl + tlk),

ζkl =
1

2
(tkl − tlk).

(2.9)

Using the previous relation (2.9)2, along the second equation of motion (2.2)2
and the properties of the Levi-Civita symbol, the above relation (2.8) is ob-
tained.

Theorem 2.2. The symmetric part components of the stress tensor, asso-
ciated with an anisotropic, homogeneous, Cosserat porous media, verify the
following unitary equation of motion:

ςkl,k −
1

2
eklrmpr,pk + Fl −

1

2
eklrLr,k +

ρeklrI2pr
6

ϕ̈p,k = ρv̈l. (2.10)
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Proof. The demonstration is immediate, by using the first equation of motion
(2.2)1, together with the previous relation (2.8), and the stress tensor rep-
resentation in relation to its symmetric and antisymmetric parts, obtaining
an unitary equation of motion, verified by the stress tensor symmetrical part
components and represented by the relation (2.10).

In the case of smooth boundary surface, referring to the traction boundary
conditions at any point x, Koiter emphasizes in [19] that only five independent
surface tractions can be specified because the rotation vector ϕl depends on
the displacement vector vl in the couple-stress elasticity, as can be seen in the
relation presented below, regarding the connection between the rotation and
the displacement vectors.

These surface tractions are represented by three reduced force – tractions
and two tangential couple – tractions, see also [26],

P
(n)
k = tlknl −

1

2
eklrnlm(nn),r,

R
(n)
k = mlknl −m(nn),k,

(2.11)

where nl represents the unit normal to the surface and m(nn) indicates the
couple - stress tensor mlk components, m(nn) = mlknlnk.

Theorem 2.3. The equations of motion, related to a centrosymmetric,
anisotropic, homogeneous, Cosserat porous media, can be represented in the
form of a single equation of motion, depending on the displacements, as fol-
lows:

Aklspvp,sk−
1

4
eklretmnCprstvn,mspk+Fl−

1

2
eklrLr,k = ρv̈l−

ρeklrepmnI2pr
12

v̈n,mk.

(2.12)

Proof. Based on the first constitutive equation (2.7)1, the stress tensor ex-
pression as the sum of the symmetric and the antisymmetric parts, and the
properties of these two parts, the relation (2.9)1 can be rewritten in the form:

ςkl =
1

2
(Aklsp +Alksp)εsp. (2.13)

Using the constitutive equations (2.7)1 and (2.7)2 into the equation (2.10) we
deduce

1

2
(Aklsp +Alksp)εsp,k−

1

2
eklrCprstγst,pk +Fl−

1

2
eklrLr,k +

ρeklrI2pr
6

ϕ̈p,k = ρv̈l.

(2.14)
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Taking into account the centrosymmetric media property, that refers to the
overlap between the stress tensor and its symmetrical part, see [25], from the
relations (2.13) and (2.7)1, we have:

Aklspεsp =
1

2
(Aklsp +Alksp)εsp,

therefore, the following equality is evident:

Aklsp = Alksp, (2.15)

from where, the relation (2.13) becomes:

ςkl = Aklspεsp. (2.16)

Considering that

ϕk =
1

2
ekmnvn,m, (2.17)

along with the relation (2.15) and the geometric equations (2.4), the relation
(2.14) leads to obtaining the unitary equation of motion (2.12), depending on
the displacements .

Theorem 2.4. The equilibrated forces balance equation, associated with a
centrosymmetric, anisotropic, homogeneous, Cosserat porous media, can be
expressed in the following form, depending on the volume fraction ν, related
to the pores:

Alkν,kl − gν +G = ρKν̈. (2.18)

Proof. Introducing the constitutive equations (2.7)3 and (2.7)4 into the bal-
ance of equilibrated forces (2.3), we get its new form (2.18).

The previous relation can be rewritten in detail, also using the relation
(2.6)3, as follows:

A11
∂2ν

∂x21
+A22

∂2ν

∂x22
+A33

∂2ν

∂x23
+ 2A12

∂2ν

∂x1∂x2
+ 2A13

∂2ν

∂x1∂x3
+

+ 2A23
∂2ν

∂x2∂x3
− gν(x1, x2, x3, t) +G = ρKν̈(x1, x2, x3, t).

