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Finite-dimensional flexible algebras associated
with directed and weighted CW complexes

Manuel Ceballos

Abstract

In this paper, we study a link between directed and weighted CW
complexes (also called configurations) and flexible algebras determining
which configurations are associated with those algebras. Some impor-
tant elements that can be read from the (pseudo)digraph that is asso-
ciated with a flexible algebra are studied. Moreover, the isomorphism
classes of each 2-dimensional configuration associated with these alge-
bras is analyzed, providing a new method to classify them. In order
to complement the theoretical study, two algorithmic methods are im-
plemented: the first one checks if a given directed and weighted CW
complex is associated or not with a flexible algebra, while the second
one constructs and draws the (pseudo)digraph associated with a given
flexible algebra.

1 Introduction

Nowadays, one of the most important and stimulating research in Mathe-
matics is finding and studying new links between different fields. Alternative
techniques and procedures allow researchers to solve many unsolved problems,
improve known theories and achieve new results. This paper deals with the
relation between Graph Theory and flexible algebras. More concretely, the
main goal is to make progress on the research line started in [2, 5], where a
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mapping between Lie algebras and directed CW complexes was introduced in
order to translate properties of Lie algebras into the language of Graph The-
ory and vice versa. Now, the main goal is to obtain an analogous mapping for
flexible algebras.

Non-associative algebras have been deeply studied due to their own theo-
retical importance and their many applications to different fields like Physics,
Engineering or Applied Mathematics [11, 16]. A particular type of these al-
gebras is formed by flexible algebras. There exists a close relation between
flexible algebras and other types of algebras. In this sense, every Lie, Jordan,
associative or alternative algebra is flexible. The first papers dealing with flex-
ible algebras were written by Oehmke and Schafer in 1954 and 1958. In [22],
Schafer studied the algebras generated by the Cayley-Dickson process over a
field and proved that they satisfy the flexible identity. In [19], Oehmke studied
several properties on flexible algebras. More recently, Pumpln [21] has ana-
lyzed algebraic constructions that yield to flexible quadratic algebras and Behn
Correa and Hentzel in [3] have studied flexible algebras satisfying the poly-
nomial identity x(yz) = y(zx). Flexible algebras have also been investigated
in terms of degree of algebras [14, 17]. A very important example of flexible
algebras is formed by the octonions, which are a normed division algebra over
the real number field. They are non-commutative, non-associative and flexi-
ble. Octonions have applications in many different fields such as string theory,
special relativity and quantum logic (see [1]). Other characterizations and
applications of these algebras can be found in [13, 15] and references therein.

Currently, Graph Theory has become a very useful tool to deal with a
wide range of problems in many research fields. This theory may be used to
study non-associative algebras in general and flexible algebras in particular.
Concerning flexible algebras, there is no reference in the literature about the
study of the link among graph theory and these algebras. However, this theory
has been essential in order to study other non-associative algebras such as Lie,
Leibniz, Malcev, Zinbiel and evolution algebras. For instance, in case of Lie
algebras, trees perform an important role to determine the Dynkin diagrams
associated to such algebras [23] and graphs are used to represent Lie algebras
[20]. Leibniz algebras have also been studied and classified starting from their
associated graphs [6]. A similar study was done for Malcev and Zinbiel al-
gebras [7, 9]. Another example is the use of finite connected bipartite graph
to construct finite-dimensional indecomposable semisimple Leibniz algebras
[25]. One of the most important types of non-associative algebras are evolu-
tion algebras. There are several papers dealing with the link between these
algebras and graphs [8, 10, 24, 4]. In those papers graphs are used in order to
study several properties of their associated evolution algebra. Finally, in [18],
the authors considered to solve some open problems related to graphicable
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algebras.
This paper is organized as follows: in Section 2, some well-known concepts

on Graph Theory and flexible algebras are recalled. An algorithmic procedure
to associate directed and weighted CW complexes with flexible algebras and
vice versa is developed in Section 3. Next, Section 4 shows some properties
flexible algebras that can be read from its associated directed and weighted
CW complex such that the center and derived algebra. Section 5 studies the
structure of (pseudo)digraphs associated with flexible algebras and some of
their properties. For each configuration, the type of flexible algebra considering
solvability and nilpotency is analyzed. Section 6 is devoted to determining the
isomorphism classes of the 2-dimensional algebras obtained in the previous
section. Section 7 shows the implementation of the two algorithmic methods
used in the previous sections. The first one is designed to check if a given
directed and weighted CW complex is associated or not with a flexible algebra
and the second one draws the (pseudo)digraph, if possible, associated with
a given finite-dimensional flexible algebra. Moreover, a brief computational
study, showing the complexity order and computing time of the routines of
the algorithm is given. At the end of the paper, there is a conclusion section,
acknowledgements and references. Finally, and in order to make the paper
more legible, an appendix section in included, which contains several lists of
restrictions from some results of Sections 4 and 6.

2 Preliminaries

This section recalls some preliminary concepts, results and notations about
flexible algebras, Graph Theory and CW complexes. Concerning the former,
the reader can consult [19]. Regarding the latters, [12] is an introductory
reference to Graph Theory and CW complexes were introduced by J.H.C.
Whitehead [27].

2.1 Flexible algebras

Let K be a field. A flexible algebra F is a vector space over K with a second
bilinear inner composition law ([·, ·]), called the bracket product or commutator,
which satisfies

[X, [Y,X]] = [[X,Y ], X]

This is known as the flexible identity and we will use the following notation:
F (X,Y ) = [X, [Y,X]]−[[X,Y ], X]. Given a basis {ei}ni=1 of F, its structure (or
Maurer-Cartan) constants are defined by the coefficients chi,j which determines

the law of the algebra: [ei, ej ] =
∑n
h=1 c

h
i,jeh, for 1 ≤ i < j ≤ n.
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Given a flexible algebra F, its center is defined as

Z(F)={X∈ F | [X,Y ]=0, ∀Y ∈ F}.

The flexible algebra F is abelian if Z(F) and F are isomorphic. In that case,
F is called zero or trivial algebra.

The derived series of a given finite-dimensional flexible algebra F is

C1(F) = F, C2(F) = [F,F], . . . , Ck(F) = [Ck−1(F),Ck−1(F)], . . .

We say that F is solvable if there exists m ∈ N, m > 1 such that Cm(F) = {0}.
In addition, if Cm−1(F) 6= {0} also holds, then m is known as the solvability
index or solvindex of F and it is said that F is (m− 1)-step solvable.

The central series of a given finite-dimensional flexible algebra F is

C1(F) = F, C2(F) = [F,F], . . . , Ck(F) = [Ck−1(F),F], . . .

We say that F is nilpotent if there exists m ∈ N, m > 1 such that Cm(F) = {0}.
In addition, if Cm−1(F) 6= {0} also holds, then m is known as the nilpotency
index or nilindex of F and it is said that F is (m− 1)-step nilpotent.

Notice that every nilpotent algebra is trivially solvable because Ci(F) ⊆
Ci(F) for all i ∈ N.

The derived algebra of a flexible algebra F will be denoted by DF =
C2(F) = C2(F). A flexible algebra F is perfect if F and DF are isomorphic.

2.2 Graph Theory and CW complexes

A digraph consists of an ordered pair G = (V,E), where V is a non-empty set
called vertex-set and E is a set of ordered pairs (edges) of two vertices, called
edge-set. It is possible to associate a weight to each edge. In that case G will
be a weighted digraph.

A loop in the digraph G = (V,E) is an edge that connects a vertex with
itself. If the digraph G contains loops, then G is called a pseudodigraph. A
vertex v ∈ V is called simple if there is no loop on this vertex.

Throughout the paper, weighted (pseudo)digraphs will be considered.
Given a (pseudo)digraphG = (V,E), a sub(pseudo)digraph G′ = (V ′, E′) of

G is a (pseudo)digraph verifying V ′ ⊆ V and E′ ⊆ E. A sub(pseudo)digraph
H is said to be induced by a vertex-subset V (H) in G if the edge-set of H
consists of all the edges of G between two vertices in V (H).

Two vertices u, v ∈ V are adjacent if there is an edge from vertex u to v or
viceversa. In that case, we will say that those vertices are incident with that
edge. A vertex v ∈ V is a sink (resp. a source) if each edge incident with v is
oriented towards v (resp. from v). See Figure 1.
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Figure 1: Example of sink and source, respectively.

A sequence of consecutive vertices and edges in a digraph is known as a
walk. A (pseudo)digraph is connected if there is a walk between any pair of
vertices. Otherwise, we will say that the digraph is non-connected.

A CW complex is a topologycal space built out of smaller spaces iteratively
by a process called attaching cells, where a k-cell is a k-dimensional disc

Dk = {x ∈ Rk : |x| ≤ 1}

A CW complex is directed when we establish a direction in the elements that
formed the complex. In case that we have some weight over the edges of
that complex, we call it a directed and weighted CW complex. This class of
spaces generalizes simplicial complexes and retains a combinatorial structure
nature. Discrete points, digraphs and directed full triangles (in the sense that
will be seen in Section 3) are examples of 0,1 and 2-dimensional directed CW
complexes, respectively.

3 Associating flexible algebras with directed and weighted
CW complexes

Let F be an n-dimensional flexible algebra with basis B = {ei}ni=1. The
structure constants are given by [ei, ej ] =

∑n
h=1 c

h
i,jeh and, hence, the pair

(F,B) is associated with an directed and weighted CW complex by using the
following procedure.

a) Draw a vertex i for each vector ei ∈ B.

b) For every vertex i verifying [ei, ei] 6= 0, draw a loop such that its weight
is the n-tuple (c1i,i, c

2
i,i, . . . , c

n
i,i). See Figure 2.

c) Given two positive integers i < j ≤ n verifying (cji,j , c
j
j,i) 6= (0, 0), draw

a directed edge from vertex i to j whose weight is given by the pair
(cji,j , c

j
j,i). Draw another directed edge with weight (cii,j , c

i
j,i), but now

from j to i, in case that (cii,j , c
i
j,i) 6= (0, 0). See Figure 3.
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Figure 2: Loop over vertex i.
Figure 3: Directed edge.

d) Given three positive integers i < j < k ≤ n such that
(cki,j , c

k
j,i, c

i
j,k, c

i
k,j , c

j
i,k, c

j
k,i) 6= (0, 0, 0, 0, 0, 0), draw a full triangle ijk

such that the edges ij, jk and ik have weights (cki,j , c
k
j,i), (cij,k, c

i
k,j) and

(cji,k, c
j
k,i), respectively; see Figure 4. Moreover,

d1) a discontinuous line (named ghost edge) will be used for edges with
weight (0, 0).

d2) If two triangles ijk and ijl satisfy that (cki,j , c
k
j,i) = (cli,j , c

l
j,i), only

one edge between vertices i and j shared by both triangles will be
drawn. See Figure 5.

Figure 4: Full triangle.
Figure 5: Two triangles sharing an
edge.

Therefore, every flexible algebra with a given basis can be associated with
a directed and weighted CW complex.

Example 1. The 3-dimensional flexible algebra with non-zero brackets [e1, e2] =
e1 = [e2, e1], [e2, e2] = e2, [e1, e3] = [e3, e1] = e2, [e2, e3] = [e3, e2] = 2e2 and
[e3, e3] = e3 is associated with the directed and weighted CW complex shown
in Figure 6.

