
DOI: 10.2478/auom-2025-0007
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On generalized morphic modules

Seçil Çeken, Ünsal Tekir and Suat Koç

Abstract

Aim of the present article is to extend generalized morphic ring to
modules. LetR be a commutative ring with a unity andM anR-module.
M is said to be a generalized morphic module if for each m ∈ M, there
exists a ∈ R such that annR(m) = (a) + annR(M), where (a) is the
principal ideal generated by an element a ∈ R. Many examples and
characterizations of generalized morphic modules are given. Moreover,
as an application of generalized morphic modules, we use them to char-
acterize Baer modules and principal ideal rings.

1 Introduction

Throughout this article, we focus only on commutative rings with a unity and
nonzero unital modules. Let R will always denote such a ring and M will
denote such an R-module. In commutative algebra, the concept of von Neu-
mann regular ring (for short, vn-regular ring) and its generalizations have a
significiant place. A ring R is called a vn-regular ring if for each a ∈ R, there
exists x ∈ R such that a = a2x [22]. Note that a ring R is a vn-regular
ring if and only if for each a ∈ R, the principal ideal (a) is generated by an
idempotent element e ∈ R, namely, (a) = (e). R is called a Baer (sometimes
called PP or complemented) ring if each annihilator ann(a) of an element
a ∈ R is generated by an idempotent element e ∈ R [8]. It is easy to see
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that every vn-regular ring is also a Baer ring but the converse is not true in
general (just consider an integral domain which is not a field). Let R be a
ring and T (R) its total quotient ring. Then R is called a quasi regular ring
if its total quotient ring T (R) is a vn-regular ring [8]. In [8, Theorem 2.2],
the author showed that a ring R is quasi regular if and only if it is a reduced
ring satisfying the following property: for each a ∈ R, there exists b ∈ R such
that ann(ann(a)) = ann(b). Also, R is called a generalized morphic (briefly,
g-morphic) ring if each annihilator ann(a) of an element a ∈ R is a principal
ideal, namely, ann(a) = (b) for some b ∈ R [23]. The notion of vn-regular
ring and its above generalizations have been studied in many papers. See, for
example, [1], [6], [7], [8], [9], [10], [11], [12], [13] and [14]. This paper aims to
extend the notion of g-morphic ring to modules and to characterize some class
of rings and modules in terms of g-morphic modules.

Now for the sake of completeness, we give some definitions and notations
which will be followed in the sequel. Let M be an R-module, N,K be two
submodules of M, and J be an ideal of R. The residual of N by K and J is
defined as follows:

(N :R K) = {a ∈ R : aK ⊆ N}
(N :M J) = {m ∈M : Jm ⊆ N}.

Particularly, we use annR(K) and annM (J) to denote (0 :R K) and (0 :M J),
respectively. Also, for each m ∈ M, we use annR(m) instead of annR(Rm),
where Rm is the cyclic submodule of M. Jayaram and Tekir, in their recent
paper [10], extended the notion of idempotent element to modules and also
they introduced and studied vn-regular modules. Let M be an R-module. An
element e ∈ R is called a weak idempotent element if e − e2 ∈ ann(M), or
equivalently em = e2m for each m ∈ M. It is clear that all idempotents in
R are weak idempotents and the converse holds provided that M is a faithful
module, i.e., ann(M) = 0. An R-module M is said to be a vn-regular module
if for each m ∈ M, there exists a ∈ R such that Rm = aM = a2M [10]. By
[10, Lemma 5], a finitely generated (briefly, f.g.) R-module M is vn-regular if
and only if for each m ∈ M, the cyclic submodule Rm = eM for some weak
idempotent element e ∈ R. Afterwards, In [11], the authors introduced the
notion of Baer modules in terms of weak idempotent elements: an R-module
M is called a Baer module if for each m ∈M, there exists a weak idempotent
element e ∈ R such that annR(m)M = eM. In [11], the authors gave many
properties and characterizations of Baer modules. Also, the authors in [12],
extended the property ”ann(ann(a)) = ann(b)” in rings to modules as follows:
an R-module M is called a weak quasi regular module if for each m ∈M, there
exists a ∈ R such that annM (annR(m)) = annM (a) [12]. In [11] and [12],
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they gave the relations between aforementioned class of modules as follows:

