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On the Hilbert depth of the Hilbert function of
a finitely generated graded module

Silviu Bălănescu and Mircea Cimpoeaş

Abstract

Let K be a field, A a standard graded K-algebra and M a finitely
generated graded A-module. Inspired by our previous works, see [2] and
[3], we study the invariant called Hilbert depth of hM , that is

hdepth(hM ) = max{d :
∑
j≤k

(−1)k−j

(
d− j
k − j

)
hM (j) ≥ 0 for all k ≤ d},

where hM (−) is the Hilbert function of M , and we prove basic results
regard it. Using the theory of hypergeometric functions, we prove that
hdepth(hS) = n, where S = K[x1, . . . , xn].

We show that hdepth(hS/J) = n, if J = (f1, . . . , fd) ⊂ S is a com-
plete intersection monomial ideal with deg(fi) ≥ 2 for all 1 ≤ i ≤ d.
Also, we show that hdepth(hM ) ≥ hdepth(hM ) for any finitely gener-
ated graded S-module M , where M = M ⊗S S[xn+1].

Introduction

Let S = K[x1, . . . , xn] be the ring of polynomials in n variables over a field
K. The Hilbert depth of a finitely graded S-module M is the maximal depth
of a finitely graded S-module N with the same Hilbert series as M ; see [7] for
further details.
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In [2] we proved a new formula for the Hilbert depth of a quotient J/I of
two squarefree monomial ideals I ⊂ J ⊂ S. This allowed us, in [3], to extend
the definition of Hilbert depth to any (numerical) function h : Z→ Z≥0 with
the property that h(j) = 0 for j � 0.

More precisely, we set

hdepth(h) := max{d :
∑
j≤k

(−1)k−j
(
d− j
k − j

)
h(j) ≥ 0 for all k ≤ d}.

Let A be a standard graded K-algebra and M a finitely generated graded A-
module. Since hM (−), the Hilbert function of M , has the property hM (j) = 0
for j � 0, it makes sense to consider its Hilbert depth, as was defined above;
see also Definition 1.1.

In some regards, this new invariant seems unnatural, as it is associated to
the Hilbert series of M , seen as a numerical function, and not to M itself.
However, we believe that the study of this invariant could be interesting as it
reflects the growing pattern of the Hilbert series of M . We mention that in [3],
we studied the Hilbert depth for polynomial functions with integer coefficients
and other numerical functions.

Another fact that determined us to study this invariant, is the following:
Let I ⊂ J ⊂ S be squarefree monomial ideals. Although hdepth(J/I) and
hdepth(hJ/I) are not the same, there is the following subtle connection be-
tween these invariants: If

M(J/I) = (J + (x21, . . . , x
2
n))/(I + (x21, . . . , x

2
n)),

then hdepth(J/I) = hdepth(hM(J/I)); see Proposition 1.4. Note that M(J/I)
is an Artinian S-module.

In Proposition 1.5 we prove that

k0 ≤ hdepth(hM ) ≤ k0 +
h1
h0
,

where k0 = k0(M) = min{k : Mk 6= 0}, h0 = hM (k0) and h1 = hM (k0 + 1).
In Proposition 1.6 we prove that if M is of finite length, then

hdepth(hM ) ≤ kf (M) := max{k : Mk 6= 0}.

In particular, if M = S/J where J is a graded Artinian ideal, we note in
Corollary 1.7 that

hdepth(hS/J) ≤ reg(S/J).

In Proposition 1.9 we show that if 0 → U → M → N → 0 is a short exact
sequence of (nonzero) finitely generated graded A-modules, then

hdepth(hM ) ≥ min{hdepth(hU ),hdepth(hN )}.
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In Proposition 1.11 we prove that

hdepth(hM(m)) = hdepth(hM )−m,

where M(m) is the m-th shift module of M .
Using the sign of the hypergeometric function 2F1(−k, n,−n;−1), see Lemma

2.1, we prove in Theorem 2.2 that hdepth(hS) = n. Consequently, in Corollary
2.3 we prove that if

F = S(a)n1 ⊕ S(a− 1)n2 ⊕ S(a1)⊕ · · · ⊕ S(ar),

where n1, n2, a, aj are integers such that n1 > n2 ≥ 0 and a ≥ aj + 2 for all
1 ≤ j ≤ r, then

hdepth(hF ) = n− a.

In Theorem 3.1 and Corollary 3.2 we prove that if J = (f1, . . . , fr) ⊂ S is
a graded complete intersection with deg(fi) ≥ 2 for all 1 ≤ i ≤ r, where
0 ≤ r ≤ n, then

hdepth(hS/J) = n.