Now, we see how to define the flexible algebra associated with a fixed
pseudodigraph (directed and weighted 1-dimensional CW complex). Let G =
(V,E) be a pseudodigraph with V = {1, . . . , n}. Then G can be associated
with a flexible algebra F with basis B as follows:

a) Define the vector space W = {e1, . . . , en} from the set of vertices V .
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Figure 6: Directed and weighted CW complex associated with a 3-dimensional
flexible algebra.

b) In case that i (1 ≤ i ≤ n) is an isolated vertex, we define [ei, ei] = 0.

c) If two vertices i and j (1 ≤ i < j ≤ n) are not adjacent, then [ei, ej ] =
[ej , ei] = 0

d) In case that i (1 ≤ i ≤ n) is a non-simple vertex, then we define
[ei, ei] =

∑n
h=1 c

h
i,iei.

e) Given two vertices i and j with 1 ≤ i < j ≤ n, if there is a directed
edge from i to j and there is no directed edge from j to i, then we define
[ei, ej ] = cji,jej , [ej , ei] = cjj,iej with (cji,j , c

j
j,i) 6= (0, 0).

f) Given two vertices i and j with 1 ≤ i < j ≤ n, in case that there is a
directed edge between i and j and also a directed edge between j and
i, then we define [ei, ej ] = cii,jei + cji,jej , [ej , ei] = cij,iei + cjj,iej with

(cii,j , c
i
j,i), (c

j
i,j , c

j
j,i) 6= (0, 0).

The above definitions and linear extension provide a product on V . Finally,
we have to impose the flexible identity in order to obtain a flexible algebra.

4 Reading properties from the directed and weighted
CW complexes

In this section, we analyze the properties that can be read from the directed
and weighted CW complex associated with a flexible algebra: being a Lie
algebra, the center and the derived algebra.
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The method shown in Section 3 for flexible algebras provides a generaliza-
tion of the one described in [2] for Lie algebras, as it is proved in the following

Proposition 1. Given a flexible algebra which is also a Lie algebra, its asso-
ciated directed and weighted CW complex satisfies the following conditions

1. There are no loops.

2. The weight for the edge from vertex i to vertex j is given by (cji,j ,−c
j
i,j).

3. The weight for the edges in a full triangle ijk is given by (cki,j ,−cki,j),
(cij,k,−cij,k) and (cji,k,−c

j
i,k).

Proof. Trivial from the self-annihilation and the skew-symmetry of the com-
mutator.

Remark 1. Given an edge in a directed and weighted CW complex associated
with an flexible algebra, both coordinates in Conditons 2 and 3 from Proposition
1 are opposite each other and, then, only one coordinate is required for saving
the information of the structure constants as happened in [2].

Lemma 1. Let us denote by G the directed and weighted CW complex asso-
ciated with a flexible algebra F. Then,

Z(F) ⊇ span{ei | i is an isolated vertex}

Proof. It follows from the fact that isolated vertices without loops on this
structure correspond to basis vectors in the center of the flexible algebra.

Remark 2. If a directed and weighted CW complex is formed only by iso-
lated vertices (trivial graph), then it will be associated with an abelian flexible
algebra. From here on, only non-abelian flexible algebras will be considered.

Regarding Lemma 1, let us note that the center of a flexible algebra may
contain basis vectors which do not correspond to isolated vertex.

Example 2. Let F be the 3-dimensional flexible algebra with basis B =
{e1, e2, e3} and law [e1, e2] = e2, [e3, e2] = −e2. This algebra is associated
with digraph a) of Figure 10 and Z(F) = span(e1 + e3).

Lemma 2. Let G the connected (pseudo)digraph associated with a flexible
algebra F. Then it is verified that

DF = span

(
n∑
h=1

chi,j eh | h is not a simple source vertex

)
.
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Proof. First, it is trivial that the derived algebra of F is given by

DF = span({[ei, ej ] | 1 ≤ i, j ≤ n}) = span

(
n∑
h=1

chi,j eh

)
. Let us note there

is no edge directed to a simple source vertex. Therefore, we conclude that

DF = span

(
n∑
h=1

chi,j eh | h is not a simple source vertex

)
.

Corollary 1. Let G the connected (pseudo)digraph associated with a flexible
algebra F. If G contains a simple source vertex, then F is not perfect.

Proof. If G contains a source vertex i, then there is no edge directed to i.
Therefore, we can affirm that ei /∈ DF and, hence, F is not perfect.

5 Flexible algebras associated to pseudodigraphs

This section studies the structure of (pseudo)digraphs associated with flexible
algebras. For each case, the condition on the structure constants and the type
of flexible algebra is analyzed according to its solvability. Let F be a non-
trivial or non-zero flexible algebra with basis B whose directed and weighted
CW complex G consists of a (pseudo)digraph; that is, there are no triangles
in G. This assertion is equivalent to affirm that the law of F with respect to
the basis B = {ei}ni=1 is given by

[ei, ej ] = cii,jei + cji,jej , 1 ≤ i 6= j ≤ n; [ek, ek] =

n∑
h=1

chk,keh (1)

and the rest of brackets are null.

Proposition 2. Let F be a 2-dimensional non-abelian flexible algebra asso-
ciated to a non-connected pseudodigraph G. Then, G is isomorphic to one
configuration in Figure 7.

Figure 7: Non-connected pseudodigraphs with two vertices.
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Proof. Figure 7 includes all the possible 2-vertices non-connected pseudodi-
graphs. Following the procedure of Section 3, we can construct the algebra
associated with each configuration. For each of them, flexible identity is im-
posed. Therefore, every configuration in Figure 7 is associated with a flexible
algebra if and only if the restrictions indicated in Section 9 hold for each of
them.

Proposition 3. Let F be a 2-dimensional non-abelian flexible algebra as-
sociated to a connected (pseudo)digraph G. Then, G is isomorphic to one
configuration in Figure 8.

Figure 8: Connected (pseudo)digraphs with two vertices.

Proof. Figure 8 includes all the possible 2-vertices and connected pseudodi-
graphs. Following the procedure of Section 3, we consider the algebra associ-
ated with each configuration. Imposing the flexible identity, we obtain that
every configuration in Figure 8 is associated with a flexible algebra if and only
if the restrictions indicated in Section 9 hold for each of them.

Proposition 4. Under the assumptions in Propositions 2 and 3,

• Configuration a) is associated with a 2-dimensional 2-step solvable flex-
ible algebra if c11,1 = 0. Otherwise, we obtain a non-solvable algebra.

• Configurations b) is associated with a 2-dimensional 2-step solvable flex-

ible algebra if c12,2 = − (c11,1)
3

(c21,1)
2 , c

2
2,2 = − (c11,1)

2

c21,1
. Otherwise, we obtain a

non-solvable algebra.

• Configurations c) is associated with a 2-dimensional 2-step solvable flex-
ible algebra.
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• Configurations d) is associated with a 2-dimensional 2-step solvable flex-
ible algebra if c21,2(c11,2 + c12,1) = 0. Otherwise, we obtain a non-solvable
algebra.

• Configuration e) is associated with a 2-dimensional 2-step solvable flex-
ible algebra if c11,1 = 0. Otherwise, we obtain a perfect flexible algebra.

• Configuration f) is associated with a 2-dimensional non-solvable flexible
algebra if c21,1 = 0. Otherwise, we obtain a perfect flexible algebra.

• Configuration g) is associated with a 2-dimensional non-solvable flexible
algebra if c11,1 = c12,2 = 0. Otherwise, we obtain a perfect flexible algebra.

• Configurations h) and i) are associated with a 2-dimensional 2-step solv-

able flexible algebra if c21,1 6= 0 and c11,2 = − (c11,1)
2

2c21,1
, c21,2 = − c

1
1,1

2 . Other-

wise, we obtain a non-solvable algebra.

Proof. Let us denote by Fx the flexible algebra associated with Configura-
tion x and we will consider restrictions indicated in the appendix section for
every configuration. In case of Fa, if c11,1 = 0, then c21,1 must be different
from zero and C2(Fa) = span(c21,1 e2), C3(Fa) = {0}. Therefore, Fa is 2-
step solvable. In case that c11,1 6= 0, then C2(Fa) = span(c11,1e1 + c21,1e2) =

C3(Fa). For Fb, in case that c12,2 = − (c11,1)
3

(c21,1)
2 , c

2
2,2 = − (c11,1)

2

c21,1
, then [e2, e2] =

−
(
c11,1
c21,1

)2
[e1, e1], C2(Fb) = span([e1, e1]) and C3(Fb) = {0}. Otherwise, Fb and

C2(Fb) are isomorphic. Next, Fc is 2-step solvable since C2(Fc) = span(e2),

C3(Fc) = {0}. In case of Fd, if c21,2(c11,2 + c12,1) = 0, then [e2, e1] =
c12,1
c11,2

[e1, e2]

and [[e2, e1], [e2, e1]] = 0. Therefore, C2(Fd) = span([e2, e1]) and C3(Fd) =
{0}. Otherwise, Fd and C2(Fd) are isomorphic and, consequently, Fd is non-
solvable. Now, we consider the algebras Fe. If c11,1 = 0, then c21,2 = c22,1 6= 0
and c21,1 6= 0. Clearly, C2(Fe) = span(e2) and C3(Fe) = {0}. The cases
of Ff and Fg are analogous. Finally, we consider Fh with law [e1, e1] =
c11,1e1 + c21,1e2, [e1, e2] = c11,2e1 + c21,2e2, [e2, e1] = c12,1e1 + c22,1e2. Accord-

ing to the restrictions shown in Section 9, [e2, e1] =
c12,1
c11,2

[e1, e2]. If c21,1 = 0,

then c11,1 6= 0 and [e1, e2] = [e2, e1] = c11,2e1 + c21,2e2. In this case, Fh is
perfect since Fh and C2(Fh) are isomorphic. We suppose that c21,1 6= 0. If

c11,2 = − (c11,1)
2

2c21,1
, c21,2 = − c

1
1,1

2 , then [e1, e2] = [e2, e1] = − c11,1
2c21,1

[e1, e1]. Conse-

quently, C2(Fh) = span([e1, e1]) and C3(Fh) = {0}. Otherwise, we obtain a
non-solvable flexible algebra. The case of algebra Fi is similar to Fh.
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Proposition 5. If G is a non-connected (pseudo)digraph of 3 vertices, then
G is associated with a 3-dimensional flexible algebra F if and only if G is
isomorphic to one of the configurations of Figure 9.

Figure 9: Disconnected (pseudo)digraphs with 3 vertices.

Proof. First, Figure 9 includes all the possible disconnected (pseudo)digraphs
of three vertices. Every configuration is associated with a flexible algebra if
and only if the restrictions included in Section 9 hold for each of them

Proposition 6. Under the assumptions in Proposition 5,

• Configuration i) is associated with a 2-step nilpotent flexible algebra if
c11,1 = 0. Otherwise, it is non-solvable and non-perfect.

• Configuration ii) is associated with a 2-step solvable flexible algebra if

c11,1 = − (c33,3)
2

c13,3
, c21,1 = − (c33,3)

2c23,3
(c13,3)

2 . Otherwise, it is non-solvable and non-

perfect. In case that c11,1 = c31,1 = c13,3 = c33,3 = 0, then the associated
flexible algebra is 2-step nilpotent.