f.g. vn-regular module⇒ f.g Baer module⇒ weak quasi regular module

Now, we introduce a new class of modules which is an extension of g-
morphic rings to modules. Let M be an R-module. Then M is called a
g-morphic module if for each m ∈M, there exists a ∈ R such that annR(m) =
(a) + ann(M). Among other results in this paper, we show that the class
of g-morphic modules is an intermediate class between f.g. Baer modules
and weak quasi regular modules (See Proposition 2.1). We characterize g-
morphic modules in terms of the factor ring R/ann(M) (See Proposition 2.2,
Proposition 2.3 and Theorem 2.1). Also, we investigate the behaviour of g-
morhic modules under homomorphism, under localization, under idealization
of a module, in direct product of modules, in direct summands of modules (See
Proposition 2.4, Proposition 2.5, Proposition 2.7 and Proposition 2.6). We
give a characterization of principal ideal rings in terms of g-morphic modules
(See Theorem 2.2). Furthermore, we use the g-moprhic modules to characterize
Baer modules (See Proposition 2.8, Proposition 2.9 and Theorem 2.3). Finally,
in Section 3, we investigate the extension of g-morphic modules to polynomial
modules and formal power series modules (See Theorem 3.2).

2 Characterization of generalized morphic modules

Definition 2.1. Let M be an R-module. Then M is said to be a g-morphic
module if for each m ∈ M, there exists a ∈ R such that annR(m) = (a) +
ann(M).

Example 2.1. A ring R is a g-morphic ring if and only if R is a g-morphic
R-module.

Example 2.2. Every torsion free module is a g-morphic module. Let M be a
torsion free module and m a nonzero element of M. Then clearly annR(m) =
(0) + ann(M). Hence, M is a g-morphic module.

Example 2.3. Suppose that M is an R-module in which ann(M) ∈Max(R),
where Max(R) denotes the set of maximal ideals of R. Take an element m ∈
M. Since ann(M) ⊆ annR(m) and ann(M) ∈ Max(R), we can conclude
either annR(m) = (0)+ann(M) or annR(m) = R = (1)+ann(M). Therefore
M is a g-morphic module.

Example 2.4. Every simple module is a g-morphic module. Let M be a simple
module and 0 6= m ∈ M. Then Rm = M and thus annR(m) = ann(M) =
(0) + ann(M) which is needed.
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Example 2.5. Let M be an R-module such that R/ann(M) is a principal
ideal ring. Take an element m ∈ M. Put I = annR(m)/ann(M). Then I is
a principal ideal so that I = annR(m)/ann(M) = (a + ann(M)) for some
a ∈ R. Then we can conlude that annR(m) = (a) + ann(M), that is, M is a
g-morphic module. In particular, every module over a principal ideal ring is a
g-morphic.

Example 2.6. Let n ≥ 2 be an integer. Then Z-module Zn is a g-morphic
module.

Proposition 2.1. (i) Every finitely generated Baer module is a g-morphic
module.

(ii) Every g-morphic module is a weak quasi regular module.

Proof. (i): Suppose that M is a finitely generated Baer module and take an
element m ∈ M. Since M is a Baer module, there exists a weak idempotent
e ∈ R such that annR(m)M = eM. Then we can conclude that

M = eM + (1− e)M = [annR(m) + (1− e)]M.

By [2, Corollary 2.5], annR(m) + (1 − e) = R and so 1 = r + s(1 − e) for
some r ∈ ann(m) and s ∈ R. Then e = re + se(1 − e) ∈ annR(m) so that
(e)+ann(M) ⊆ annR(m). Now, let x ∈ annR(m). Then xM ⊆ annR(m)M =
eM and thus (1 − e)xM = 0 and this yields that (1 − e)x ∈ ann(M). Then
we have x = ex + (1 − e)x ∈ (e) + ann(M) and hence annR(m) = (e) +
ann(M). Therefore, M is a g-morphic module.

(ii) Let m ∈M . By definition of g-morphic module, there exists a ∈ R such
that annR(m) = (a) + ann(M) and thus

annM (annR(m)) = annM ((a) + ann(M))

= annM (a).