(2.19)

3 Couple-stress elastodynamics in isotropic media

Considering an isotropic and homogeneous material, the constitutive coeffi-
cients will have the forms, see [29]:

Alksp = λδlkδsp + (µ+ η)δlsδkp + µδlpδks,

Clksp = αδlkδsp + βδlpδks + γδlsδkp,

Alk = aδlk,

(3.1)
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where λ and µ represent elastic constants, η, α, β and γ are micropolar pa-
rameters, a represents void parameter and δlk represents the Kronecker delta,
about which it is well known that if the indices l, k are equal, its value is 1 and
when they are inequal, it takes the value 0. In this context, the free energy
(Helmholtz potential) has the form:

2U = λεllεkk+(µ+η)εlkεlk+µεlkεkl+αγllγkk+βγlkγkl+γγlkγlk+aΦlΦl+gν
2

(3.2)
We will assume that the energy U is a positive definite quadratic form, and
in the case of isotropic media, for this assumption to be fulfilled, see [17], it is
necessary and suficient that the following conditions are imposed:

3λ+ 2µ+ η > 0, 2µ+ η > 0, η > 0, (3.3)

3α+ β + γ > 0, β + γ > 0, γ− β > 0,

recalling the fact that λ and µ represent the Lamé coefficients for isotropic
media.

The use of the previous relation (3.2) into the relations (2.7) leads to the
following constitutive equations:

tlk = λεssδlk + (µ+ η)εlk + µεkl,

mlk = αγssδlk + βγkl + γγlk,

χ = −gν,
σl = aΦl.

(3.4)

These constitutive equations, together with the geometric equations (2.4),
give us the components of the stress and couple-stress tensors, as well as the
components of the equilibrated stress vector:

tlk = λvs,sδlk + µ(vk,l + vl,k) + η(vk,l + eklrϕr),

mlk = αϕs,sδlk + βϕl,k + γϕk,l,

σl = aν,l.

(3.5)

If we consider I2lm = Iδlm along with the above relations (3.5), the equations
of motion acquire a new form, see [17], namely:

(µ+ η)vl,kk + (λ+ µ)vk,kl + ηelkrϕr,k + Fl = ρv̈l,

ηelkrvr,k − 2ηϕl + γϕl,kk + (α+ β)ϕk,kl + Ll =
ρIδkl

6
ϕ̈k.

(3.6)

The micropolar media with the property that the tensor I2lm has only one
single component, see [29], is called microisotropic or spin-isotropic.
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Theorem 3.1. The stress tensor antisymmetric part components, related to
an isotropic, homogeneous, Cosserat porous media can be represented in the
following form:

ζkl = −1

2
eklr (γϕr,pp + (α+ β)ϕp,pr + Lr) +

ρeklrIδpr
6

ϕ̈p. (3.7)

Proof. Using the relations (3.5)2 within the relations (2.8) leads to obtaining
the new antisymmetric part representation (3.7).

Theorem 3.2. The stress tensor symmetric part components, associated with
an isotropic, homogeneous, Cosserat porous media, verify the following unitary
equation of motion:

ςkl,k −
1

2
eklr(γγpr,pk + (α+ β)γpp,rk) + Fl −

1

2
eklrLr,k +

ρeklrIδpr
6

ϕ̈p,k = ρv̈l.

(3.8)

Proof. The previous relations (3.7), by the instrumentality of the equations of
motion, give us a single equation of motion, represented by the relation (3.8),
through the symmetrical part of the stress tensor, equation which corresponds
to the equation (2.10), related to an anisotropic micropolar media.

From the first constitutive equation (3.4)1, along with the relation (2.9)1,
we deduce the form of the stress tensor symmetric part as follows:

ςkl = λεssδkl +
1

2
(2µ+ η)(εkl + εlk) = λvs,sδkl +

1

2
(2µ+ η)(vl,k + vk,l). (3.9)

Theorem 3.3. Related to an isotropic, homogeneous, Cosserat porous media,
the following unitary equation of motion is obtained:

λvs,skδkl +
1

2
(2µ+ η)(vl,kk + vk,lk)− 1

2
eklr(γϕr,ppk + (α+ β)ϕp,prk)+

+ Fl −
1

2
eklrLr,k +

ρeklrIδpr
6

ϕ̈p,k = ρv̈l,

(3.10)

which is equivalent to the unitary equation of motion related to this specific
media, in the anisotropic case (2.14).