• Configuration iii) is associated with a 2-step solvable flexible algebra if

c11,1 = c12,2 = c13,3 = 0, c21,1 =
c31,1c

2
2,2

c32,2
, c23,3 = − (c22,2)

3

(c32,2)
2 , c

3
3,3 = − (c22,2)

2

c32,2
or

c21,1 = c22,2 = c23,3 = 0, c11,1 = − (c33,3)
2

c13,3
, c31,1 = − (c33,3)

2c23,3
(c13,3)

2 , c12,2 =
c32,2c

1
3,3

c33,3
.

Otherwise, it is non-solvable and non-perfect.
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• Configuration iv) is associated with a 2-step solvable non-nilpotent flex-
ible algebra.

• Configuration v) is associated with a non-solvable flexible algebra if c11,1 6=
0. In case that c11,1 = c21,1 = c33,2 = 0, then the algebra is 2-step solvable.
If c11,1 = c31,1 = c32,3 = 0 then it is 3-step solvable.

• Configuration vi) is associated with a non-solvable flexible algebra if
c22,2 6= 0. Otherwise, it is 2-step solvable.

• Configuration vii) is associated with a 3-step solvable non-nilpotent flex-
ible algebra if c33,3 = c23,3 = 0. Otherwise, it is non-solvable and non-
perfect.

• Configuration viii) is associated with a 3-step solvable non-nilpotent flex-

ible algebra if c31,1 = c32,2 = 0, c12,2 = − (c11,1)
3

(c21,1)
2 , c22,2 = − (c11,1)

2

c21,1
. In case

that c11,1 = c21,1 = c12,2 = c22,2 = 0 and c32,3 = c33,2, then it is associated
with a 2-step solvable flexible algebra. Otherwise, it is non-solvable.

• Configurations ix), x) and xi) are associated with a 2-step solvable non-
nilpotent flexible algebra if c11,1 = c21,1 = c12,2 = c22,2 = 0 and c32,3 = c33,2.
Otherwise, they are not solvable.

• Configuration xii) is associated with a 2-step solvable non-nilpotent flex-
ible algebra if c22,3 = −c23,2 and c32,3 = −c33,2. Otherwise, it is non-solvable
and non-perfect.

• Configuration xiii) is associated with a 2-step solvable non-nilpotent flex-
ible algebra if c11,1 = 0 and c21,1c

3
3,2 = c31,1c

2
3,2. Otherwise, it is non-

solvable and non-perfect.

• Configuration xiv) is associated with a 2-step solvable non-nilpotent flex-
ible algebra if c22,2 = c22,3 = c23,2 = 0 or c12,2 = 0, c22,2 = −2c32,3,

c32,2 = −2
(c32,3)

2

c22,3
, c22,3 = c23,2, c32,3 = c33,2. Otherwise, it is non-solvable

and non-perfect.

• Configuration xv) is associated with a 2-step solvable non-nilpotent flexi-
ble algebra if c22,3 = c23,2, c32,3 = c33,2 and either c11,1 = c21,1 = c12,2 = c22,2 =

c32,3 = 0 or c11,1 = c12,2 = 0, c31,1 =
c21,1c

3
2,3

c22,3
, c22,2 = −2c32,3, c32,2 = − 2(c33,3)

2

c22,3
.

Otherwise, it is non-solvable.

• Configurations xvi) and xvii) are associated with a solvable flexible alge-

bra if c22,3 = c23,2, c32,3 = c33,2 and c12,2 = − (c22,2)
2c13,3

4(c22,3)
2 , c32,2 = − (c22,2)

2

2c22,3
, c32,3 =
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− (c22,2)

2 , c23,3 = c33,3 = 0 or c12,2 = − (c33,3)
2c13,3

(c23,3)
2 , c22,2 =

−2c32,3c
2
3,3+(c33,3)

2

c23,3
,

c32,2 = − c
3
3,3(2c

3
2,3c

2
3,3+(c33,3)

2)

(c23,3)
2 , c22,3 =

c23,3c
3
2,3

c33,3
. Otherwise, it is non-solvable.

Proof. Due to reasons of length, we only show the proof for Configuration xv)
and the reasoning is similar for the other configurations. According to the
proof of Proposition 5, the flexible algebra associated with Configuration xv)
has basis {e1, e2, e3} and brackets

[e1, e1] = c11,1e1 + c21,1e2 + c31,1e3, [e2, e2] = c12,2e1 + c22,2e2 + c32,2e3,

[e2, e3] = c22,3e2 + c32,3e3, [e3, e2] = c23,2e2 + c33,2e3

verifying c32,2(c22,3 − c23,2) = c32,2(c32,3 − c33,2) = cj2,2(c22,3 − c23,2) = c33,2c
2
2,3 −

c32,3c
2
3,2 = 0, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6= (0, 0, 0), for j =

1, 2.
From the previous restrictions, we obtain that c22,3 = c23,2, c

3
2,3 = c33,2.

Consequently, [e2, e3] = [e3, e2] and C2(F) = span([e1, e1], [e2, e2], [e2, e3]). If,
in addition, c11,1 = c21,1 = c12,2 = c22,2 = c32,3 = 0, then C2(F) = span(e3) is an
abelian ideal and, therefore, C3(F) = {0} and F is 2-step solvable and non-
nilpotent since Ck(F) = span(e3), for k ≥ 2. In case that c11,1 = c12,2 = 0, c31,1 =
c21,1c

3
2,3

c22,3
, c22,2 = −2c32,3, c32,2 = − 2(c33,3)

2

c22,3
, then [e1, e1] =

c21,1
c22,3

[e2, e3], [e2, e2] =

−2c32,3
c22,3

[e2, e3] and [[e2, e3], [e2, e3]] = 0. Consequently, C2(F) = span([e2, e3]) =

Ck(F), ∀k ≥ 2, C3(F) = {0} and we conclude that F is 2-step solvable and
non-nilpotent.

Notice that if one of the previous cases is not satisfied, C2(F) = Ck(F), for
k ≥ 3 and F is non-solvable.

Proposition 7. Let F be a 3-dimensional non-abelian flexible algebra associ-
ated to a connected digraph G. Then, G is isomorphic to one configuration in
Figure 10.

Proof. Figure 10 includes all the possible 3-vertices connected digraphs. Fol-
lowing the procedure of Section 3, we can construct the algebra associated
with each configuration. For each of them, flexible identity is imposed. There-
fore, every configuration in Figure 10 is associated with a flexible algebra if
and only if the restrictions indicated in Section 9 hold for each of them.

Proposition 8. Under the assumptions in Proposition 7,

• Configurations a) and c) are associated with a 2-step solvable non-nilpotent
flexible algebra.
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Figure 10: Connected digraphs with three vertices.

• Configurations b) and h) are associated with a 3-step solvable non-nilpotent
flexible algebra.

• Configurations d) and e) are associated with a 3-step solvable non-nilpotent
flexible algebra if c11,2 = −c12,1, c21,2 = −c22,1. Otherwise, it is non-solvable
and non-perfect. The same happens for Configurations i) and k) with
conditions c23,2 = −c22,3, c33,2 = −c32,3.

• Configuration f) is associated with a non-solvable flexible algebra.

• Configurations g) and `) are associated with a perfect flexible algebra.

• Configuration j) is associated with a 3-step solvable flexible algebra if
c22,3 = 0. Otherwise, it is a perfect flexible algebra.

• Configuration m) is associated with a 2-step solvable flexible algebra if
c11,2 = −c32,3, c21,2 = c31,3, c11,3 = −c23,2, c12,1 = c32,3, c22,1 = −c31,3, c22,3 =
−c23,2, c13,1 = c23,2, c33,1 = −c31,3, c33,2 = −c32,3. Otherwise, it is non-
solvable.

Proof. Let us denote by Fx the flexible algebra associated with Configura-
tion x) and we will consider restrictions indicated in the appendix section for
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every configuration. In case of Configurations a) and c), it is satisfied that
C2(Fa) = span(e2) and C2(Fc) = span(e1, e3) are abelian ideals. For Config-
urations b) and h), we have that C2(Fb) = span(e2, e3), C3(Fb) = span(e3),
C2(Fh) = span(e2, e3), C3(Fh) = span(e2) and Ck(Fb) = Ck(Fh) = {0}, for
k ≥ 4. In case of Fd, if c11,2 = −c12,1 and c21,2 = −c22,1, then [e2, e1] =
−[e1, e2], C2(Fd) = span([e1, e2], e3), C3(Fd) = span(e3) and Cp(Fd) = {0},
for p ≥ 4. Otherwise, Cq(Fd) = span([e1, e2], e3), for q ≥ 2. The proof
is similar for Configurations e), i) and k). Now, we consider Ff . This al-
gebra is not perfect and could be solvable if c12,1 = −c11,2, c22,1 = −c21,2,
c23,2 = −c22,3, c33,2 = −c32,3. In such a case, [e2, e1] = −[e1, e2] and [e3, e2] =
−[e2, e3]. Consequently, C2(Ff ) = span([e1, e2], [e2, e3]) and [[e1, e2], [e1, e2]] =
[[e2, e3], [e2, e3]] = 0. However, Ck(Ff ) = span([[e1, e2], [e2, e3]]), for k ≥
3. Therefore, Ff is non-solvable. Next, Fg and C2(Fg) are isomorphic, so
Fg is a perfect flexible algebra. The same happens for F`. If we consider
Fj , then C2(Fj) = span(e1, e3, c

2
2,3e2 + c32,3e3). In case that c22,3 = 0, then

C2(Fj) = span(e1, e3) and C3(Fj) = span(e3) is an abelian ideal. Conse-
quently, Fj is 3-step solvable. Otherwise, C2(Fj) = span(e1, e2, e3) = Fj .
Finally, we consider the algebra Fm. According to the restrictions in ap-

pendix, we have that [e2, e1] =
c12,1
c11,2

[e1, e2], [e3, e2] =
c23,2
c22,3

[e2, e3] and [e3, e1] =

c13,1
c11,3

[e1, e3]. In case that c11,2 = −c32,3, c21,2 = c31,3, c11,3 = −c23,2, c12,1 = c32,3,

c22,1 = −c31,3, c22,3 = −c23,2, c13,1 = c23,2, c33,1 = −c31,3, c33,2 = −c32,3, then
[e2, e1] = −[e1, e2], [e3, e2] = −[e2, e3] and [e3, e1] = −[e1, e3]. Therefore
C2(Fm) = span([e1, e2], [e2, e3], [e1, e3]), where

[e1, e2] = −c32,3e1+c31,3e2, [e1, e3] = −c23,2e1+c31,3e3, [e2, e3] = −c23,2e2+c32,3e3

Moreover, ∣∣∣∣∣∣
ci,i ci,j ci,k
cj,i 0 cj,k
ck,i ck,j ck,k

∣∣∣∣∣∣ = 0

and C3(Fm) = {0}, so Fm is 2-step solvable.

Proposition 9. Let F be a 3-dimensional non-abelian flexible algebra associ-
ated to a connected pseudodigraph G. Then, G is isomorphic to one configu-
ration in Figure 11.