Hence, M is a weak quasi regular module.

The converse of previous proposition (i) is not always true. See the follow-
ing example.

Example 2.7. Consider Z-rmodule Z4. Then by Example 2.6, it is a g-
morphic module but not a Baer module.

Lemma 2.1. Let M be an R-module. Then M is a g-morphic module if and
only if for each m1,m2, . . . ,mn ∈M, there exists a ∈ R such that

n⋂
i=1

annR(mi) = (a) + ann(M).



ON GENERALIZED MORPHIC MODULES 141

Proof. The ”if” part clearly shows that M is a g-morphic module. Assume
that M is a g-morphic module. We use induction on n to show that for each
m1,m2, . . . ,mn ∈M,

n⋂
i=1

annR(mi) = (a) + ann(M)

for some a ∈ R. If n = 1, the claim follows from the fact that M is a g-morphic
module. Let n = 2. Take two elements m1,m2 ∈ M. Since M is a g-morphic
module, there exists a1, a2, a ∈ R such that

annR(m1) = (a1) + ann(M)

annR(m2) = (a2) + ann(M)

annR(a1m2) = (a) + ann(M).

Now, let x ∈ annR(m1) ∩ annR(m2). Then x = a1y + z for some y ∈ R and
z ∈ ann(M). Since x ∈ annR(m2), we obtain that xm2 = (a1y + z)m2 =
ya1m2 = 0 and so y ∈ annR(a1m2) = (a) + ann(M). This implies that
y = ra + s for some r ∈ R and s ∈ ann(M). Then we conclude that x =
ra1a + a1s + z ∈ (a1a) + ann(M). Also note that (a1a) + ann(M) ⊆ (a1) +
ann(M) ⊆ annR(m1). Since (a) ⊆ annR(a1m2), we have (a1a) + ann(M) ⊆
annR(m2). Then we have annR(m1) ∩ annR(m2) = (a1a) + ann(M) which
shows the claim is true for n = 2. Now assume that the claim is true for all
k < n. Take arbitrary elements m1,m2, . . . ,mn ∈M. By induction hypothesis

annR(Rm1 +Rm2 + · · ·+Rmn−1) =
n−1⋂
i=1

annR(mi) = (a′1) + ann(M)

annR(mn) = (a′2) + ann(M)

annR(a′1mn) = (a′) + ann(M).

Similar argument in the case n = 2 shows that
n⋂

i=1

annR(mi) = (a′1a
′) +

ann(M) which completes the proof.

Proposition 2.2. Let M be a finitely generated g-morphic module. Then
R/ann(M) is a g-morphic ring.

Proof. Let M be a finitely generated g-morphic module. Put R′ = R/ann(M)
and a = a + ann(M) ∈ R′ for some a ∈ R. Then we can easily see that
annR′(a) = ann(aM)/ann(M). Since M is a finitely generated module, we

can write M =
n∑

i=1

Rmi for some m1,m2, . . . ,mn ∈ M. This yields that
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ann(aM) =
n⋂

i=1

annR(ami). Since M is a g-morphic module, by Lemma 2.1,

ann(aM) =
n⋂

i=1

annR(ami) = (b) + ann(M) for some b ∈ R. Then we con-

clude that annR′(a) = [(b) + ann(M)]/ann(M) = (b + ann(M)). Therefore,
R/ann(M) is a g-morphic ring.

Recall from [11] that an R-module M is said to be a weak multiplication
module if for each m ∈M, annR(m) = annR(IM) for some finitely generated
ideal I of R. Note that every multiplication module and every torsion free
module are a weak multiplication module so that the class of weak multiplica-
tion modules properly contain the class of multiplication modules and torsion
free modules.

Proposition 2.3. Let M be a weak multiplication module and R/ann(M) be
a g-morphic ring. Then M is a g-morphic module.