In particular, for r = 0 we obtain a new proof of the fact that hdepth(hS) = n.
Finally, in Theorem 4.3 we show that hdepth(hM ) ≥ hdepth(hM ), where

S = S[xn+1], M is a finitely generated S-module and M = M ⊗S S.

1 Basic properties

Let K be a field and let
A =

⊕
n≥0

An,

be a standard graded K-algebra, i.e. A is finitely generated, A0 = K and A1

generates A.
Let

M =
⊕
k∈Z

Mk,

be a nonzero graded finitely generated A-module.
Since M is finitely generated, dimK(Mk) < ∞ for all k ∈ Z and Mk = 0

for k � 0. In particular, there exists k0(M) ∈ Z such that

k0(M) := min{k : Mk 6= 0}.

We consider the Hilbert function of M , that is

hM (−) : Z→ Z≥0, hM (k) := dimK Mk, for all k ∈ Z.
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We recall the definition of the Hilbert depth of hM from [3].
Let d be an integer and let

βd
k(hM ) :=


k∑

j=k0(M)

(−1)k−j
(
d−j
k−j
)
hM (j), k0(M) ≤ k ≤ d

0, otherwise

. (1)

From (1) we deduce that

hM (k) :=

k∑
j=k0(M)

(
d− j
k − j

)
βd
j (hM ) for all k0(M) ≤ k ≤ d. (2)

With the above notation, we have:

Definition 1.1. The Hilbert depth of hM is

hdepth(hM ) := max{d ∈ Z : βd
h(hM ) ≥ 0 for all k ≤ d}.

Note that (1), (2) and Definition 1.1 hold for any function h : Z → Z≥0
with h(j) = 0 for j � 0.

Remark 1.2. If βd
k(hM ) ≥ 0 for all k0(M) ≤ k ≤ d, then, from [3, Corollary

1.4], it follows that βd′

k (hM ) ≥ 0 for all d ≤ d′ and k0(M) ≤ k ≤ d′. Also, it is
clear that k0(M) = k0(hM ).

Let 0 ⊂ I ( J ⊂ S = K[x1, . . . , xn] be two squarefree monomial ideals.
We recall the method of computing Hilbert depth of J/I given in [2]. For
0 ≤ k ≤ n, we let

αk(J/I) = |{u ∈ S is a squarefree monomial with u ∈ J \ I}|.

For all 0 ≤ d ≤ n and 0 ≤ k ≤ d, we consider the integers:

βd
k(J/I) :=

k∑
j=0

(−1)k−j
(
d− j
k − j

)
αj(J/I). (3)

We recall the following result:

Theorem 1.3. ([2, Theorem 2.4]) With the above notations, the Hilbert depth
of J/I is

hdepth(J/I) := max{d : βd
k(J/I) ≥ 0 for all 0 ≤ k ≤ d}.
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We consider the S-module

M(J/I) := (J + (x21, . . . , x
2
n))/(I + (x21, . . . , x

2
n)).

It is easy to see that

M(J/I) =
⊕

u∈S squarefree monomial
u∈J\I

Ku. (4)

From (4) and the definition of αk(J/I)’s it follows that

αk(J/I) = hM(J/I)(k) for all 0 ≤ k ≤ n. (5)

From Theorem 1.3, Definition 1.1 and (5) we get the following result:

Proposition 1.4. With the above notations, we have

hdepth(J/I) = hdepth(hM(J/I)).

In the following, all modules are assumed finitely generated over a standard
graded K-algebra A, unless it is stated otherwise:

Proposition 1.5. Let M be a nonzero graded A-module, k0 = k0(M), h0 =
hM (k0), h1 := hM (k0 + 1). Then:

k0 ≤ hdepth(hM ) ≤ k0 +
h1
h0
.

Proof. It follows from [3, Proposition 1.5].

Let M be a nonzero graded A-module of finite length, i.e. dimK(M) <∞.
It follows that there exists kf (M) ≥ k0(M) such that

kf (M) := max{k : Mk 6= 0}.

Note that kf (M) ≤ kf (hM ). Hence, from [3, Proposition 1.5] we conclude
that:

Proposition 1.6. If M is a nonzero graded A-module of finite length, then

hdepth(hM ) ≤ kf (M).