Proof. Figure 11 includes all the possible 3-vertices connected pseudodigraphs.
Following the procedure of Section 3, we can construct the algebra associated
with each configuration. For each of them, flexible identity is imposed. There-
fore, every configuration in Figure 11 is associated with a flexible algebra if
and only if the restrictions indicated in Section 9 hold for each of them.
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Figure 11: Connected pseudodigraphs with three vertices.
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6 Classification of flexible algebras

In this section, the isomorphism class for each configuration with two vertices
from Section 5 associated with non-abelian flexible algebras is analyzed. In
this way, we provide a new method to classify these algebras is provided.

Proposition 10. Flexible algebras associated with Configuration a) from Fig-
ure 2 belong to the isomorphism class F2

0) = span(e1, e2) defined by the law

[e1, e1] = e1 or F2
i) = span(e1, e2) given by [e1, e1] = e2.

Proof. Let F be the flexible algebra associated with Configuration a) from
Figure 7. Let {v1, v2} be the basis of F. If c11,1 6= 0, then we consider the basis

change φ : F → F given by e1 = φ(v1) = 1
c11,1

v1 +
c21,1

(c11,1)
2 v2; e2 = φ(v2) = v2

and the law [e1, e1] = e1 is obtained. In case that c11,1 = 0, then c21,1 6= 0 and

the basis change φ : F → F given by e1 = φ(v1) = 1
c21,1

v1; e2 = φ(v2) = 1
c21,1

v2

leads to the law [e1, e1] = e2.

Proposition 11. Flexible algebras associated with Configuration b) from Fig-
ure 2 belong to the isomorphism class F2

ii) = span(e1, e2) defined by the law

[e1, e1] = e1, [e2, e2] = e2.

Proof. If F is the flexible algebra associated with Configuration b) from Figure
7, then its law is given by [v1, v1] = c11,1v1, [v2, v2] = c22,2v2. Now, with the

basis change φ : F → F given by ei = φ(vi) = 1
cii,i
vi for i = 1, 2, the law

[e1, e1] = e1, [e2, e2] = e2 is obtained.

Proposition 12. Flexible algebras associated with Configuration c) from Fig-
ure 8 belong to the isomorphism class F2

iii) = span(e1, e2) defined by the law

[e1, e2] = e2, [e2, e1] = αe2, with α ∈ C.

Proof. Let F be the flexible algebra associated with Configuration c) from
Figure 8, then its law is given by [v1, v2] = c21,2v2, [v2, v1] = c22,1v2, where
(c21,2, c

2
2,1) 6= (0, 0). If c21,2 6= 0 (the other case is similar) then the basis change

φ : F → F given by e1 = φ(v1) = 1
c21,2

v1, e2 = v2 leads to the law [e1, e2] = e2,

[e2, e1] =
c22,1
c21,2

e2.

Proposition 13. Flexible algebras associated with Configuration d) from Fig-
ure 8 belong to the isomorphism class F2

iv) = span(e1, e2) defined by the law

[e1, e2] = e1 + e2, [e2, e1] = α(e1 + e2), with α ∈ C.



FINITE-DIMENSIONAL FLEXIBLE ALGEBRAS ASSOCIATED WITH
DIRECTED AND WEIGHTED CW COMPLEXES 111

Proof. Let F be the flexible algebra associated with Configuration d) from
Figure 8, then its law is given by [v1, v2] = c11,2v1 + c21,2v2, [v2, v1] = c12,1v1 +
c22,1v2, where c11,2c

2
2,1 = c21,2c

1
2,1 and (c11,2, c

1
2,1), (c21,2, c

2
2,1) 6= (0, 0). Now, with

the basis change φ : F → F given by e1 = φ(v1) = 1
c21,2

v1, e2 = 1
c11,2

v2 leads to

the law [e1, e2] = e1 + e2, [e2, e1] =
c22,1
c21,2

(e1 + e2).

Proposition 14. Flexible algebras associated with Configuration e) from Fig-
ure 8 belong to the isomorphism class F2

v) = span(e1, e2) defined by the law

[e1, e1] = αe1 + βe2, [e1, e2] = [e2, e1] = e2, where α ∈ C and β ∈ {0, 1}.

Proof. According to the proof of Proposition 4 and the restrictions indicated
in Appendix, there exist two different families of flexible algebras associated
with Configuration e) from Figure 8. Let us denote by F1 and F2 those
algebras and let {v1, v2} be a basis for them. The law of F1 is given by
[v1, v1] = c11,1v1+c21,1v2, [v1, v2] = [v2, v1] = c21,2v2, while the non-zero brackets
of F2 are [v1, v1] = c21,1v2, [v1, v2] = c21,2v2, [v2, v1] = c22,1v2. The basis changes

φ : F1 → F1 given by e1 = φ(v1) = 1
c21,2

v1; e2 = φ(v2) =
c21,1

(c21,2)
2 v2 and

φ′ : F2 → F2 given by e1 = φ′(v1) = 1
c21,2

v1; e2 = φ′(v2) = v2 lead to the law

[e1, e1] =
c11,1
c21,2

e1 + βe2, [e1, e2] = e2, where β = 0 for F2 and β = 1 for F1.

Proposition 15. Flexible algebras associated with Configuration f) from Fig-
ure 8 belong to the isomorphism class F2

vi) = span(e1, e2) defined by the law

[e1, e1] = αe1 + e2, [e1, e2] = [e2, e1] = e2, [e2, e2] = βe1 + e2, where α, β ∈ C.

Proof. Let us denote by F the flexible algebra associated with Configuration
f). If {v1, v2} is a basis of F, according to the proof of Proposition 4 and
the restrictions indicated in Appendix, the law of F is given by [v1, v1] =
c11,1v1 + c21,1v2, [v1, v2] = [v2, v1] = c21,2v2, [v2, v2] = c12,2v1 + c22,2v2. The basis

change ϕ : F → F given by e1 = ϕ(v1) = 1
c21,2

v1 + λ
c21,2

v2; e2 = ϕ(v2) = µv2,

where a and b are the solution of the system

c22,2λ
2 + c21,2λ+ c21,1 = 0,

µ2c22,2c
2
1,2 = λ

}
,

leads to the law [e1, e1] =
c11,1+λ

2c12,2
(c21,2)

2 e1 + e2, [e1, e2] = [e2, e1] = e2, [e2, e2] =

µ2c12,2c
2
1,2e1 + e2.
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Proposition 16. Flexible algebras associated with Configuration g) from Fig-
ure 8 belong to the isomorphism class F2

vii) = span(e1, e2) defined by the law

[e1, e1] = e1 + αe2, [e1, e2] = [e2, e1] = e1, where α ∈ C.

Proof. Let us denote by F the flexible algebra associated with Configuration
g). If {v1, v2} is a basis of F, according to the proof of Proposition 4 and
the restrictions indicated in Appendix, the law of F is given by [v1, v1] =
c11,1v1 + c21,1v2, [v1, v2] = [v2, v1] = c11,2v1. Now, we consider the basis changes

φ : F → F given by e1 = φ(v1) = 1
c11,1

v1 = e1, e2 = φ(v2) = 1
c11,2

v2 = e2.

Applying φ, we obtain the law [e1, e1] = e1 + αe2, [e1, e2] = [e2, e1] = e1,

where α =
c21,1c

1
1,2

(c11,1)
2 .

Proposition 17. Flexible algebras associated with Configuration h) from Fig-
ure 8 belong to the isomorphism class F2

viii) = span(e1, e2) defined by the law

[e1, e1] = e1 + αe2, [e1, e2] = [e2, e1] = e1, where α ∈ C.

Proof. We denote by F the flexible algebra associated with Configuration h).
Let {v1, v2} be a basis of F. According to the proof of Proposition 4 and
the restrictions indicated in Appendix, the law of F is given by [v1, v1] =
c11,1v1 + c21,1v2, [v1, v2] = [v2, v1] = c11,2v1 + c21,2v2. Now, we consider the basis

changes φ : F → F given by e1 = φ(v1) = 1
2c21,2+c

1
1,1
v1 +

c21,2
(2c21,2+c

1
1,1)c

1
1,2
v2 = e1,

e2 = φ(v2) = 1
c11,2

v2 = e2. Applying φ, we obtain the law [e1, e1] = e1 + αe2,

[e1, e2] = [e2, e1] = e1, where α =
c11,2c

2
1,1−c

1
1,1c

2
1,2

(2c21,2+c
1
1,1)

2 .

Proposition 18. Flexible algebras associated with Configuration i) from Fig-
ure 8 belong to the isomorphism class F2

ix) = span(e1, e2) defined by the

law [e1, e1] = e1 + αe2, [e2, e2] = βe1 + e2, [e1, e2] = [e2, e1] = e1, where
α, β ∈ C or F2

x) = span(e1, e2) defined by the law [e1, e1] = e1, [e2, e2] = e2,

[e1, e2] = (1− λ)e1 + λe2, [e2, e1] = (1− µ)e1 + µe2, where λ, µ ∈ C

Proof. According to the proof of Proposition 4 and the restrictions indicated
in Appendix, there exist three different families of flexible algebras associated
with Configuration i) from Figure 8. Let us denote by F1, F2 and F3 those
algebras and let {v1, v2} be a basis for them. The law of F1 is given by [v1, v1] =
c11,1v1+c21,1v2, [v1, v2] = [v2, v1] = c11,2v1+c21,2v2, [v2, v2] = c12,2v1+c22,2v2, while
the non-zero brackets of F2 are [v1, v1] = c11,1v1 + c21,1v2, [v1, v2] = [v2, v1] =
c11,2v1 + c21,2v2, [v2, v2] = c12,2v1 + c22,2v2 and the law of F3 is [v1, v1] = c11,1v1 +
c21,1v2, [v1, v2] = [v2, v1] = c11,2v1+c21,2v2, [v2, v2] = c12,2v1+c22,2v2. Considering
a basis change similar to the one used in the proof of Proposition 17, we obtain
the law [e1, e1] = e1 + αe2, [e2, e2] = βe1 + e2, [e1, e2] = [e2, e1] = e1 for F1.
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For flexible algebras F2 and F3, the basis change φ : Fi → Fi given by e1 =
φ(v1) = 1

c11,1
v1, e2 = φ(v2) = 1

c22,2
v2, for i = 2, 3 leads to the law [e1, e1] = e1,

[e2, e2] = e2, [e1, e2] = (1− c21,2
c11,1

e1 +
c21,2
c11,1

e2, [e2, e1] = (1− c22,1
c11,1

e1 +
c22,1
c11,1

e2.

7 Algorithmic methods

In this section two algorithmic methods are introduced. The first one checks if
a fixed directed and weighted CW complex is associated or not with a flexible
algebra. The second procedure obtains all the (pseudo)digraphs associated
with a parametric family of flexible algebras starting from its law when con-
tains no full triangles. It also draws all those (pseudo)digraphs. Notice that
these algorithms have been used in order to achieve all the results of Section
5 and 6.

7.1 Checking if a fixed directed and weighted CW complex is as-
sociated with a flexible algebra

This algorithmic procedure has been implemented by using the symbolic com-
putation package Maple, working the implementation in version 18. To do
this, the libraries linalg and combinat have to be used in order to activate
commands related to Linear and Combinatorial Algebra. This algorithmic
procedure consists of the following three steps:

a) Obtaining the values of the structure constants according to the directed
and weighted CW complex.

b) Defining the law which should be fulfilled by the flexible algebra, starting
from the structure constants.

c) Checking if the flexible identity is satisfied for this law.