Proof. Put R′ = R/ann(M) and take an element m ∈ M. Since M is a weak
multiplication module, there exists a finitely generated ideal I of R such that

annR(m) = ann(IM). Then we get I =
n∑

i=1

Rai for some a1, a2, . . . , an ∈

R. This implies that ann(IM) =
n⋂

i=1

ann(aiM). Also, note that for each ai ∈

R, annR′(ai) = ann(aiM)/ann(M), where ai = ai + ann(M). As R′ is a
g-morphic ring, by Lemma 2.1,

n⋂
i=1

annR′(ai) =

[
n⋂

i=1

ann(aiM)

]
/ann(M) = (b)

for some b = b + ann(M). This gives
n⋂

i=1

ann(aiM) = annR(m) = (b) +

ann(M), namely, M is a g-morphic module.

Theorem 2.1. Let M be a f.g. weak multiplication module. The following
statements are equivalent.

(i) M is a g-morphic module.
(ii) R/ann(M) is a g-morphic ring.

Proof. (i)⇔ (ii) : Follows from Proposition 2.2 and Proposition 2.3.

Proposition 2.4. (i) Let f : M1 → M2 be a monomorphism and M2 a g-
morphic R-module. Then M1 is a g-morphic R-module.

(ii) Every submodule of a g-morphic module is a g-morphic.
(iii) Let M be a g-morphic module and S ⊆ R a multiplicatively closed

subset of R. Then S−1M is a g-morphic S−1R-module.
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Proof. (i) Suppose that m1 ∈ M1. Since M2 is a g-morphic R-module and
f(m1) ∈ M2, there exists x ∈ R such that annR(f(m1)) = (x) + ann(M2).
Since f is monomorphism, ann(M2) ⊆ ann(M1) and annR(f(m1)) = annR(m1)
and this yields that annR(m1) = (x) + ann(M2) ⊆ (x) + ann(M1). Also note
that xf(m1) = f(xm1) = 0 and thus xm1 = 0 so that (x) + ann(M1) ⊆
annR(m1). Then we can conclude that annR(m1) = (x)+ann(M1). Therefore
M1 is a g-morphic R-module.

(ii) Follows from (i).
(iii) Let m

s ∈ S
−1M. Then it is clear that annS−1R(m

s ) = S−1 (annR(m)) .
Since M is a g-morphic module, there exists a ∈ R such that annR(m) =
(a) + ann(M) and so

annS−1R(
m

s
) = S−1 ((a) + ann(M))

= S−1((a)) + S−1(ann(M))

⊆ (
a

1
) + annS−1R(S−1M).

On the other hand (a) ⊆ annR(m) and so (a
1 ) ⊆ S−1 (annR(m)) = annS−1R(m

s )
and this yields that (a

1 ) + annS−1R(S−1M) ⊆ annS−1R(m
s ), whence

annS−1R(m
s ) = (a

1 ) + annS−1R(S−1M). Therefore, S−1M is a g-morphic
S−1R-module.

Proposition 2.5. Let Mi be an Ri-module for each i ∈ ∆. Suppose that
R =

∏
i∈∆

Ri and M =
∏
i∈∆

Mi. Then the following statements are equivalent.

(i) M is a g-morphic R-module.
(ii) Mi is a g-morphic Ri-module for each i ∈ ∆.

Proof. (i) ⇒ (ii) : Suppose that M is a g-morphic R-module and take i0 ∈
∆. Let mi0 ∈Mi0 . Now put

mi =

{
mi0 ; i = i0
0 ; i 6= i0

and m = (mi)i∈∆ ∈ M. Since M is a g-morphic R-module, we can conclude
that annR(m) = (x) +ann(M) for some x ∈ R. Assume that x = (xi)i∈∆ and
note that annR(m) =

∏
i∈∆

annRi
(mi), ann(M) =

∏
i∈∆

annRi
(Mi) and also
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(x) =
∏
i∈∆

Rixi. Then we have

annR(m) =
∏
i∈∆

annRi(mi)

=
∏
i∈∆

Rixi +
∏
i∈∆

annRi
(Mi)

=
∏
i∈∆

[Rixi + annRi
(Mi)]

and this yields annRi0
(mi0) = Ri0xi0 + annRi0

(Mi0). Therefore, Mi0 is a
g-morphic Ri0 -module.