Corollary 1.7. Let I ⊂ S = K[x1, . . . , xn] be an Artinian homogeneous ideal.
Then

hdepth(hS/I) ≤ reg(S/I).
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Proof. According to [6, Theorem 18.4], we have that

reg(S/I) = max{k : (S/I)k 6= 0}.

The conclusion follows from Proposition 1.6.

Remark 1.8. Assume K is a field of characteristic zero and let I ⊂ S =
K[x1, . . . , xn] be a homogeneous ideal. Let J := Gin(I) be the generic initial
ideal of I with respect to the reverse lexicographic order. It is well known that
S/I and S/J have the same Hilbert function. Moreover, according to Bayer
and Stillman [1], we have

reg(S/I) = reg(S/J).

On the other hand, according to Galligo [5], J := Gin(I) is strongly stable,
hence from the well known result of Eliahou and Kervaire [4], it follows that

reg(S/I) = reg(S/J) = max{deg(u) : u ∈ G(J)} − 1,

where G(J) is the minimal set of monomial generators of J .
In conclusion, hdepth(hS/I) ≤ reg(S/I) if and only if hdepth(hS/J) ≤

reg(S/J).
The result from Corollary 1.7 cannot be extended in general. For instance,

the ideal J = (x31) ⊂ S = K[x1, x2, x3] is strongly stable and its regularity is
reg(S/J) = 3− 1 = 2, while hdepth(hS/J) = 3.

Proposition 1.9. Let 0 → U → M → N → 0 be a short exact sequence of
(nonzero) graded A-modules. Then:

hdepth(hM ) ≥ min{hdepth(hU ),hdepth(hN )}.

Proof. It follows from the fact that hM (k) = hU (k) + hN (k) for all k ∈ Z and
[3, Proposition 1.10].

Proposition 1.10. Let M be a graded A-module and let r > 0 be an integer.
Then

hdepth(hM⊕r ) = hdepth(hM ).

Proof. Since hM⊕r (k) = r · hM (k) for all k ∈ Z, the conclusion follows from
[3, Proposition 1.11].

If M is a graded A-module and m is an integer, then

M(m) =
⊕
k∈Z

M(m)k =
⊕
k∈Z

Mm+k

is the m-th shift module of M .
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Proposition 1.11. Let M be a nonzero graded A-module and m ∈ Z. Then:

(1) k0(M(m)) = k0(M)−m.

(2) If dimK(M) <∞ then kf (M(m)) = kf (M)−m.

(3) hdepth(hM(m)) = hdepth(hM )−m.

Proof. (1) and (3) Since hM(m)(k) = hM (k +m) for all k ∈ Z, the conclusion
follows from [3, Proposition 1.12].

(2) It is obvious.

Remark 1.12. Let h : Z → Z≥0 such that h(j) = 0 for j � 0. Let k0 =

min{j : h(j) > 0} and c =
⌊
h(k0+1)
h(k0)

⌋
. Let S := K[x1, . . . , xn] and m =

(x1, . . . , xn). We claim that there exists an Artinian S-module M such that

hM (j) =

{
h(j), k0 ≤ j ≤ k0 + c

0, otherwise
. (6)

Indeed, we can take

M := (S/m)(−k0)h(k0)⊕(S/m)(−k0−1)h(k0+1)⊕· · ·⊕(S/m)(−k0−c)h(k0+c).

From (6) it is easy to deduce that

hdepth(h) = hdepth(hM ).

Note that M is in fact a graded K-vector space of finite dimension.

2 Hilbert depth of the Hilbert series of a free S-module

Let a ∈ C and j a nonnegative integer. We denote (a)j = a(a+1) · · · (a+j−1),
the Pochhammer symbol. The hypergeometric function is

2F1(a, b, c; z) =
∑
j≥0

(a)j(b)j
(c)j

· z
j

j!
.

First, we prove the following lemma:

Lemma 2.1. Let n ≥ 1 be an integer. Then:

(1) 2F1(0, n,−n;−1) = 1 and 2F1(−1, n,−n;−1) = 0.

(2) (−1)k2F1(−k, n,−n;−1) > 0 for any 2 ≤ k ≤ n.
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Proof. (1) It is obvious from the definition of the hypergeometric function.

(2) Since 2F1(−k, n,−n;−1) =
k∑

j=0

(−1)j
(
k
j

) (n)j
(n−j+1)j

, in order to prove (2),

it is enough to show that for any n ≥ k ≥ 2 we have that:

E(n, k) :=

k∑
j=0

(−1)k−j
(
k

j

)
(n)j(n− k + 1)k−j > 0. (7)

We consider the functions

f1,k, f2,k : (0, 2)→ R, f1,k(x) =
1

(2− x)n
, f2,k(x) =

1

xn−k+1
.