In order to develop the implementation, three subprocedures for the two first
steps and one main procedure for the last one are required. Before running the
procedure, one need the command restart to reset all the variables and delete
all the computations saved in the kernel. The first step of this algorithm is ex-
ecuted by the subprocedure assignment, which allows to define the dimension
and the value of the structure constants of the vector space associated with
the directed and weighted CW complex and to determine the candidate for the
bracket product. To do so, assignment receives the following two inputs: The
list V with the vertices of the directed and weighted CW complex as natural
numbers, and the set E with its weighted, directed edges. The elements of the
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set E are inserted as [[i, j, k], l], denoting cki,j = l. The output is the value of
the variable dim with the dimension of the directed and weighted CW complex
and also the value of all the non-zero structure constants.

> restart:

> assignment:=proc(V,E)

> local B,L;

> B:=[];L:=[];

> for x from 1 to nops(V) do

> B:=[op(B),e[x]];

> od;

> assign(dim,nops(V));

> for i from 1 to nops(E) do

> assign(c[E[i][1][1],E[i][1][2],E[i][1][3]],E[i][2]);

> od;

> end proc:

Next, one can run the second subprocedure, named law, which receives
two natural numbers as inputs. These numbers represent the subindexes of
two vectors in the endowed vector space or, equivalently, two vertices from the
directed and weighted CW complex. The subroutine computes the bracket of
these two vectors. In the implementation, a local variable, v, is used to save
the value of the bracket, which is computed by using the structure constants
defined in the previous subprocedure.

> law:=proc(i,j)

> local v;

> v:=0;

> for k from 1 to dim do

> if type(c[i,j,k],numeric)=true then

> v:=v+c[i,j,k]*e[k];

> fi;

> od;

> return v;

> end proc:

Now, the implementation of the subprocedure called bracket is shown.
This subroutine is devoted to computing the bracket product between two
arbitrary vectors expressed as linear combinations of the basis vectors used in
the previous subprocedure.

> bracket:=proc(u,v,n)

> local exp; exp:=0;

> for i from 1 to n do

> for j from 1 to n do

> exp:=exp + coeff(u,e[i])*coeff(v,e[j])*law(i,j);

> od;

> od;

> exp;

> end proc:
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Finally, let us proceed with the implementation of the main procedure
called flexible, which checks if the vector space is or is not a flexible algebra.
This procedure receives as input the dimension n of the vector space F and
returns the message “True” in case that the vector space F is a flexible algebra
and “False” otherwise.

> flexible:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i];

> od;

> M:=permute(L,2);

> for j from 1 to nops(M) do

> eq[j]:=bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][1]],n),n)-

bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][1]],n);

> od;

> N:=[seq(eq[k], k=1..nops(M))];

> for i from 1 to nops(N) do

> if N[i]<>0 then

> P:=[op(P),N[i]];

> fi;

> od;

> if P=[] then return "True"

> else return "False";

> fi;

> end proc:

Example 3. The following example is shown in order to illustrate the algo-
rithmic procedure. It corresponds to the directed and weighted CW complex of
Figure 6.

According to the notation followed in this algorithm, one has to consider

> V=[1,2,3];

> E={[[1,2,1],1],[[2,1,1],1],[[2,2,2],1],[[1,3,2],1],[[3,1,2],1],

[[2,3,2],2],[[3,2,2],2],[[3,3,3],1]};

Now, by running the remaining procedure, the following is obtained

> assignment(V,E);

> flexible(dim);

> "True"

Therefore, the directed and weighted CW complex is associated with a 3-
dimensional flexible algebra.

7.2 Obtaining the (pseudo)digraph associated with a flexible alge-
bra

In this subsection, a parametric family of flexible algebras is considered. The
algorithmic method computes and draws all the (pseudo)digraphs associated
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ejemplo-eps-converted-to.pdf

Figure 12: Example.

with flexible algebras obtained from the previous family. Under the same
notation of the previous section, let F be an n-dimensional flexible algebra
with basis B and law given in (1) in order to avoid the presence of full triangles.
The algorithm is structured in four steps

1. Obtaining the bracket product between two arbitrary basis vectors in
B.

2. Computing the bracket between two vectors expressed as a linear com-
bination of vectors from basis B.

3. Imposing flexible identity and solving the corresponding system of equa-
tions.

4. Drawing the (pseudo)digraph associated with the flexible algebra F.

This algorithm is implemented by using the symbolic computation pack-
age MAPLE 18 loading the libraries linalg, combinat, GraphTheory and
Maplets[Elements]. The first three libraries provide commands of Linear
Algebra, Combinatorics and Graph Theory, respectively; whereas the last is
used to display a message so that the user introduces the required input in the
first subprocedure, corresponding to the definition of the law of the algebra F.

The first subprocedure, named law2, receives two natural numbers as in-
puts. These numbers represent the subindexes of two basis vectors in B. The
subprocedure returns the result of the bracket between these two vectors. In
addition, conditional sentences are inserted to determine the non-zero brack-
ets. Since the user has to complete the subprocedure inserting the non-zero
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brackets of F, a sentence at the beginning of the implementation has been
included reminding this fact. Note that before running any other sentence,
all the variables and computation saved in the kernel must be deleted. Ad-
ditionally, the value of variable dim has to be updated with the dimension of
F.

> restart:

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets

of the algebra and its dimension in subprocedure law",

’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law2:=proc(i,j)

> if (i,j)=... then ...;

> elif ....

> else 0; fi;

> end proc;

The ellipsis in command assign corresponds to write the dimension of F.
The following two suspension points are associated with the computation of
[ei, ej ]: first, the value of the subindexes (i, j) and second, the result of [ei, ej ]
with respect to B. The last ellipsis denotes the rest of non-zero brackets. For
each non-zero bracket, a new sentence elif has to be included in the cluster.

Now, one must consider the subprocedure bracket implemented in the
previous subsection.

Next, the main procedure flexible-parameters is implemented. This
procedure receives as input the dimension n of the vector space F with pa-
rameters in the bracket products and the output is the solution of a system
of equations obtained from imposing the flexible identity. If the system has
no solution, then one can conclude that the vector space F is not a flexible
algebra. Otherwise, one obtains the conditions over the structure constants
cki,j so that F is a flexible algebra.

> flexible-paramters:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i];

> od;

> M:=permute(L,2);

> for j from 1 to nops(M) do

eq[j]:=bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][1]],n),n)-

bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][1]],n);

> od;

> N:=[seq(eq[k], k=1..nops(M))];

> for k from 1 to nops(N) do

> for h from 1 to n do
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> P:=[op(P),coeff(N[k],e[h])];

> od;

> od;

> return solve(P);

> end proc:

Finally, the last step of this algorithmic procedure consists of the imple-
mentation to draw the (pseudo)digraph associated with each flexible algebra
obtained in the previous step. To do so, first, one of the solutions generated
by the main procedure flexible-parameters is considered. For this solu-
tion the command associate is executed in order to define the values of the
structure constants. After that, let us proceed with the implementation of
the procedure drawing. It receives as unique input the dimension n of the
flexible algebra and draws the associated (pseudo)digraph. To implement the
procedure, five local variables E, G, L, S and V have to be considered. The list
E saves all the edges of the (pseudo)digraph, G is the variable used to generate
such a (pseudo)digraph, list L will save the vertices with loops, list V consists
of the list of vertices in G, and S is used to save the permutations of vertices
in V chosen two by two. The general idea of the implementation is to evaluate
which edges appear in the (pseudo)digraph studying if their weight is zero or
not.

Since Maple cannot draw loops within a pseudodigraph, the routine uses
the command HighlightVertex to change colour to dark blue for vertices
with loops, different from the light yellow for the rest.

>drawing:=proc(n)

> local E,G,L,S,V;

> L:=[];E:=[];

> V:=[seq(i,i=1..n)];

> S=permute(V,2);

> for i from 1 to nops(S) do

> if law(S[i][1],S[i][2])<>0 then

> E:={op(E),S[i]};

> fi;

> od;

> for j from 1 to n do

> if law(j,j)<>0 then

> L:={op(L),[j,j]};

> fi;

> od;

> G:=Digraph(V,E);

> for k from 1 to nops(L) do

> HighlightVertex(G,L[k]);

> od;

> DrawGraph(G);

>end proc:

Example 4. Now, let us consider the 3-dimensional flexible algebra given by
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the law

[e1, e1] = c11,1e1+c21,1e2+c31,1e3; [e2, e3] = c22,3e2+c32,3e3; [e3, e2] = c23,2e2+c33,2e3;

[e2, e2] = c12,2e1 + c22,2e2 + c32,2e3, [e3, e3] = c13,3e1 + c23,3e2 + c33,3e3.

First, the implementation of the subprocedure law2 must be completed as fol-
lows

> if (i,j)=(1,1) then c111*e[1]+c112*e[2]+c113*e[3];

> elif (i,j)=(2,2) then c221*e[1]+c222*e[2]+c223*e[3];

> elif (i,j)=(2,3) then c232*e[2]+c233*e[3];

> elif (i,j)=(3,2) then c322*e[2]+c323*e[3];

> elif (i,j)=(3,3) then c331*e[1]+c332*e[2]+c333*e[3];

> else 0; fi;

After that, one must run the subprocedure bracket and the procedure
flexible-parameters. Now, evaluating the main procedure over the vari-
able dim, one obtains the restrictions

{c232=c322,c233=c323}, {c221=0,c222=-(-c232*c323+c233*c322)/(c232-c322),c223=0,

c331=0,c332=0,c333=-(c232*c323-c233*c322)/(c233-c323)}, {c221=0,c222=0,c223=0,

c232=c232,c233=0,c322=c322,c323=0,c332=0},{c223=0,c232=0,c322=0,c331=0,c332=0,

c333=0}.

From the previous output, several families of flexible algebras associated
with (pseudo)digraphs can be obtained. For example, the family

[e1, e1] = e1; [e2, e2] = e2; [e2, e3] = e2 + e3 = [e3, e2]; [e3, e3] = e3

Therefore the following order must be executed

> assign({c111=1,c112=0,c113=0,c221=0,c222=1,c223=0,c331=0,c332=0,c333=1,c232=1,

c233=1,c322=1,c323=1});

Finally, the procedure drawing is evaluated obtaining Figure 13, which
corresponds to Configuration xv) from Figure 9.

> drawing(dim);

7.3 Computational and complexity study

Now, a computational study and statistics related to the algorithmic proce-
dure of Subsection 7.2 is shown. The algorithm has been implemented with
MAPLE 18, in an Intel(R) Core(TM) i7-4510U CPU with a 2.60 GHz pro-
cessor and 12.00 GB of RAM. Table 1 shows some computational data about
both the computing time and the memory used to return the output of the
whole procedure according to the value of the dimension n of the algebra.



FINITE-DIMENSIONAL FLEXIBLE ALGEBRAS ASSOCIATED WITH
DIRECTED AND WEIGHTED CW COMPLEXES 120

Figure 13: Digraph corresponding to Configuration xv).