(ii) ⇒ (i) : Let Mi be a g-morphic Ri-module for each i ∈ ∆. Take an
element m = (mi)i∈∆ ∈ M. Since Mi is a g-morphic Ri-module, there exists
xi ∈ Ri such that annRi(mi) = (xi) + annRi(Mi). This implies that

annR(m) =
∏
i∈∆

annRi
(mi)

=
∏
i∈∆

[(xi) + annRi(Mi)]

=
∏
i∈∆

(xi) +
∏
i∈∆

annRi
(Mi)

= R(xi)i∈∆ + ann(M).

Hence, M is a g-morphic R-module.

Proposition 2.6. Let M =
⊕
i∈∆

Ni be a direct summand of a family of faithful

R-modules. Then the following statements are equivalent.
(i) M is a g-morphic R-module.
(ii) Ni is a g-morphic R-module for each i ∈ ∆.

Proof. (i)⇒ (ii) : Suppose that M is a g-morphic R-module. Then by Propo-
sition 2.4 (ii), Ni is a g-morphic R-module for each i ∈ ∆.

(ii)⇒ (i) : Suppose that Ni is a g-morphic R-module for each i ∈ ∆. Since
Ni is a faithful module, M is a faithful module. Take an element m ∈M. Then
by direct summand, m = mi1 + mi2 + · · · + min for some mik ∈ Nik . Take
an element r ∈ annR(m). Then rm = r(mi1 + mi2 + · · · + min) = 0 and so
rmi1 = −(rmi2 + · · ·+ rmin) ∈ Ni1 ∩ (Ni2 + . . .+Nin) = 0. This yields that
r ∈ annR(mi1). Similar argument shows that r ∈ annR(mik) for each k =

1, 2, . . . , n. Then we can conclude that annR(m) =
n⋂

k=1

annR(mik). As Ni is

a g-morphic faithful R-module, there exists xk ∈ R such that annR(mik) =
(xk). Similar argument in the proof of Lemma 2.1, annR(m) = (x) for some
x ∈ R. Hence, M is a g-morphic R-module.
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Corollary 2.1. Let {Mi}i∈∆ be a family of faithful R-modules and M =∏
i∈∆

Mi, where ∆ is a finite index set. Then the following statements are

equivalent.
(i) M is a g-morphic R-module.
(ii) Mi is a g-morphic R-module for each i ∈ ∆.

Proof. (i) ⇔ (ii) : Follows from the fact that a direct product of R-modules
is isomorphic to a direct summand of R-modules and Proposition 2.6.

Now, we characterize the Principal ideal rings in terms of g-morphic mod-
ules.

Theorem 2.2. The following statements are equivalent for any commutative
ring R.

(i) R is a principal ideal ring.
(ii) Every R-module is a g-morphic module.

Proof. (i)⇒ (ii) : It follows from Example 2.5.
(ii)⇒ (i) : Suppose that every module over R is a g-morphic module. Let

Q be an ideal of R. Now, we will show that Q = (x) for some x ∈ Q. Put
R′ = R× (R/Q) . Then by assumption R′ is g-morphic R-module. First note
that annR(R′) = 0. Let m = (0, 1) ∈ R′. Since R′ is a g-morphic R-module,
there exists x ∈ R such that annR(m) = Q = (x) + annR(R′) = (x). Hence,
R is a principal ideal ring.

Let M be an R-module. The idealization or trivial extension R ∝ M =
{(r,m) : r ∈ R,m ∈ M} of M is a commutative ring with componentwise
addition and the multiplication (a,m)(b,m′) = (ab, am′ + bm) for each a, b ∈
R; m,m′ ∈M [21]. In [9, Theorem 3.1], the authors showed that if R ∝M is
a g-morphic ring, then R is a g-morphic ring. Now, we say a lot more than [9,
Theorem 3.1] in the next proposition.

Proposition 2.7. Suppose that R ∝ M is a g-morphic ring. Then R is a
g-morphic ring and M is a g-morphic R-module.