By straightforwards computation, for all 0 ≤ j ≤ k we have that

f
(j)
1,k(x) =

(n)j
(2− x)n+j

and f
(k−j)
2,k (x) =

(−1)k−j(n− k + 1)k−j
xn−j+1

, (8)

where f (j) denotes the j-th derivative of the function f . Let

fk : (0, 2)→ R, fk(x) := f1,k(x)f2,k(x), x ∈ (0, 2). (9)

From (7), (8), (9) and the chain rule of derivatives, it follows that

E(n, k) = f
(k)
k (1). (10)

We consider the function

gk : (−1, 1)→ R, gk(x) = fk(1− x) =
1

(1 + x)n(1− x)n−k+1
=

(1− x)k−1

(1− x2)n
.

Since g
(k)
k (x) = (−1)kf

(k)
k (1− x), from (7) and (10), in order to complete the

proof, it is enough to prove that

(−1)kg
(k)
k (0) > 0 for all k ≥ 2. (11)

If k ≥ 2 and j ≥ 1, then, using the identity gk(x) = (1−x)gk−1(x), we deduce
that

g
(j)
k (x) = (1− x)g

(j)
k−1(x)− jg(j−1)k−1 (x) for all x ∈ (−1, 1). (12)

For k ≥ 1 and j ≥ 0 we denote c
(j)
k := g

(j)
k (0). Since

g1(x) =
1

(1− x2)n
=

∞∑
`=0

(
n+ `− 1

`

)
x2`,
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it follows that

c
(j)
1 =

{
0, j = 2`+ 1(
n+`−1

`

)
(2`)!, j = 2`

(13)

Also, it is clear that

c
(0)
k = 1 for all k ≥ 1. (14)

On the other hand, from (12) it follows that

c
(j)
k = c

(j)
k−1 − jc

(j−1)
k−1 for all k ≥ 2, j ≥ 1. (15)

From (13), (14) and (15), using induction on k ≥ 2, we can easily deduce that

(−1)jc
(j)
k > 0 for all k ≥ 2, j ≥ 0.

In particular, it follows that

(−1)kc
(k)
k = (−1)kg

(k)
k (0) > 0 for all k ≥ 2,

hence the proof is complete.

Theorem 2.2. Let S := K[x1, . . . , xn]. Then hdepth(hS) = n.

Proof. The Hilbert function of S is hS(k) =
(
n−1+k

k

)
for all k ≥ k0(S) = 0.

Therefore, from (1), we have

βd
k(hS) =

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n− 1 + j

j

)
for all 0 ≤ k ≤ d. (16)

Since k0(S) = 0, hS(0) = 1 and hS(1) = n, from Proposition 1.5 we get that
hdepth(hS) ≤ n. From (16) we have that

βn
k (hS) =

k∑
j=0

(−1)k−j
(
n− j
k − j

)(
n− 1 + j

j

)
for all 0 ≤ k ≤ n. (17)

From (17) if follows that

βn
k (hS) = (−1)k

(
n

k

)
2F1(−k, n,−n;−1) for all 0 ≤ k ≤ n, (18)

From (18) and Lemma 2.1 it follows that hdepth(hS) ≥ n, as required.

Corollary 2.3. Let F = S(a)n1 ⊕ S(a − 1)n2 ⊕ S(a1) ⊕ · · · ⊕ S(ar) where
n1, n2, a, aj are some integers such that n1 > n2 ≥ 0 and a ≥ aj + 2 for all
1 ≤ j ≤ r. Then hdepth(hF ) = n− a.
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Proof. From Theorem 2.2, Proposition 1.10 and Proposition 1.11 it follows
that

hdepth(hS(a)n1 ) = n− a,
hdepth(hS(a−1)n2 ) = n− a+ 1, if n2 > 0 and

hdepth(hS(aj)) = n− aj for all 1 ≤ j ≤ r.

Using Proposition 1.9, we deduce that

hdepth(hF ) ≥ min{n− a, n− a+ 1, n− aj , 1 ≤ j ≤ r} = n− a. (19)

On the other hand, from hypothesis, we have

hF (−a) = dimK S(a)n1
−a = n1 dimK S0 = n1 and

hF (−a+ 1) = dimK S(a)n1
−a+1 + dimK S(a− 1)n2

−a+1 = n · n1 + n2.

