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Sweeping Surfaces of Polynomial Curves in
Euclidean 3-space

Yuting Zhu, Yanlin Li, Kemal Eren and Soley Ersoy

Abstract

In this study, we investigate the surfaces created by the movement of
the profile curves through the regular polynomial spine curves. To over-
come the restrictions of establishing a frame of the polynomial curves
at the points where the second and higher-order derivatives vanish, the
Frenet-like curve (Flc) frame is considered. In this way, by introduc-
ing sweeping surfaces defined based on the Flc frame, we analyze their
parameter curves to determine conditions to be geodesics, asymptotics,
and principal curvature lines. Furthermore, we derive conditions of these
sweeping surfaces to be minimal, developable, and Weingarten surfaces.
Lastly, we provide some examples of these sweeping surfaces and illus-
trate their graphical representations.

1 Introduction

Sweeping surfaces are the result of the act of forming complex shapes by
sweeping planar curves along any path in 3-dimensional space. Sweeping is
a frequently referenced technique that is extensively utilized, especially when
creating objects with precise forms in computer-aided design or 3D modeling
software. The essence of this technique lies in selecting a geometric object
known as a generator and sweeping it along a specified curve, referred to as
the spine curve. In substance, a sweeping surface is formed by a plane curve,
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commonly referred to as a profile curve or generatrix, that moves continuously
along the plane’s normal vector in the same direction. The most popular va-
rieties of sweeping surfaces include the strings, pipe, canal, and tube surfaces.
The fundamental mathematical characteristics of a particular kind of sweep-
ing surface called canal surfaces were examined in [1]. Additionally, the tubes
that satisfy some specific equations in terms of the curvatures of the surfaces
were researched by [2]. The sweeping surfaces produced by both the rotation-
minimizing frames and the Darboux frames were researched in [3] and [4],
respectively. Furthermore, in Minkowski 3-space, the timelike sweeping sur-
faces with the Bishop frames and their singularity properties were surveyed
in [5]. Köseog̃lu and Bilici defined involutive sweeping surfaces as a new sur-
face form and explored their singularity [6]. The characteristic properties and
singularities of these types of surfaces have attracted the attention of various
researchers [7, 8, 9, 10, 11, 12, 13, 14, 15]. As well as the theoretical findings
on sweeping surfaces, there are also continuing improvements in applications
based on the modeling of these surfaces from the viewpoint of mechanical
design or computer-aided geometric design [16, 17, 18, 19].

As a novelty, our investigation focuses on sweeping surfaces formed by the
motion of a regular polynomial curve with its well-defined Flc frame. The
main reason for this is that this frame is an alternative to the Frenet frame to
get over constraints at the locations where a curve’s second and higher-order
derivatives vanish. The Flc frame for polynomial curves in motion was first
presented to solve this problem in [20, 21]. Numerous researchers explored
studies on curves [22, 23, 24, 25] and surfaces [26, 27] using the Flc frame of
polynomial curves from different aspects.

In this study, we explore sweeping surfaces with the Frenet-like curve frame
of regular polynomial spine curves in Euclidean 3-space. The new equations
of the parameter curves of these sweeping surfaces allow us to determine con-
ditions for them to be geodesics, asymptotics, and principal curvature lines.
Furthermore, we derive conditions for these sweeping surfaces to be minimal,
developable, and Weingarten surfaces. Finally, some sweeping surfaces gener-
ated by the Flc frame elements are modeled as examples, and their graphical
representations are detailed with their spine curves and the Flc frame elements.