Proof. Assume that R ∝ M is a g-morphic ring. Then by [9, Theorem 3.1],
R is a g-morphic ring. Now we will show that M is a g-morphic R-module.
Let m ∈ M. Put m∗ = (0,m) ∈ R ∝ M. Then we have annR∝M (m∗) =
(R ∝M) (r,m′) for some (r,m′) ∈ R ∝ M. Then we conclude that
(r,m′)(0,m) = (0, rm) = (0, 0) and also (r)+ann(M) ⊆ annR(m). Take an el-
ement t ∈ annR(m). Then (t, 0)(0,m) = (0, 0) and thus (t, 0) ∈ annR∝M (m∗)=
(R ∝M) (r,m′). This gives (t, 0) = (r,m′)(x,m′′) for some (x,m′′) ∈ R ∝
M. Then we have t = rx ∈ (r) and so annR(m) = (r) + ann(M). Hence, M is
a g-morphic R-module.
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Let M be an R-module. Then the polynomial module over the polynomial
ring R[X] in indeterminate X is denoted by M [X]. Recall that an R-module
M is said to be a reduced module if for each a ∈ R, m ∈ M and whenever
a2m = 0 then am = 0 [16].

Proposition 2.8. Let M be a f.g. Baer R-module, Rn = R[X]/(Xn+1) and
Mn = M [X]/(Xn+1). Then Mn is a g-morphic Rn-module for each n ∈ N.

Proof. Suppose that M is a f.g. Baer module. Take an element m∗(x) ∈
Mn. Then m∗(x) = m0 + m1X + m2X

2 + . . . + mnX
n + (Xn+1) for some

mi ∈M. By [11, Proposition 1], we know that M is a reduced module. Take an
element r∗(x) = r0+r1X+r2X

2+. . .+rnX
n+(Xn+1) ∈ annRn(m∗(x)). Then

we conculde that (r0+r1X+r2X
2+· · ·+rnXn+(Xn+1))(m0+m1X+m2X

2+
· · ·+mnX

n + (Xn+1)) = 0Mn
. This yields that

r0m0 = 0

r0m1 + r1m0 = 0

· · ·
r0mn + r1mn−1 + · · ·+ rnm0 = 0

Then we have r0(r0m1 + r1m0) = r2
0m1 + r1r0m0 = 0 and so r2

0m1 = 0. Since
M is a reduced module, we conclude that r0m1 = 0. Similar argument shows

that rj ∈
n⋂

i=1

annR(mi) for all j = 0, 1, . . . , n. As M is a f.g. Baer module,

similar arguing in the proof of Proposition 2.1, annR(mi) = (ei)+ann(M) for

some weak idemptent element ei ∈ R. Then note that
n⋂

i=1

annR(mi) = (e) +

ann(M) where e = e0e1 · · · en. Also, one can observe that annRn(m∗(x)) =

[
n⋂

i=1

annR(mi)][X]/(Xn+1) = [(e) + ann(M)][X]/(Xn+1). Now, put e∗(x) =

e ∈ R. Then we can conclude that annRn
(m∗(x)) = e∗(x)R[X]/(Xn+1) +

annRn
(Mn). Hence, Mn is a g-morphic Rn-module.

Proposition 2.9. Let M be an R-module. Suppose that Mn = M [X]/(Xn+1)
is a g-morphic Rn = R[X]/(Xn+1)-module for each n ∈ N. Then M is a Baer
module.

Proof. Suppose that Mn = M [X]/(Xn+1) is a g-morphic Rn = R[X]/(Xn+1)-
module. In particular, M1 = M [X]/(X2) is a g-morphic R1 = R[X]/(X2)-
module. Take an element m ∈M. Put m∗(x) = mX+(X2) ∈M1. Then by as-
sumption, there exists r∗(x) = r0+r1X+(X2) ∈ R1 such that annR1

(m∗(x)) =
(r∗(x)) +annR1(M1). Also note that annR1(M1) = [Ann(M)][X]/(X2). Since
r∗(x) ∈ annR1(m∗(x)), we have (r0 + r1X + (X2))(mX + (X2)) = r0mX +
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(X2) = 0M1 . Then we can conclude that (r0) + ann(M) ⊆ annR(m). Let
t ∈ annR(m). Put t∗(x) = t + (X2). Then we have t∗(x) ∈ annR1(m∗(x))
and so t∗(x) = (r0 + r1X + (X2))(c0 + c1X + (X2)) + (y0 + y1X + (X2)) for
some c0, c1 ∈ R and y0, y1 ∈ ann(M). This implies that t = r0c0 + y0 ∈
(r0)+ann(M) and thus we conclude that annR(m) = (r0)+ann(M). Also, as
X + (X2) ∈ annR1(m∗(x)), we can write X + (X2) = (r0 + r1X + (X2))(c′0 +
c′1X+(X2))+(y′0+y′1X+(X2)) for some c′0, c