Input Computing time Used memory
n = 3 0.16 s 4.82 MB
n = 4 0.28 s 4.95 MB
n = 5 0.43 s 5.18 MB
n = 6 0.59 s 5.30 MB
n = 7 1.14 s 6.54 MB
n = 8 1.62 s 7.61 MB
n = 9 2.67 s 10.05 MB
n = 10 4.02 s 12.61 MB
n = 11 6.45 s 14.63 MB
n = 12 9.95 s 20.91 MB
n = 13 15.64 s 26.68 MB

Table 1: Computing time and used memory.
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For this computational study, a general family of 2-step nilpotent flexible
algebras has been considered. This family is associated with the generalization
of Configuration xvii) from Figure 9.

Next, brief statistics about the relation between the computing time and
the memory used by the implementation of the previous procedure is shown.
Figures 14 and 15 show, respectively, the behavior of the computing time
(C.T.) and used memory (U.M.) with respect to the dimension n. We can
see how the computing time increases faster than the used memory and both
of them fit a positive exponential model. Figure 16 represents a frequency
diagram for the quotient between used memory and computing time. In this
case, the behavior corresponds to a negative exponential model.

Figure 14: Graph for the C.T. with respect to dimension.

Figure 15: Graph for the U.M. with respect to dimension.

Finally, the complexity of the algorithm is computed considering the num-
ber of operations carried out in the worst case. In order to express the complex-
ity, the big O notation is used (see [26]): Fixed two functions f, g : R → R,
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Figure 16: Graph for quotients U.M./C.T. with respect to dimension.

f(x) = O(g(x)) if and only if there exist M ∈ R+ and x0 ∈ R such that
|f(x)| < M · g(x), for all x > x0.

Let us denote by Ni(n) the number of operations for Step i. This function
depends on the dimension n of the flexible algebra. Table 2 shows the number
of computations and the complexity of each step.

Step Routine Complexity Operations

1 law2 O(n2) N1(n) = 2 + n(n−1)
2

2 bracket O(n4) N2(n) =

n∑
i=1

n∑
j=1

N1(n)

3 flexible-parameters O(n7)

N3(n) = O(n) +O(n3)

+2

n3∑
i=1

N2(n)+

2

n3∑
j=1

n∑
k=1

1

4 drawing O(n4)

N4(n) = O(n) +O(n2)+

2

n2∑
i=1

N1(n)

Table 2: Complexity and number of operations.
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8 Conclusions

The tools and results shown in this paper may be useful and helpful for un-
derstanding the link between flexible algebras and directed and weighted CW
complexes. In addition, this link may provide new methods to deal with open
problems such as the classification of flexible algebras by means of the classi-
fication of their associated directed and weighted CW complexes.
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9 Appendix

In this section, we show some lists of restrictions from Propositions 2, 3
Restrictions for Propositions 2 and 3:

• Configuration a): (c11,1, c
2
1,1) 6= (0, 0).

• Configuration b): (c1j,j , c
2
j,j) 6= (0, 0), for j = 1, 2.

• Configuration c): (c21,2, c
2
2,1) 6= (0, 0).

• Configuration d): c11,2c
2
2,1−c21,2c12,1 = 0 ∧ (cj1,2, c

j
2,1) 6= (0, 0), for j = 1, 2.

• Configuration e): c21,1(c21,2 − c22,1) = 0 ∧ (c11,1, c
2
1,1), (c21,2, c

2
2,1) 6= (0, 0).

• Configuration f): c11,2 = c12,1 6= 0, ∧ (c11,1, c
2
1,1), (c12,2, c

2
2,2) 6= (0, 0).

• Configuration g): c11,2 = c12,1 6= 0, ∧ (c11,1, c
2
1,1) 6= (0, 0).

• Configuration h): c21,1(cj1,2−c
j
2,1) = 0, for j = 1, 2, c11,1(c12,1−c11,2) = 0,

c11,2c
2
2,1 − c21,2c12,1 = 0, ∧ (c11,1, c

2
1,1), (c11,2, c

1
2,1), (c21,2, c

2
2,1) 6= (0, 0).

• Configuration i): c21,1(cj1,2−c
j
2,1) = 0, c12,2(cj1,2−c

j
2,1) = 0, cjj,j(c

1
2,1−c11,2)+

c11,2c
2
2,1 − c21,2c12,1 = 0, for j = 1, 2, ∧ (c1j,j , c

2
j,j), (cj1,2, c

j
2,1) 6= (0, 0)

for j = 1, 2.

Restrictions for Proposition 5:

• Configuration i): (c11,1, c
2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration ii): (c1j,j , c
2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 3.

• Configuration iii): (c1j,j , c
2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 2, 3.

• Configuration iv): (c32,3, c
3
3,2) 6= (0, 0).

• Configuration v): (c32,3, c
3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration vi): c32,2(c32,3 − c33,2) = 0, (c32,3, c
3
3,2) 6= (0, 0),

(c12,2, c
2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration vii): c32,3 = c33,2, (c32,3, c
3
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6=

(0, 0, 0).

• Configuration viii): c32,2(c32,3 − c33,2) = 0, (c32,3, c
3
3,2) 6= (0, 0),

(c1j,j , c
2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 2.
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• Configuration ix): c32,3 = c33,2, (c32,3, c
3
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6=

(0, 0, 0), for j = 1, 3.

• Configuration x): c32,3 = c33,2, (c32,3, c
3
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6=

(0, 0, 0), for j = 2, 3.

• Configuration xi): c32,3 = c33,2, (c32,3, c
3
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6=

(0, 0, 0), for j = 1, 2, 3.

• Configuration xii): c22,3c
3
3,2 = c32,3c

2
3,2, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0).

• Configuration xiii): c22,3c
3
3,2 = c32,3c

2
3,2, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c11,1, c
2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration xiv): c32,2(c22,3 − c23,2) = c32,2(c32,3 − c33,2) = cj2,2(c22,3 −
c23,2) = c33,2c

2
2,3 − c32,3c23,2 = 0, for j = 1, 2, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c12,2, c
2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration xv): c32,2(c22,3−c23,2) = c32,2(c32,3−c33,2) = cj2,2(c22,3−c23,2) =

c33,2c
2
2,3 − c32,3c

2
3,2 = 0, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6=

(0, 0, 0), for j = 1, 2.

• Configuration xvi): c32,2(c32,3−c33,2) = cj2,2(c22,3−c23,2) = ck3,3(c32,3−c33,2) =

c23,3(c22,3 − c23,2) = −c22,3c22,2 + c23,2c
2
2,2 + c33,2c

2
2,3 − c32,3c

2
3,2 = c33,2c

2
2,3 −

c32,3c
2
3,2+c32,3c

3
3,3−c33,2c33,3 = 0, for j = 1, 3, k = 1, 2, (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6=

(0, 0), (c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 2, 3.

• Configuration xvii): c32,2(c32,3 − c33,2) = c32,2(c22,3 − c23,2) = cjj+1,j+1(c22,3 −
c23,2) = cj3,3(c32,3−c33,2) = −c22,3c22,2+c23,2c

2
2,2+c33,2c

2
2,3−c32,3c23,2 = c33,2c

2
2,3−

c32,3c
2
3,2 + c32,3c

3
3,3 − c33,2c33,3 = 0, for j = 1, 2 (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2, 3.

Restrictions for Proposition 7:

• Configuration a): (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6= (0, 0).

• Configuration b): (c21,2, c
2
2,1), (c32,3, c

3
3,2) 6= (0, 0).

• Configuration c): (c11,2, c
1
2,1), (c32,3, c

3
3,2) 6= (0, 0).

• Configuration d): c11,2c
2
2,1 = c21,2c

1
2,1, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c32,3, c

3
3,2) 6=

(0, 0).

• Configuration e): c11,2c
2
2,1 = c21,2c

1
2,1, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6=

(0, 0).
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• Configuration f): c11,2c
2
2,1 = c21,2c

1
2,1, c

2
2,3c

3
3,2 = c32,3c

2
3,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c22,3, c
2
3,2), (c32,3, c

3
3,2) 6= (0, 0).

• Configuration g): (c11,2, c
1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2) 6= (0, 0).

• Configuration h): (c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2) 6= (0, 0).

• Configuration i): c22,3c
3
3,2 = c32,3c

2
3,2, (c21,2, c

2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0).

• Configuration j): c22,3c
3
3,2 = c32,3c

2
3,2, (c11,2, c

1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0).

• Configuration k): c22,3c
3
3,2 = c32,3c

2
3,2, (c11,2, c

1
2,1), (c11,3, c

1
3,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0).

• Configuration l): c11,2c
2
2,1 = c21,2c

1
2,1, c22,3c

3
3,2 = c32,3c

2
3,2, (c11,2, c

1
2,1),(c21,2, c

2
2,1),

(c31,3, c
3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0).

• Configuration m): c11,2c
2
2,1 = c21,2c

1
2,1, c11,3c

3
3,1 = c31,3c

1
3,1, c22,3c

3
3,2 =

c32,3c
2
3,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0).

Restrictions for Proposition 9:

• Configuration 1): c21,1c
2
1,2 − c21,1c22,1 = 0, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c11,1, c
2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 2): c21,2 = c22,1, (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6=

(0, 0, 0).

• Configuration 3): c21,2 = c22,1, c22,3 = c23,2, (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2.

• Configuration 4): c21,1(c21,2−c22,1) = c23,3(c23,2−c22,3) = 0, (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6=

(0, 0), (c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 3.

• Configuration 5): c21,2 = c22,1, c
2
2,3 = c23,2, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, 3.

• Configuration 6): c21,1(c21,2 − c22,1) = 0, (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c11,1, c
2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 7): c12,2(c21,2 − c22,1) = c22,2(c21,2 − c22,1) = c32,2(c21,2 − c22,1) =
c32,2(c32,3 − c33,2) = 0, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6=

(0, 0, 0).
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• Configuration 8): c32,3 = c33,2, (c21,2, c
2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6=

(0, 0, 0).

• Configuration 9): c21,2 = c22,1, c
3
2,3 = c33,2, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2.

• Configuration 10): c21,2 = c22,1, c
3
2,3 = c33,2, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 3.

• Configuration 11): c21,2 = c22,1, c
3
2,3 = c33,2, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 2, 3.

• Configuration 12): c21,2 = c22,1, c
3
2,3 = c33,2, (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, 3.

• Configuration 13): c11,2 = c12,1, (c11,2, c
1
2,1), (c32,3, c

3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6=

(0, 0, 0).

• Configuration 14): c12,2(c11,2−c12,1) = c32,2(c32,3−c33,2) = 0, (c11,2, c
1
2,1), (c32,3, c

3
3,2) 6=

(0, 0), (c12,2, c
2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 15): c11,1(c11,2− c12,1) = c21,1(c11,2− c12,1) = c31,1(c11,2− c12,1) =
c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = 0, (c11,2, c

1
2,1), (c32,3, c

3
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2.

• Configuration 16): c11,2 = c12,1, c32,3 = c33,2, (c11,2, c
1
2,1), (c32,3, c

3
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 3.

• Configuration 17): c11,2 = c12,1, c32,3 = c33,2, (c11,2, c
1
2,1), (c32,3, c

3
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, 3.

• Configuration 18): ci1,1(c11,2−c12,1) = c21,1(c21,2−c22,1) = c22,1c
1
1,2−c21,2c12,1 =

0, for i = 1, 2, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6=

(0, 0, 0).