2 Preliminaries

Let σ = σ (t) be a regular n. order polynomial space curve where n ≥ 2
in Euclidean 3-space. The elements of the Flc frame along the curve σ are
presented by

T (t) =
σ′ (t)

‖σ′ (t)‖
, D1 (t) =

σ′ (t)× σ(n) (t)∥∥σ′ (t)× σ(n) (t)
∥∥ , D2 (t) = D1 (t)× T (t) ,
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respectively, where ′ and (n) denote the first and the n. order derivatives of
the curve in terms of t. It should be noted that the Flc frame and the Frenet
frame are obviously coincident when n = 2 [21]. In the case of n ≥ 3, even if
the second and higher-order derivatives of the regular polynomial space curve
are zero, and it is not possible to construct a well-defined Frenet frame, this
approach enables us to establish a frame with new Frenet-like vectors D1 and
D2 called binormal-like and normal-like vectors, respectively. Moreover, the
curvatures of the Flc frame d1, d2, and d3 are given by

d1 =
〈T ′, D2〉

ν
, d2 =

〈T ′, D1〉
ν

, d3 =

〈
D2
′, D1

〉
ν

,

where ‖σ′‖ = ν. The derivatives of the Frenet-like curve elements are given
the following matrix form: T ′

D′2
D′1

 = ν

 0 d1 d2

−d1 0 d3

−d2 −d3 0

 T
D2

D1

 ,
see [20, 21, 22] for more details.

Now, let us review some well-known basic ideas in differential geometry
that are applied to the study of surfaces in order to explain various aspects
of their curvature behaviors. Let Ψ (t, u) denote a surface and Ψt and Ψu

be tangent vectors of it, then the equation of the normal vector field of the
surface is

U (t, u) =
Ψt ×Ψu

‖Ψt ×Ψu‖
, (2.1)

where Ψt = ∂Ψ
∂t and Ψu = ∂Ψ

∂u . The first and second order fundamental
magnitudes of the surface Ψ (t, u) are, respectively, given by

E =

〈
∂Ψ

∂t
,
∂Ψ

∂t

〉
, F =

〈
∂Ψ

∂t
,
∂Ψ

∂u

〉
, G =

〈
∂Ψ

∂u
,
∂Ψ

∂u

〉
(2.2)

and

k =

〈
∂2Ψ

∂t2
, U

〉
, l =

〈
∂2Ψ

∂t∂u
, U

〉
, m =

〈
∂2Ψ

∂u2
, U

〉
. (2.3)

Based on these functions, the Gaussian and mean curvatures of a surface are
formulated as:

K =
km− l2

EG− F 2
and H =

1

2

Em− 2El +Gk

EG− F 2
, (2.4)

respectively. It is well-known that, a surface Ψ (t, u) refers to
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i. developable surface iff the Gaussian curvature vanishes,

ii. minimal surface iff the mean curvature vanishes,

iii. Weingarten surface iff KtHu −KuHt = 0,

at each point of the surface.

3 Sweeping Surfaces Generated by Regular Polynomial
Spine Curves

In this section, we introduce the parametric expression for a sweeping surface
along a regular polynomial spine curve σ (t) with its well-defined Flc frame. A
sweeping surface linked with σ (t) constitutes the envelope of a one-parameter
set of unit spheres, each with its center residing on the curve σ (t). The
intersection between the spheres from this collection and the sweeping surface
occurs precisely at the great circle of the unit sphere, positioned within the
subspace spanned by Frenet-like vectors {D2, D1} of the regular polynomial
spine curve σ (t). Now, let us outline a simple method for illustrating the
sweeping surface. Choose the parameter along σ (t) as one of the variables
and establish the position vector Ψ, connecting a point on the curve σ (t) to
another point on the sweeping surface. The parameterization of a sweeping
surface formed by a regular polynomial spine curve σ (t) and a planar profile
(cross-section) curve r (u) = (0, η (u) , µ (u))

t
, where the symbol t represents

the transpose of the vector, is

M : Ψ (t, u) = σ (t) + r (u) Γ (t) = σ (t) + η (u)D2 (t) + µ (u)D1 (t) , (3.1)

where Γ (t) is a 3× 3 orthogonal matrix along σ (t) such as

Γ (t) =
(
T (t) D2 (t) D1 (t)

)
.

The partial derivatives of the sweeping surface Ψ (t, u) using the Flc frame
with respect to t and u are found

Ψt = −ν (−1 + ηd1 + µd2)T − νd3µD2 + νd3ηD1

and
Ψu = D2ηu +D1µu,

respectively. Thus, by a straightforward computation from the last equations
and Eq. (2.1), the normal vector field of the sweeping surface is obtained as
follows:

U (t, u) = ±µuD2 − ηuD1√
ηu2 + µu2

.
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Without loss of generality, the positive normal vector is taken into considera-
tion in the operations of this study.