Proof. Taking into account the above relation (3.9), the relation (3.8) takes
the new form (3.10). To verify that this relation (3.10), corresponding to the
isotropic media, is equivalent to the relation (2.14), related to the anisotropic
media, we calculate, by means of the relations (3.1)1, and (3.1)2, the expres-
sion of the symmetric part, represented by the formula (2.13), respectively of
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the antisymmetric part, given by the relations (2.8), and we demonstrate the
equivalence of this form (2.14) with the one previously obtained, represented
by (3.10).

We will present below only the calculations for determining the expression
of the stress tensor symmetric part, so that:

ςkl =
1

2
(Aklsp +Alksp)εsp =

1

2
(λδklδsp + (µ+ η)δksδlp + µδkpδls + λδlkδsp+

(µ+ η)δlsδkp + µδlpδks)εsp = (λδklδsp +
1

2
(2µ+ η)(δksδlp + δkpδls))εsp =

= λεssδkl +
1

2
(2µ+ η)(εkl + εlk) = λvs,sδkl +

1

2
(2µ+ η)(vl,k + vk,l),

(3.11)

which is exactly the relation (3.9), fact that proves the equivalence of this
relation with the one given by (2.14).

Taking into account that we are in the case of a centrosymmetric media,
the property (2.15) occurs, which in the isotropic case, through the relation
(3.1)1, is transposed in the next form:

λδklδsp + (µ+ η)δksδlp + µδkpδls = λδlkδsp + (µ+ η)δlsδkp + µδlpδks, (3.12)

the previous equality leading to the conclusion that

η = 0. (3.13)

Based on the previous relation (3.13), the symmetric part of the stress tensor
expression (3.11) becomes:

ςkl = λvs,sδkl + µ(vl,k + vk,l). (3.14)

Theorem 3.4. Related to a centrosymmetric, isotropic, homogeneous, Cosserat
porous media, the equations of motion can be represented in the form of a sin-
gle displacements-dependent equation of motion, as follows:

λvs,sl + µ(vl,kk + vk,lk)− 1

4
eklrermnγvn,mppk −

1

4
eklrepmn(α+

+ β)vn,mprk + Fl −
1

2
eklrLr,k = ρv̈l −

ρeklrepmnIδpr
12

v̈n,mk.

(3.15)

Proof. Considering the relation (2.17), the relation (3.10) leads to determining
the expression of the motion equations in the form a single equation, dependent
on the displacements, represented by (3.15).

It is noted that this relation (3.15), related to the isotropic case, corre-
sponds to the relation (2.12), from the anisotropic case.
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Theorem 3.5. The equilibrated forces balance equation, associated with a
centrosymmetric, isotropic, homogeneous, Cosserat porous media can be rep-
resented, depending on the volume function ν, in the following form:

aν,ll − gν +G = ρKν̈. (3.16)

Proof. Introducing the constitutive equation (3.4)3 and the relation (3.5)3 into
the equation of the equilibrated forces balance (2.3) we obtain the relation
(3.16).

The relation (3.15) can be written in the form:

a

(
∂2ν

∂x21
+
∂2ν

∂x22
+
∂2ν

∂x23

)
− gν(x1, x2, x3, t) +G = ρKν̈(x1, x2, x3, t), (3.17)

or, using the Laplacian, in the following equivalent form:

a52 ν − gν +G = ρKν̈. (3.18)

4 Orthotropic couple – stress materials with voids sub-
jected to the antiplane deformations

4.1 Governing equations

In the following, see [15], it is assumed that the body occupies a region in the
plane (x1, x2), in the context of the antiplane strain conditions influence, the
form of the displacement vector components being given by:

v1 ≡ 0, v2 ≡ 0, v3 = w(x1, x2, t) and ν = ϑ(x1, x2, t). (4.1)

In the case of a centrosymmetric orthotropic media, overlaying the Cartesian
rectangular system and the orthotropy axes, the tensors εij , γij components,
and the vectors ϕϕϕ and ΦΦΦ components, by using the geometric equations (2.4)
along with the relation (2.17), are the following:

ε13 = v3,1 + e312ϕ2 = v3,1 +
1

2
e312e213v3,1 =

1

2
v3,1 =

1

2

∂w

∂x1
,

ε23 = v3,2 + e321ϕ1 = v3,2 +
1

2
e321e123v3,2 =

1

2
v3,2 =

1

2

∂w

∂x2
,

(4.2)