• Configuration 19): c22,1c
1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 −

c22,1c
2
2,2 = c32,2(c21,2−c22,1) = c12,2(c11,2−c12,1) = c12,2(c21,2−c22,1) = c32,2(c32,3−

c33,2) = 0, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6=

(0, 0, 0).

• Configuration 20): c11,2c
2
2,1 = c21,2c

1
2,1, c

3
2,3 = c33,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c22,3, c
2
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6= (0, 0, 0).
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• Configuration 21): −c11,2c11,1 + c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = c22,1c

1
1,2 −

c21,2c
1
2,1 + c21,2c

2
2,2 − c22,1c

2
2,2 = ci+1

i,i (c21,2 − c22,1) = cj1,1(c11,2 − c12,1) =

c12,2(c21,2 − c22,1) = c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = 0, for i = 1, 2, j =
2, 3, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0),

for ` = 1, 2.

• Configuration 22): c22,1c
1
1,2−c21,2c12,1 = ci1,1(c11,2−c12,1) = c21,1(c21,2−c22,1) =

ci3,3(c32,3 − c33,2) = 0, for i = 1, 2, 3 (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2) 6=

(0, 0), (c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 3.

• Configuration 23): c11,2 = c12,1, c
2
1,2 = c22,1, c

3
2,3 = c33,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 2, 3.

• Configuration 24): −c11,2c11,1 + c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = c22,1c

1
1,2 −

c21,2c
1
2,1+c21,2c

2
2,2−c22,1c22,2 = c32,2(c21,2−c22,1) = c12,2(c11,2−c12,1) = c32,2(c32,3−

c33,2) = c21,1(c21,2 − c22,1) = c12,2(c21,2 − c22,1) = cji,i(c
1
1,2 − c12,1) = ck3,3(c32,3 −

c33,2) =, for i = 1, j = 2, 3, k = 1, 2, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2, 3.

• Configuration 25): ci1,1(c11,2−c12,1) = c21,1(c21,2−c22,1) = c22,1c
1
1,2−c21,2c12,1 =

0, for i = 1, 2, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c32,3, c

3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6=

(0, 0, 0).

• Configuration 26): c22,1c
1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 −

c22,1c
2
2,2 = c32,2(c21,2−c22,1) = c12,2(c11,2−c12,1) = c12,2(c21,2−c22,1) = c32,2(c32,3−

c33,2) = 0, (c11,2, c
1
2,1), (c21,2, c

2
2,1),

(c32,3, c
3
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 27): c11,2c
2
2,1 = c21,2c

1
2,1, c

3
2,3 = c33,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c32,3, c
3
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6= (0, 0, 0).

• Configuration 28): −c11,2c11,1 + c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = c22,1c

1
1,2 −

c21,2c
1
2,1 + c21,2c

2
2,2 − c22,1c

2
2,2 = ci+1

i,i (c21,2 − c22,1) = cj1,1(c11,2 − c12,1) =

c12,2(c21,2 − c22,1) = c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = 0, for i = 1, 2, j =
2, 3, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c32,3, c

3
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0),

for ` = 1, 2.

• Configuration 29): c22,1c
1
1,2−c21,2c12,1 = ci1,1(c11,2−c12,1) = c21,1(c21,2−c22,1) =

ci3,3(c32,3 − c33,2) = 0, for i = 1, 2, 3 (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c32,3, c

3
3,2) 6=

(0, 0), (c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 3.

• Configuration 30): c11,2 = c12,1, c
2
1,2 = c22,1, c

3
2,3 = c33,2, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c32,3, c
3
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 2, 3.
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• Configuration 31): −c11,2c11,1 + c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = c22,1c

1
1,2 −

c21,2c
1
2,1+c21,2c

2
2,2−c22,1c22,2 = c32,2(c21,2−c22,1) = c12,2(c11,2−c12,1) = c32,2(c32,3−

c33,2) = c21,1(c21,2 − c22,1) = c12,2(c21,2 − c22,1) = cji,i(c
1
1,2 − c12,1) = ck3,3(c32,3 −

c33,2) =, for i = 1, j = 2, 3, k = 1, 2, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c32,3, c

3
3,2) 6=

(0, 0), (c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2, 3.

• Configuration 32): ci1,1(c11,2−c12,1) = c21,1(c21,2−c22,1) = c22,1c
1
1,2−c21,2c12,1 =

c33,2c
2
2,3 − c32,3c23,2 = 0, for i = 1, 2, 3, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 33): ci2,2(c21,2−c22,1) = ci2,2(c22,3−c23,2) = c22,1c
1
1,2−c21,2c12,1 =

c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = c33,2c
2
2,3 − c32,3c

2
3,2 = −c21,2c12,2 +

c22,1c
1
2,2 + c32,2c

2
2,3 − c32,2c

2
3,2 = 0, for i = 1, 2, 3, (c11,2, c

1
2,1), (c21,2, c

2
2,1),

(c22,3, c
2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 34): ci1,1(c11,2− c12,1) = c12,2(c11,2− c12,1) = cj2,2(c22,3− c23,2) =

ck2,2(c21,2 − c22,1) = c21,1(c21,2 − c22,1) = c32,2(c32,3 − c33,2) = c12,2(c22,3 − c23,2) =
−c11,2c11,1 + c12,1c

1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = c22,1c

1
1,2 − c21,2c12,1 + c21,2c

2
2,2 −

c22,1c
2
2,2 = c33,2c

2
2,3 − c32,3c

2
3,2 = 0, for i = 2, 3, j = 2, 3, k = 1, 3,

(c11,2, c
1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2.

• Configuration 35): −c11,2c11,1 + c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = −c21,2c12,2 +

c22,1c
1
2,2 + c32,2c

2
2,3 − c32,2c23,2 = −c22,3c22,2 + c23,2c

2
2,2 + c33,2c

2
2,3 − c32,3c23,2 =

c22,1c
1
1,2−c21,2c12,1+c21,2c

2
2,2−c22,1c22,2 = ci1,1(c11,2−c12,1) = c12,2(c11,2−c12,1) =

cj2,2(c22,3 − c23,2) = c23,3(c22,3 − c23,2) = ck3,3(c32,3 − c33,2) = c32,2(c32,3 − c33,2) =

cj2,2(c21,2−c22,1) = c21,1(c21,2−c22,1) = c33,2c
2
2,3−c32,3c23,2+c32,3c

3
3,3−c33,2c33,3 =

0, for i = 2, 3, j = 1, 3, k = 1, 2, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2, 3.

• Configuration 36): c31,1(c31,3 − c33,1), ci1,1(c12,1 − c11,2) = 0, for i = 1, 2, 3,
(c11,2, c

1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0)

• Configuration 37): c31,1(c31,3 − c33,1), ci1,1(c12,1 − c11,2) = ci2,2(c23,2 − c22,3) =
c12,2(c12,1 − c11,2) = 0, for i = 1, 2, 3, (c11,2, c

1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2) 6=

(0, 0), (c1j,j , c
2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 2.

• Configuration 38): c11,2 = c12,1, c
3
1,3 = c33,1, c

2
2,3 = c23,2, (c11,2, c

1
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 2, 3.

• Configuration 39): ci1,1(c21,2−c22,1) = 0, for i = 2, 3, (c21,2, c
2
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).
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• Configuration 40): c21,2 = c22,1, c22,3 = c23,2, (c21,2, c
2
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 41): −c21,2c12,2 + c22,1c
1
2,2 + c22,3c

3
2,2 − c23,2c32,2 = ci2,2(c21,2 −

c22,1) = ci2,2(c23,2 − c22,3) = cj1,1(cj1,j − c
j
j,1) = 0, for i = 1, 2, 3, j = 2, 3,

(c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2) 6= (0, 0), (c1k,k, c

2
k,k, c

3
k,k) 6= (0, 0, 0), for

k = 1, 2.

• Configuration 42): c21,2 = c22,1, c
3
1,3 = c33,1, c

2
2,3 = c23,2, (c21,2, c

2
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1j,j , c

2
j,j , c

3
j,j) 6= (0, 0, 0), for j = 1, 2, 3.

• Configuration 43): c11,2 = c12,1, c
1
1,3 = c13,1, (c11,2, c

1
2,1), (c11,3, c

1
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 44): c12,2(c11,2 − c12,1) = ci2,2(c23,2 − c22,3) = 0, for i = 1, 2, 3,
(c11,2, c

1
2,1), (c11,3, c

1
3,1), (c22,3, c

2
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 45): c11,2 = c12,1, c
1
1,3 = c13,1, c

2
2,3 = c23,2, (c11,2, c

1
2,1), (c11,3, c

1
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1i,i, c

2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2.

• Configuration 46): c11,2 = c12,1, c
1
1,3 = c13,1, c

2
2,3 = c23,2, (c11,2, c

1
2,1), (c11,3, c

1
3,1),

(c22,3, c
2
3,2) 6= (0, 0), (c1i,i, c

2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, 3.

• Configuration 47): ci1,1(c21,2 − c22,1) = c22,3c
3
3,2 − c32,3c23,2 = 0, for i = 2, 3,

(c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6=

(0, 0, 0).

• Configuration 48): ci2,2(c21,2−c22,1) = ck2,2(c22,3−c23,2) = c21,2c
1
2,2+c22,1c

1
2,2 =

−c22,3c22,2 + c23,2c
2
2,2 + c33,2c

2
2,3 − c32,3c23,2 = c33,2c

2
2,3 − c32,3c23,2 = 0, for i =

1, 2, 3, k = 1, 3 (c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c12,2, c
2
2,2, c

3
2,2) 6= (0, 0, 0).

• Configuration 49): ci2,2(c21,2− c22,1) = cj1,1(cj1,j − c
j
j,1) = ck2,2(c22,3− c23,2) =

c32,2(c32,3 − c33,2) = c21,2c
1
2,2 + c22,1c

1
2,2 = −c22,3c22,2 + c23,2c

2
2,2 + c33,2c

2
2,3 −

c32,3c
2
3,2 = c33,2c

2
2,3 − c32,3c

2
3,2 = 0, for i = 1, 2, 3, j = 2, 3, k = 1, 3,

(c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for ` = 1, 2.

• Configuration 50): ci2,2(c21,2− c22,1) = ci3,3(c31,3− c33,1) = cj3,3(c32,3− c33,2) =

ck2,2(c22,3 − c23,2) = c21,1(c21,2 − c22,1) = c21,2c
1
2,2 + c22,1c

1
2,2 = −c22,3c22,2 +

c23,2c
2
2,2+c33,2c

2
2,3−c32,3c23,2 = c32,2(c32,3−c33,2) = c23,3(c22,3−c23,2) = c31,1(c31,3−

c33,1) = c33,2c
2
2,3−c32,3c23,2+c32,3c

3
3,3−c33,2c33,3 = −c31,3c13,3−c32,3c23,3+c33,1c

1
3,3+

c33,2c
2
3,3 = 0, for i = 1, 2, 3, j = 1, 2, k = 1, 3, c11,2 = c12,1, c

1
1,3 = c13,1, c

2
2,3 =
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c23,2, (c21,2, c
2
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c1`,`, c

2
`,`, c

3
`,`) 6=

(0, 0, 0), for ` = 1, 2, 3.