Since n1 > n2, from Proposition 1.5 it follows that hdepth(hF ) ≤ n−a. Hence,
the conclusion follows from (19).

3 Hilbert depth of the Hilbert series of a complete in-
tersection

Let S = K[x1, . . . , xn] and J = (f1, . . . , fn) ⊂ S be a graded complete inter-
section ideal with di = deg(fi) ≥ 2 for all 1 ≤ i ≤ n. The Hilbert series of
S/J is

HS/J(t) =
∑
k≥0

hS/J(k)tk = (1+t+· · ·+td1−1)(1+t+· · ·+td2−1) · · · (1+t+· · ·+tdn−1).

Theorem 3.1. With the above notations, we have that

hdepth(hS/J) = n.

Proof. First, note that hdepth(hS/J) ≤ n by Proposition 1.5, since hS/J(0) = 1
and hS/J(1) = n.

We use induction on n ≥ 1 and d := d1 + · · · + dn ≥ 2n. If n = 1 then
there is nothing to prove. If d = 2n, that is di = 2 for all 1 ≤ i ≤ n, then:

βn
k (hS/J) =

k∑
j=0

(−1)k−j
(
n− j
k − j

)(
n

j

)
=

k∑
j=0

(−1)k−j(−1)k−j
(
n

k

)(
k

j

)
.

Therefore, βn
0 (hS/J) = 1 and βn

k (hS/J) = 0 for 2 ≤ k ≤ n. From Remark 1.2,
it follows that hdepth(hS/J) ≥ n and thus hdepth(hS/J) = n.
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Assume d > 2n. Without any loss of generality, we may assume that
dn ≥ 3. Let I = (g1, . . . , gn) be a graded complete intersection ideal with
deg(gi) = deg(fi) = di for 1 ≤ i ≤ n − 1 and deg(gn) = dn − 1. Let J ′ =
(f ′1, . . . , f

′
n−1) ⊂ S′ = K[x1, . . . , xn−1] be a graded complete intersection ideal

with deg(f ′i) = deg(fi) = di for 1 ≤ i ≤ n− 1. We have that that

HS/J(t) = (1+t+· · ·+td1−1) · · · (1+t+· · ·+tdn−1−1)(1+t+· · ·+tdn−2+tdn−1) =

= HS/I(t) + tdn−1HS′/J′(t). (20)

From (20), it follows that for 0 ≤ k ≤ n we have that

βn
k (hS/J) =

k∑
j=0

(−1)k−j
(
n− j
k − j

)
hS/J(j) =

=

k∑
j=0

(−1)k−j
(
n− j
k − j

)
(hS/I(j) + hS′/J′(j − dn + 1)) =

=

k∑
j=0

(−1)k−j
(
n− j
k − j

)
hS/I(j) +

k∑
j=0

(−1)k−j
(
n− j
k − j

)
hS′/J′(j − dn + 1) =

= βn
k (hS/I) +

k∑
j=0

(−1)k−j
(
n− j
k − j

)
hS′/J′(j − dn + 1). (21)

From induction hypothesis, it follows that βn
k (hS/I) ≥ 0 for all 0 ≤ k ≤ n. If

k < dn − 1 then from (21) it follows that

βn
k (hS/J) = βn

k (hS/I) ≥ 0. (22)

If k ≥ dn − 1 then

k∑
j=0

(−1)k−j

(
n− j
k − j

)
hS′/J′(j − dn + 1) =

k∑
j=dn−1

(−1)k−j

(
n− j
k − j

)
hS′/J′(j − dn + 1)

=

k−dn+1∑
j′=0

(−1)(k−dn+1)−j′
(

(n− dn + 1)− j′

(k − dn + 1)− j′

)
hS′/J′(j

′) = βn−dn+1
k−dn+1 (hS′/J′).

Therefore, from (21) and the induction hypothesis it follows that

βn
k (hS/J) = βn

k (hS/I) + βn−dn+1
k−dn+1 (hS′/J′) ≥ 0. (23)

The conclusion follows from (22) and (23).
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Corollary 3.2. If J = (f1, . . . , fr) ⊂ S is a graded complete intersection with
deg(fi) ≥ 2 for all 1 ≤ i ≤ r, where 0 ≤ r ≤ n, then

hdepth(hS/J) = n.

In particular, we reobtain the result hdepth(hS) = n.