ϕ1 =
1

2
e123v3,2 =

1

2

∂w

∂x2
,

ϕ2 =
1

2
e213v3,1 = −1

2

∂w

∂x1
,

(4.3)
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γ11 = ϕ1,1 =
1

2

∂2w

∂x1∂x2
,

γ22 = ϕ2,2 = −1

2

∂2w

∂x1∂x2
= −γ11,

γ12 = ϕ2,1 = −1

2

∂2w

∂x21
,

γ21 = ϕ1,2 =
1

2

∂2w

∂x22
,

(4.4)

Φ1 = ν,1 =
∂ϑ

∂x1
,

Φ2 = ν,2 =
∂ϑ

∂x2
.

(4.5)

Regarding the components Aklsp, in the case of an orthotropic media, there are
additional coefficients that become zero, see [31], and being, at the same time,
a centrosymmetric material, these lead to the following form of the constitutive
equation (2.7)1, see [31, 15]:

ς13 = a55
∂w

∂x1
= ς31,

ς23 = a44
∂w

∂x2
= ς32,

(4.6)

a55 and a44 representing the shear moduli specific to an orthotropic Cauchy
media, under the influence of antiplane conditions.

Also relating to an orthotropic material, the couple – stress elasticity tensor
Clksp is under the influence of the symmetry properties (2.6)2, along with the
condition

Clkss = Csslk = 0, (4.7)

equality that characterizes a centrosymmetric material, is deduced from the
fact that the curvature tensor is deviatoric γll = 0, and converts after the
following relation

Clksp = QlmQknQsiQpjCmnij , (4.8)

where Qlm are orthogonal tensors, see [10].
Taking these into account, we can represent the constitutive equation (2.7)2
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in the form of a matrix system, see [16], as follows:

m11

m12

m13

m21

m22

m23

m31

m32

m33


=



C1111 0 0 0 C1122 0 0 0 C̃1133

C1212 0 C1221 0 0 0 0 0
C1313 0 0 0 C1331 0 0

C2121 0 0 0 0 0

C2222 0 0 0 C̃2233

C2323 0 C2332 0
symm C3131 0 0

C3232 0

C̃3333





γ11
γ12
0
γ21
γ22
0
0
0
0


(4.9)

where

C̃1133 = −(C1111 + C1122) = −C1111,

C̃2233 = −(C1122 + C2222) = −C2222,

C̃3333 = −(C̃1133 + C̃2233).

(4.10)

We make the assumption that the couple-stress body holds the principal tor-
sional stiffness in the directions x1 and x2 and the secondary torsional stiffness
is null, which means C1122 = 0, hence, the constitutive equations (2.7)2 can
be written in the form, see [16]:

m11 = C1111γ11 + C1122γ22 = C1111γ11,

m12 = C1212γ12 + C1221γ21,

m21 = C1221γ12 + C2121γ21,

m22 = C1122γ11 + C2222γ22 = C2222γ22,

m33 = C̃1133γ11 + C̃2233γ22 = −C1111γ11 − C2222γ22 =

− C1111γ11 + C2222γ11 = −(C1111 − C2222)γ11.

(4.11)

Noting by

c1 = C1111 = C2222, c2 = C1212, c3 = C1221 and c4 = C2121, (4.12)

the couple-stress orthotropic moduli, the previous constitutive equations (4.11)
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get the form

m11 = c1γ11 =
c1
2

∂2w

∂x1∂x2
,

m12 = c2γ12 + c3γ21 = −c2
2

∂2w

∂x21
+
c3
2

∂2w

∂x22
,

m21 = c3γ12 + c4γ21 = −c3
2

∂2w

∂x21
+
c4
2

∂2w

∂x22
,

m22 = c1γ22 = −c1
2

∂2w

∂x1∂x2
= −m11.

(4.13)

In the common orthotropic case, the systemic microinertia tensor I2 has three
independent components {I211, I222, I233}, corresponding to the orthotropy axes.

The form of the stress tensor antisymmetric part, as well as the new form of
the equations of motion, presented in [15], are given by the next two theorems.