• Configuration 51): c31,1(c31,3 − c33,1) = ci1,1(−c12,1 + c11,2) = c33,2c
2
2,3 −

c32,3c
2
3,2 = c33,2c

2
2,3 − c32,3c23,2 = 0, for i = 1, 2, 3, (c11,2, c

1
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 52): c12,2(c11,2− c12,1) = c32,2(c32,3− c33,2) = ci2,2(c22,3− c23,2) =
−c22,3c22,2+c23,2c

2
2,2+c33,2c

2
2,3−c32,3c23,2 = c33,2c

2
2,3−c32,3c23,2 = 0, for i = 1, 3,

(c11,2, c
1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6=

(0, 0, 0).

• Configuration 53): c31,3 = c33,1, c
2
2,3 = c23,2, c

3
2,3 = c33,2, (c11,2, c

1
2,1), (c31,3, c

3
3,1),

(c22,3, c
2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6= (0, 0, 0).

• Configuration 54): c31,1(c31,3 − c33,1) = ci1,1(−c12,1 + c11,2) = −c12,2(−c12,1 +

c11,2) = cj2,2(c22,3−c23,2) = c32,2(c32,3−c33,2) = −c22,3c22,2+c23,2c
2
2,2+c33,2c

2
2,3−

c32,3c
2
3,2 = c33,2c

2
2,3 − c32,3c23,2 = 0, for i = 1, 2, 3, j = 1, 3, (c11,2, c

1
2,1),

(c31,3, c
3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c1i,i, c

2
i,i, c

3
i,i) 6= (0, 0, 0),

for i = 1, 2.

• Configuration 55): c11,2 = c12,1, c
3
1,3 = c33,1, c

2
2,3 = c23,2, c

3
2,3 = c33,2, (c11,2, c

1
2,1),

(c31,3, c
3
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c1i,i, c

2
i,i, c

3
i,i) 6= (0, 0, 0), for

i = 1, 3.

• Configuration 56): c31,1(c31,3 − c33,1) = −c12,2(−c12,1 + c11,2) = c32,2(c32,3 −
c33,2) = c23,3(c22,3−c23,2) = −c22,3c22,2+c23,2c

2
2,2+c33,2c

2
2,3−c32,3c23,2 = c33,2c

2
2,3−

c32,3c
2
3,2 + c32,3c

3
3,3 − c33,2c33,3 = −c31,3c13,3 − c32,3c23,3 + c33,1c

1
3,3 + c33,2c

2
3,3 =

ci1,1(c12,1 − c11,2) = ci3,3(c31,3 − c33,1) = cj3,3(c32,3 − c33,2) = ck2,2(c22,3 − c23,2) =

0, for i = 1, 2, 3, j = 1, 2, k = 1, 3, (c11,2, c
1
2,1), (c31,3, c

3
3,1), (c22,3, c

2
3,2),

(c32,3, c
3
3,2) 6= (0, 0), (c1i,i, c

2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, 3.

• Configuration 57): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 = c33,2c

2
2,3 − c32,3c

2
3,2 =

c33,2c
2
2,3 − c32,3c

2
3,2 = c21,1(c21,2 − c22,1) = cj1,1(c11,2 − c12,1) = ci1,1(−c13,1 +

c11,3) = 0, for i = 1, 2, 3, j = 2, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1), (c11,3, c

1
3,1),

(c22,3, c
2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6= (0, 0, 0).

• Configuration 58): c22,1c
1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 −

c22,1c
2
2,2 = −c21,2c12,2 + c22,1c

1
2,2 + c32,2c

2
2,3 − c32,2c23,2 = −c22,3c22,2 + c23,2c

2
2,2 +

c33,2c
2
2,3−c32,3c23,2 = c33,2c

2
2,3−c32,3c23,2 = ci2,2(c21,2−c22,1) = ci2,2(c22,3−c23,2) =

c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = 0, for i = 1, 3, (c11,2, c
1
2,1), (c21,2, c

2
2,1),

(c11,3, c
1
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c12,2, c

2
2,2, c

3
2,2) 6= (0, 0, 0).
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• Configuration 59): c11,2c
2
2,1 − c21,2c

1
2,1 = c11,2c

2
2,1 − c21,2c

1
2,1 = c22,3c

3
3,2 −

c32,3c
2
3,2 = c22,3c

3
3,2 − c32,3c

2
3,2 + c32,3c

3
3,3 − c33,2c

3
3,3 = ci3,3(c32,3 − c33,2) =

−c13,3(c11,3−c13,1) = −c23,3(c22,3−c23,2) = 0, for i = 1, 2, (c11,2, c
1
2,1), (c21,2, c

2
2,1),

(c11,3, c
1
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0), (c13,3, c

2
3,3, c

3
3,3) 6= (0, 0, 0).

• Configuration 60): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 − c22,1c

2
2,2 =

−c22,3c22,2 + c23,2c
2
2,2 + c33,2c

2
2,3 − c32,3c23,2 = −c21,2c12,2 + c22,1c

1
2,2 + c32,2c

2
2,3 −

c32,2c
2
3,2 = c33,2c

2
2,3− c32,3c23,2c21,1(c21,2− c22,1) = ci2,2(c21,2− c22,1) = ci2,2(c22,3−

c23,2) = cj1,1(c11,2−c12,1) = c12,2(c11,2−c12,1) = ck1,1(−c13,1+c11,3) = c32,2(c32,3−
c33,2) = 0, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c11,3, c

1
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for i = 1, 3, j = 2, 3, k = 1, 2, 3, ` = 1, 2,

• Configuration 61): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c

1
2,1 = c33,2c

2
2,3 − c32,3c

2
3,2 + c32,3c

3
3,3 − c33,2c

3
3,3 =

c22,1c
1
1,2−c21,2c12,1 = c33,2c

2
2,3−c32,3c23,2 = c21,1(c21,2−c22,1) = c23,3(c22,3−c23,2) =

c13,3(−c13,1 + c11,3) = ci1,1(c11,2 − c12,1) = cj1,1(−c13,1 + c11,3) = ck3,3(c32,3 −
c33,2) = 0, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c11,3, c

1
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for i = 2, 3, j = 1, 2, 3, k = 1, 2, ` = 1, 3,

• Configuration 62): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 − c22,1c

2
2,2 =

−c22,3c22,2 + c23,2c
2
2,2 + c33,2c

2
2,3 − c32,3c23,2 = −c21,2c12,2 + c22,1c

1
2,2 = c33,2c

2
2,3 −

c32,3c
2
3,2 + c32,3c

3
3,3 − c33,2c

3
3,3 = c21,1(c21,2 − c22,1) = −c12,2(c11,2 − c12,1) =

c32,2(c32,3 − c33,2) = c23,3(c22,3 − c23,2) = ci2,2(c21,2 − c22,1) = cj1,1(c11,2 − c12,1) =

ck1,1(−c13,1 + c11,3) = c`3,3(−c13,1 + c11,3) = ci2,2(c22,3 − c23,2) = c`3,3(c32,3 −
c33,2) = 0, (c11,2, c

1
2,1), (c21,2, c

2
2,1), (c11,3, c

1
3,1), (c22,3, c

2
3,2), (c32,3, c

3
3,2) 6= (0, 0),

(c1k,k, c
2
k,k, c

3
k,k) 6= (0, 0, 0), for i = 1, 3, j = 2, 3, k = 1, 2, 3, ` = 1, 2.

• Configuration 63): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = −c11,3c11,1 + c13,1c

1
1,1 + c33,1c

1
1,3 − c31,3c13,1 =

c22,1c
1
1,2 − c21,2c12,1 = c33,2c

2
2,3 − c32,3c23,2 = c33,1c

1
1,3 − c31,3c13,1 = c33,2c

2
2,3 −

c32,3c
2
3,2 = c21,1(c21,2−c22,1) = c31,1(c31,3−c33,1) = ck1,1(c11,2−c12,1) = ck1,1(c11,3−

c13,1) = 0, (ci1,2, c
i
2,1), (cj1,3, c

j
3,1), (ck2,3, c

k
3,2) 6= (0, 0), (c11,1, c

2
1,1, c

3
1,1) 6=

(0, 0, 0), for i = 1, 2, j = 1, 3, k = 2, 3.

• Configuration 64): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c12,1 = −c11,3c11,1 + c13,1c

1
1,1 + c33,1c

1
1,3 − c31,3c13,1 =

c22,1c
1
1,2 − c21,2c12,1 + c21,2c

2
2,2 − c22,1c22,2 = −c21,2c12,2 + c22,1c

1
2,2 + c32,2c

2
2,3 −

c32,2c
2
3,2 = c33,1c

1
1,3 − c31,3c13,1 = c33,2c

2
2,3 − c32,3c23,2 = −c22,3c22,2 + c23,2c

2
2,2 +

c33,2c
2
2,3 − c32,3c

2
3,2 = c21,1(c21,2 − c22,1) = cj2,2(c21,2 − c22,1) = c31,1(c31,3 −
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c33,1) = ck1,1(c11,2 − c12,1) = c12,2(c11,2 − c12,1) = ck1,1(c11,3 − c13,1) = c32,2(c32,3 −
c33,2) = cj2,2(c22,3 − c23,2) = 0, (ci1,2, c

i
2,1), (cj1,3, c

j
3,1), (ck2,3, c

k
3,2) 6= (0, 0),

(c1i,i, c
2
i,i, c

3
i,i) 6= (0, 0, 0), for i = 1, 2, j = 1, 3, k = 2, 3.

• Configuration 65): c21,1c
1
1,2 − c21,1c12,1 + c31,1c

1
1,3 − c31,1c13,1 = −c11,2c11,1 +

c12,1c
1
1,1 + c22,1c

1
1,2 − c21,2c

1
2,1 = c22,1c

1
1,2 − c21,2c

1
2,1 + c21,2c

2
2,2 − c22,1c

2
2,2 =

−c11,3c11,1 + c13,1c
1
1,1 + c33,1c

1
1,3 − c31,3c13,1 = −c22,3c22,2 + c23,2c

2
2,2 + c33,2c

2
2,3 −

c32,3c
2
3,2 = c33,1c

1
1,3 − c31,3c

1
3,1 + c31,3c

3
3,3 − c33,1c

3
3,3 = c33,2c

2
2,3 − c32,3c

2
3,2 +

c32,3c
3
3,3 − c33,2c33,3 = −c21,2c12,2 + c22,1c

1
2,2 + c32,2c

2
2,3 − c32,2c23,2 = −c31,3c13,3 −

c32,3c
2
3,3+c33,1c

1
3,3+c33,2c

2
3,3 = c21,1(c21,2−c22,1) = c13,3(c11,3−c13,1) = c23,3(c22,3−

c23,2) = c31,1(c31,3 − c33,1) = ck1,1(c11,2 − c12,1) = ck1,1(c11,3 − c13,1) = cj2,2(c21,2 −
c22,1) = c12,2(c11,2 − c12,1) = c32,2(c32,3 − c33,2) = cj2,2(c22,3 − c23,2) = ci3,3(c31,3 −
c33,1) = ci3,3(c32,3 − c33,2) = 0, (ci1,2, c

i
2,1), (cj1,3, c

j
3,1), (ck2,3, c

k
3,2) 6= (0, 0),

(c1`,`, c
2
`,`, c

3
`,`) 6= (0, 0, 0), for i = 1, 2, j = 1, 3, k = 2, 3, ` = 1, 2, 3.
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Universidad Loyola Andalućıa,
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