′
1 ∈ R and y′0, y

′
1 ∈ ann(M). This

yields that

r0c
′
0 + y′0 = 0

r0c
′
1 + r1c

′
0 + y′1 = 1

Multplying the second equality by r0, we have r0 − r2
0c
′
1 ∈ ann(M) and so

r0c
′
1 − (r0c

′
1)2 ∈ ann(M), that is, r0c

′
1 = e′ is a weak idempotent element

of R. Also one can see that (r0) + ann(M) = (e′) + ann(M). Then we have
annR(m) = (e′)+ann(M) and this yields annR(m)M = e′M. Therefore, M is
a Baer module.

Next , we give a characterization of Baer modules in terms of g-morphic
modules.

Theorem 2.3. Let M be a finitely generated R-module, Rn = R[X]/(Xn+1) and
Mn = M [X]/(Xn+1). Then the following statements are equivalent.

(i) M is a Baer module.
(ii) Mn is a g-morphic Rn-module for each n ∈ N.

Proof. (i)⇔ (ii) : Follows from Proposition 2.8 and Proposition 2.9.

3 Extension of generalized morphic modules

Recall that an R-module M is an Armendariz module if for each f(x) =
a0 + a1X + · · · + anX

n ∈ R[X] and m(x) = m0 + m1X + · · · + mkX
k ∈

M [X] such that f(x)m(x) = 0, then ai ∈ annR(mj) for each 0 ≤ i ≤ n and
0 ≤ j ≤ k. Note that all reduced modules are Armendariz [4].

Proposition 3.1. Let M be an R-module. Then the following statements are
satisfied.

(i) If M [X] is a g-morphic R[X]-module, then M is a g-morphic R-module.
(ii) If M is an Armendariz g-morphic module, then M [X] is a g-morphic

R[X]-module.



ON GENERALIZED MORPHIC MODULES 148

Proof. (i): Suppose that M [X] is a g-morphic R[X]-module and take an el-
ement m ∈ M. Put m∗(x) = m ∈ M [X]. Then note that annR[X](m

∗(x)) =
[annR(m)][X] and annR[X](M [X]) = [ann(M)][X]. As M [X] is a g-morphic
R[X]-module, there exists f(x) = a0 + a1X + · · · + anX

n ∈ R[X] such that
annR[X](m

∗(x)) = (f(x)) + annR[X](M [X]). Then we obtain f(x)m∗(x) =
0 and so a0m = 0. This yields that (a0) + ann(M) ⊆ annR(m). Now, let t ∈
annR(m). Now put t∗(x) = t ∈ R[X] and note that t∗(x) ∈ annR[X](m

∗(x)).
Then there exists g(x) = b0 + b1X + · · · + bmX

m ∈ R[X] and h(x) =
c0 + c1X + · · ·+ ckX

k ∈ [ann(M)][X] such that t∗(x) = f(x)g(x) + h(x) and
so t = a0b0 + c0 ∈ (a0) + ann(M). Therefore, we get annR(m) = (a0) +
ann(M), whence M is a g-morphic R-module.

(ii) Suppose that M is an Armendariz g-morphic module and take an
element m(x) = m0 +m1X + · · ·+mkX

k ∈M [X]. Since M is an Armendariz
module, it is easy to see that

annR[X](m(x)) = [
k⋂

i=0

annR(mi)][X].

As M is a g-morphic module, by Lemma 2.1,
k⋂

i=0

annR(mi) = (a)+ann(M) for

some a ∈ R. This implies that

annR[X](m(x)) = [(a) + ann(M)][X]

Now put α(x) = a ∈ R[X]. Then note that annR[X](m(x)) = (α(x)) +
annR[X](M [X]).
Therefore, M [X] is a g-morphic R[X]-module.