Theorem 4.1. In the case of a centrosymmetric, orthotropic, anisotropic,
homogeneous, Cosserat porous media with zero body couples, the stress tensor
antisymmetric part components can be written in the following new form:

ζ13 = −1

4

(
c2
∂3w

∂x31
+ (c1 − c3)

∂3w

∂x1∂x22

)
+

ρ

12
I222

∂ẅ

∂x1
= −ζ31,

ζ23 = −1

4

(
c4
∂3w

∂x32
+ (c1 − c3)

∂3w

∂x21∂x2

)
+

ρ

12
I211

∂ẅ

∂x2
= −ζ32. (4.14)

Proof. Using the relations (2.8), we obtain:

ζ13 = −1

2
e132mp2,p +

ρe132I222
6

ϕ̈2 =
1

2
(m12,1 +m22,2)− ρI222

6
ϕ̈2,

ζ23 = −1

2
e231mp1,p +

ρe231I211
6

ϕ̈1 = −1

2
(m11,1 +m21,2) +

ρI211
6

ϕ̈1,

(4.15)

from where, by means of the relations (4.3) and (4.13), along with the an-
tisymmetric stress tensor part property, the desired relations (4.14) are ob-
tained.

If the strain energy density is positively defined, the material moduli must
verify the following conditions:

a44 > 0, a55 > 0; (4.16)

c1 > 0, c2 > 0, c4 > 0, c2c4 − c23 > 0. (4.17)
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Theorem 4.2. The equations of motion, corresponding to an orthotropic,
centrosymmetric, anisotropic, homogeneous, Cosserat porous media, with zero
body couples, can be rendered in the form of a single displacements-dependent
equation as:

a55
∂2w

∂x21
+ a44

∂2w

∂x22
− 1

4

(
c2
∂4w

∂x41
+ 2c

∂4w

∂x21∂x
2
2

+ c4
∂4w

∂x42

)
+ F3 =

ρẅ − ρ

12

(
I222

∂2ẅ

∂x21
+ I211

∂2ẅ

∂x22

)
,

(4.18)

where c = c1 − c3, c2, c4 represent a material specifications.

Proof. We take into account that the form of the first equation of motion, in
our specific case, becomes

t13,1 + t23,2 + F3 = ρẅ. (4.19)

Based on the relations (4.6) and (4.15), the stress tensor components can be
expressed as follows:

t13 = ς13 + ζ13 = a55
∂w

∂x1
− 1

4

(
c2
∂3w

∂x31
+ (c1 − c3)

∂3w

∂x1∂x22

)
+

ρ

12
I222

∂ẅ

∂x1
,

t23 = ς23 + ζ23 = a44
∂w

∂x2
− 1

4

(
c4
∂3w

∂x32
+ (c1 − c3)

∂3w

∂x21∂x2

)
+

ρ

12
I211

∂ẅ

∂x2
,

(4.20)

relations that lead to the rewriting of the motion equation in the single
displacements-dependent form equation (4.18).

For a positive definite kinetic energy density, the microinertia moduli must
verify

I211 > 0, I222 > 0. (4.21)

Theorem 4.3. The equation of equilibrated forces balance, related to an anisotropic,
orthotropic, centrosymmetric, homogeneous, Cosserat porous media, can be
represented, depending on the volume function corresponding to the pores, as:

A11
∂2ϑ

∂x21
+ 2A12

∂2ϑ

∂x1∂x2
+A22

∂2ϑ

∂x22
−gϑ(x1, x2, t) +G = ρKϑ(x1, x2, t). (4.22)

Proof. Using the relations (4.5), the constitutive equation (2.7)4 are presented
as follows:

σ1 = A11Φ1 +A12Φ2 = A11ν,1 +A12ν,2 = A11
∂ϑ

∂x1
+A12

∂ϑ

∂x2
,

σ2 = A21Φ1 +A22Φ2 = A21ν,1 +A22ν,2 = A21
∂ϑ

∂x1
+A22

∂ϑ

∂x2
.

(4.23)
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The previous relation (4.22) is obtained immediately by using the relations
(2.3) and (2.6)3, the constitutive equations (2.7)3 and the relations (4.23).