Proof. Let J = (g1, . . . , gn) be a graded complete intersection with deg(gi) =
deg(fi) for all 1 ≤ i ≤ r and deg(gi) = n+ 1 for r + 1 ≤ i ≤ n. Since

HS/J(t) = (1 + t+ · · ·+ td1−1) · · · (1 + t+ · · ·+ tdr−1) · (1 + t+ t2 + · · · )n−r and

HS/J(t) = (1 + t+ · · ·+ td1−1) · · · (1 + t+ · · ·+ tdr−1) · (1 + t+ t2 + · · ·+ tn)n−r,

it follows that hS/J(j) = hS/J(j) for all 0 ≤ j ≤ n. Therefore

βn
k (hS/J) = βn

k (hS/J) for all 0 ≤ k ≤ n,

hence the result follows from Theorem 3.1.

4 Hilbert depth of the Hilbert series of a tensor product
of modules

As in the beginning of the section, K is a field, A is a standard graded K-
algebra and the modules over A are considered finitely generated and graded
unless is stated otherwise.

We recall the following well known lemma, regarding the Hilbert series of a
tensor product of modules, for which we sketch a proof in order of completion.

Lemma 4.1. Let M,N be two A-modules such that N is flat. Then:

HM⊗AN (t) =
HM (t) HN (t)

HA(t)
.

Proof. Take a free resolution of M ,

· · · → F2 → F1 → F0 →M → 0 (24)

where each Fn is concentrated in degrees ≥ n. It follows that

HM (t) =
∑
i≥0

(−1)i HFi
(t). (25)

Taking ⊗AN in (24) we get an exact sequence

· · · → F2 ⊗A N → F1 ⊗A N → F0 ⊗A N →M ⊗A N → 0, (26)
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Since Fi is free, it follows that

HFi⊗AN (t) =
HFi

(t) HN (t)

HA(t)
for all i,

and thus from (25) we get

HM⊗AN (t) =
∑
i≥0

(−1)i
HFi(t) HN (t)

HA(t)
=

HN (t)

HA(t)

∑
i≥0

(−1)i HFi(t) =
HM (t) HN (t)

HA(t)
,

as required.

Lemma 4.2. Let S = K[x1, . . . , xn], S = S[xn+1] and M be a S-module.
If M = M [xn+1] := M ⊗S S, then

HM (t) =
HM (t)

(1− t)
.

In particular, hM (j) =
∑̀
≤j
hM (`).

Proof. Since HS(t) = 1
(1−t)n , HS(t) = 1

(1−t)n+1 and S is flat over S, the

conclusion follows from Lemma 4.1.

Theorem 4.3. Let S = K[x1, . . . , xn], S = S[xn+1], M be a S-module and
M = M [xn+1]. Then

hdepth(hM ) ≥ hdepth(hM ).

Proof. Let d = hdepth(hM ), k0 = k0(M) and k0 ≤ k ≤ d. By (1) we have
that

βd
k(hM ) =

k∑
j=k0

(−1)k−j
(
d− j
k − j

)
hM (j) ≥ 0. (27)

By (1), Remark 1.2 and Lemma 4.2 it follows that

βd
k(hM ) =

k∑
j=k0

(−1)k−j
(
d− j
k − j

)
hM (j) =

k∑
j=k0

(−1)k−j
(
d− j
k − j

) j∑
`=k0

hM (`) =

=

k−k0∑
t=0

k∑
j=k0

(−1)k−j
(
d− j
k − j

)
hM (`− t) = (j′ = j − t) =

=

k−k0∑
t=0

k−t∑
j′=k0

(−1)(k−t)−j
′
(

(d− t)− j′

(k − t)− j′

)
hM (j′) =

k−k0∑
t=0

βd−t
k−t(M) ≥ 0,

as required.
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Remark 4.4. Let k0 := k0(M) and let k0 ≤ k ≤ d be some integers. We have
that

βd
k(hM ) =

k∑
j=k0

(−1)k−j
(
d− j
k − j

) j∑
`=k0

hM (`) =

=

k∑
`=k0

(−1)k−`

 k∑
j=`

(−1)j−`
(
d− j
k − j

)hM (`) =

=

k∑
`=k0

(−1)k−`
(
d− `
k − `

)
2F1(1,−k + `,−d+ `;−1)hM (`).

On the other hand, for any nonnegative integer s, it holds that

2F1(1,−s,−s;−1) =

s∑
`=0

(−1)` =

{
1, s is even

0, s is odd
.

Therefore, we get

βd
d(hM ) =

k∑
`=k0

hM (`|d) ≥ 0, where hM (`|d) =

{
hM (`), d ≡ `(mod 2)

0, otherwise
.
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