Theorem 3.1. Let M be an Armendariz R-module. Then M is a g-morphic
R-module if and only if M [X] is a g-morphic R[X]-module.

Proof. Follows from Proposition 3.1.

Definition 3.1. Let M be an R-module. M is said to satisfy (∗)-condition if
for each countable subset {mi}i∈N, there exists a finite subset {m′1,m′2, . . . ,m′n} ⊆
M such that ⋂

i∈N
annR(mi) =

n⋂
i=1

annR(m′i).

Note that every module over artinian ring satisfies (∗)-property. Let M be
an R-module. M [[X]] denotes the formal power series module over formal
power series ring R[[X]]. Then an R-module M is called a ps-Armendariz mod-

ule if for each f(x) =
∞∑
i=0

aiX
i ∈ R[[X]] and m(x) =

∞∑
i=0

miX
i ∈ M [[X]] such
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that f(x)m(x) = 0, then aj ∈
∞⋂
i=0

annR(mi) for all j ≥ 0. Note that every

ps-Armendariz module is an Armendariz module.

Proposition 3.2. (i) Let M [[X]] be a g-morphic R[[X]]-module. Then M is
a g-morphic R-module.

(ii) Let M be a ps-Armendariz module satisfying (∗)-property. If M is a
g-morphic R-module, then M [[X]] is a g-morphic R[[X]]-module.

Proof. (i) Assume that M [[X]] is a g-morphic R[[X]]-module and take an
element m ∈ M. Put m∗(x) = m ∈ M [[X]]. Then by assumption, there

exists an f(x) =
∞∑
i=0

aiX
i ∈ R[[X]] such that annR[[X]](m

∗(x)) = (f(x)) +

annR[[X]](M [[X]]). Note that annR[[X]](M [[X]]) = [ann(M)][[X]] and
annR[[X]](m

∗(x)) = [annR(m)][[X]]. Since f(x) ∈ annR[[X]](m
∗(x)), we have

a0 ∈ annR(m) and thus (a0)+ann(M) ⊆ annR(m).Now, let t ∈ annR(m). Put
t∗(x) = t ∈ R[[X]]. Then it is clear that t∗(x) ∈ annR[[X]](m

∗(x)) and so

t∗(x) = f(x)g(x) + h(x) for some g(x) =
∞∑
i=0

biX
i ∈ R[[X]] and h(x) =

∞∑
i=0

ciX
i ∈ [ann(M)][[X]]. This yields that t = a0b0 + c0 ∈ (a0) + ann(M) and

therefore annR(m) = (a0) + ann(M). Hence, M is a g-morphic R-module.
(ii) Suppose that M is a g-morphic ps-Armendariz module satisfying (∗)-

property. Take an element m(x) =
∞∑
i=0

miX
i ∈ M [[X]]. Since M is a ps-

Armendariz module, it is clear that

annR[[X]](m(x)) = [
∞⋂
i=0

annR(mi)][[X]]

Since M satisfies (∗)-property, there exists a finite subset {m′1,m′2, . . . ,m′n} ⊆
M such that

∞⋂
i=0

annR(mi) =
n⋂

i=1

annR(m′i).

Then we can conclude that annR[[X]](m(x)) = [
n⋂

i=1

annR(m′i)][[X]]. As M is a

g-morphic R-module, by Lemma 2.1,
n⋂

i=1

annR(m′i) = (a) + ann(M) for some

a ∈ R. Now put α(x) = a ∈ R[[X]]. Then we can conclude that

annR[[X]](m(x)) = [(a) + ann(M)][[X]]

= (α(x)) + annR[[X]](M [[X]]).

Therefore, M [[X]] is a g-morphic R[[X]]-module.
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Theorem 3.2. Let M be a ps-Armendariz module satisfying the (∗)-condition.
Then the following statements are equivalent.

(i) M is a g-morphic R-module.
(ii) M [X] is a g-morphic R[X]-module.
(iii) M [[X]] is a g-morphic R[[X]]-module.

Proof. (i)⇔ (ii) : Follows from Proposition 3.1.
(i)⇔ (iii) : Follows from Proposition 3.2.
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