4.2 The isotropic case

Studying the case of an isotropic material, by using the relations (3.1)1 along
with the symmetry relations (2.6)1, we determine the elastic coefficients Aklsp,
the elastic tensor AAA being defined by 21 components, as follows:

A1111 = A2222 = A3333 = λ+ 2µ+ η,

A1122 = A1133 = A2211 = A2233 = A3311 = A3322 = λ,

A1212 = A1313 = A2323 = A2121 = A3131 = A3232 = µ+ η,

A1221 = A1331 = A2332 = A2112 = A3113 = A3223 = µ,

(4.24)

the rest of the coefficients A1112, A1113, . . . , A3323 being all zero.
In the case of a centrosymmetric material, the properties (2.15) and (3.13)

are valid, a fact that transforms (4.24) into the following relations:

A1111 = A2222 = A3333 = λ+ 2µ,

A1122 = A1133 = A2211 = A2233 = A3311 = A3322 = λ,

A1212 = A1221 = A1313 = A1331 = A2323 = A2332 = A2121 = A2112 =

= A3131 = A3113 = A3232 = A3223 = µ.

(4.25)

The free energy form and the related conditions are presented in the previous
section 3 in the form of the relations (3.2) respectively (3.3). We can express
the first constitutive equation (3.4)1 in the form of a matrix system shown
below:

t11
t12
t13
t21
t22
t23
t31
t32
t33


=



λ+ 2µ 0 0 0 λ 0 0 0 λ
µ 0 µ 0 0 0 0 0

µ 0 0 0 µ 0 0
µ 0 0 0 0 0
λ+ 2µ 0 0 0 λ

µ 0 µ 0
symm µ 0 0

µ 0
λ+ 2µ





0
0
ε13
0
0
ε23
0
0
0


(4.26)

from where we deduce the non-vanishing components of the stress tensor:

t13 = t31 = µε13,

t23 = t32 = µε23.
(4.27)
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Therefore, on the one hand, we have the relations (4.27) and, on the other
hand, these relations are also checked by means of the common method offered
by the relations (2.7), namely

t13 = A13mnεmn = A1313ε13 +A1323ε23 = A3113ε13 +A3123ε23 =

= A31mnεmn = t31 = µε13,

t23 = A23mnεmn = A2313ε13 +A2323ε23 = A3213ε13 +A3223ε23 =

= A32mnεmn = t32 = µε23,

(4.28)

since A1323 = A2313 = A3123 = A3213 = 0.
The coefficients Clksp will be determined by means of the relations (3.1)2

and under the influence of the symmetry relations (2.6)2 as follows:

C1111 = C2222 = C3333 = α+ β + γ,

C1122 = C1133 = C2211 = C2233 = C3311 = C3322 = α,

C1212 = C1313 = C2323 = C2121 = C3131 = C3232 = γ,

C1221 = C1331 = C2332 = C2112 = C3113 = C3223 = β,

(4.29)

all other coefficients C1112, C1113 . . . C3323 being null.
Since C1122 = 0, see the previous section 4.1, the relations (4.29) can be

rewritten in the form:

C1111 = C2222 = C3333 = β + γ,

C1122 = C1133 = C2211 = C2233 = C3311 = C3322 = 0,

C1212 = C1313 = C2323 = C2121 = C3131 = C3232 = γ,

C1221 = C1331 = C2332 = C2112 = C3113 = C3223 = β.

(4.30)

The previous relations lead to the transformation of the matrix system (4.9)
into the following matrix system, corresponding to the isotropic case:



m11

m12

m13

m21

m22

m23

m31

m32

m33


=



β + γ 0 0 0 0 0 0 0 −(β + γ)
γ 0 β 0 0 0 0 0

γ 0 0 0 β 0 0
γ 0 0 0 0 0
β + γ 0 0 0 −(β + γ)

γ 0 β 0
symm γ 0 0

γ 0
−2(β + γ)





γ11
γ12
0
γ21
γ22
0
0
0
0


(4.31)
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from where we conclude the components of the couple-stress tensor:

m11 = (β + γ)γ11 =
β + γ

2

∂2w

∂x1∂x2
,

m12 = γγ12 + βγ21 = −γ

2

∂2w

∂x21
+
β

2

∂2w

∂x22
,

m21 = βγ12 + γγ21 = −β
2

∂2w

∂x21
+

γ

2

∂2w

∂x22
,

m22 = (β + γ)γ22 = −β + γ

2

∂2w

∂x1∂x2
= −m11,

m33 = 0.

(4.32)

Theorem 4.4. Considering an isotropic, orthotropic, centrosymmetric, ho-
mogeneous, Cosserat porous media, the stress tensor symmetric part compo-
nents are written in the form:

ς13 = ς31 =
µ

2

∂w

∂x1
,

ς23 = ς32 =
µ

2

∂w

∂x2
.

(4.33)

Proof. Using the relations (2.16) and (4.24), the previous relations are ob-
tained.

Theorem 4.5. In the case of an isotropic, orthotropic, centrosymmetric, ho-
mogeneous, Cosserat porous media, with zero body couples, the stress tensor
antisymmetric part components can be written in the form:

ζ13 = −γ

4

(
∂3w

∂x31
+

∂3w

∂x1∂x22

)
+
ρI
12

∂ẅ

∂x1
= −ζ31,

ζ23 = −γ

4

(
∂3w

∂x32
+

∂3w

∂x21∂x2

)
+
ρI
12

∂ẅ

∂x2
= −ζ32,

(4.34)

where I211 = I222 = I.

Proof. Through the relations (4.12), (4.14) and (4.30), the relations (4.34) are
easily determined.

Theorem 4.6. The motion equations, related to an isotropic, orthotropic, ho-
mogeneous, Cosserat porous media, with zero body couples, can be represented
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in the form of a single displacements-dependent equation of motion, as follows:

µ

2

(
∂2w

∂x21
+
∂2w

∂x22

)
− γ

4

(
∂4w

∂x41
+ 2

∂4w

∂x21∂x
2
2

+ γ
∂4w

∂x42

)
+ F3 =

ρẅ − ρI
12

(
∂2ẅ

∂x21
+
∂2ẅ

∂x22

)
.

(4.35)

Proof. Based on the relations (4.33) and (4.34), we have:

t13 =
µ

2

∂w

∂x1
− γ

4

(
∂3w

∂x31
+

∂3w

∂x1∂x22

)
+
ρI
12

∂ẅ

∂x1
,

t23 =
µ

2

∂w

∂x2
− γ

4

(
∂3w

∂x32
+

∂3w

∂x21∂x2

)
+
ρI
12

∂ẅ

∂x2
,

(4.36)

these relations transforming the form of the first equation of motion into the
required form (4.35).

It is distinguished that the use of the Laplacian leads to the following form
of the relation (4.35):

µ

2
52 w − γ

4
54 w + F3 = ρẅ − ρI

12
52 ẅ. (4.37)

Theorem 4.7. The equilibrated forces balance equation, related to an isotropic,
homogeneous, centrosymmetric, Cosserat porous media, can be presented, de-
pending on the volume function, as follows:

a

(
∂2ϑ

∂x21
+
∂2ϑ

∂x22

)
− gϑ(x1, x2, t)−G = ρKϑ(x1, x2, t). (4.38)

Proof. Using the relations (4.23) and (3.1)3, we obtain the form of the coeffi-
cients Alk as follows:

A11 = A22 = a,

A12 = A21 = 0,
(4.39)

consequently, the equilibrated stress vector components are:

σ1 = a
∂ϑ

∂x1
, σ2 = a

∂ϑ

∂x2
, (4.40)

which leads to obtaining the relation (4.38).

It is noted that the relation (4.38) can be rewritten, by means of the
Laplacian, in the form

a52 ϑ− gϑ−G = ρKϑ. (4.41)
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5 Conclusions

Studying the instability of porous Cosserat media in the isotropic case, in
parallel with the anisotropic one, leads to obtaining new forms of the equa-
tions that govern these types of media, writing the motion equations and the
equilibrated forces balance equation in the form of an unitary displacement-
dependent equation, respectively of a volume fraction-dependent equation,
thereby achieving a theoretical support that will facilitate its implementation
within subsequent numerical simulations.
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Constanţa-Seria Matematică 27(1), 125-140 (2019).
https://doi.org/10.2478/auom-2019-0007

[23] Marin, M., Othman, M.I.A., Vlase, S., Codarcea-Munteanu, L.: Ther-
moelasticity of Initially Stressed Bodies with Voids: A Domain of Influ-
ence. Symmetry-Babel 11(4) 573, 1-12, Multidisciplinary Digital Pub-
lishing Institute MDPI (2019). https://doi.org/10.3390/sym11040573
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