Theorem 3.1. Let Ψ (t, u) be a sweeping surface constructed by a regular poly-
nomial spine curve with the Flc frame, then the Gaussian and mean curvatures
of the sweeping surfaces are

K (t, u) =
ωηu

(
d2ε+ µd3

2
)
− ωµu

(
d1ε+ ηd3

2
)
− d3

2δ2

δ2
(
ε2 + d3

2
)
− d3

2ρ2δ

and

H (t, u) =
δηu

(
d2ε+ µd3

2
)
− δµu

(
d1ε+ ηd3

2
)

+ ω
(
ε2 + d3

2
)
− 2d3

2ρδ

2
√
δ
(
−d3

2ρ2 + δ
(
ε2 + d3

2
))

where
δ (u) = ηu

2 + µu
2 6= 0, ε (t, u) = ηd1 + µd2 − 1,

ρ (u) = µηu − ηµu, ω (u) = µuηuu − ηuµuu
and

δ
(
ε2 + d3

2
)
− d3

2ρ2 6= 0.

Proof. Let Ψ (t, u) be a sweeping surface constructed by a regular polynomial
spine curve with the Flc frame. From Eqs. (2.2) and (2.3), the coefficients of
the first and second fundamental quadratic forms of the sweeping surfaces are

E (t, u) = ν2
(
ε2 + d3

2
)
,

F (t, u) = −νd3ρ,

G (t, u) = δ,

and 
k (t, u) =

ν2ηu
(
d2ε+ µd3

2
)
− ν2µu

(
d1ε+ ηd3

2
)

√
δ

,

l (t, u) = −νd3

√
δ,

m (t, u) =
ω√
δ
,

respectively, such that

Ψtt =
(
ν2d3 (µd1 − ηd2)− ν

(
ηd1
′ + µd2

′)− εν′)T
−
(
ν2
(
d1ε+ ηd3

2
)

+ µ(d3ν)
′)
D2

−
(
ν2
(
εd2 + µd3

2
)
− η(d3ν)

′)
D1,

Ψtu = −ν (d1ηu + d2µu)T − νd3µuD2 + νd3ηuD1,

Ψuu = D2ηuu +D1µuu,

(3.2)
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for δ (u) = ηu
2 + µu

2, ε (t, u) = ηd1 + µd2 − 1, ρ (u) = µηu − ηµu, ω (u) =
µuηuu − ηuµuu. If the first and second-order fundamental magnitudes of the
sweeping surface are substituted in Eq. (2.4), the Gaussian and mean curva-
tures of the sweeping surface are found as in the hypothesis.

Corollary 1. Let Ψ (t, u) be a sweeping surface constructed by a regular poly-
nomial spine curve with the Flc frame, then the sweeping surface is

i. developable surface if and only if

ωηu
(
d2ε+ µd3

2
)

= ωµu
(
d1ε+ ηd3

2
)

+ d3
2δ2,

ii. minimal surface if and only if

δηu
(
d2ε+ µd3

2
)

+ ω
(
ε2 + d3

2
)

= 2d3
2ρδ + δµu

(
d1ε+ ηd3

2
)
.

Theorem 3.2. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the t−parameter curves of the
sweeping are

i. geodesic curves if and only if

ρ(d3ν)
′

= ν2ηu
(
d1ε+ ηd3

2
)

+ ν2µu
(
d2ε+ µd3

2
)

and
ν′ε = ν2d3 (µd1 − ηd2)− ν

(
ηd1
′ + µd2

′) ,
ii. asymptotic curves if and only if

ν2
(
ηu
(
d2ε+ µd3

2
)
− µu

(
d1ε+ ηd3

2
))

= (ηηu + µµu) (d3ν)
′

for δ 6= 0.

Proof. To ensure that the parameter curves meet the criteria for being geodesic
curves, it is a requirement for the acceleration vector of these curves to be
perpendicular to the surface, thereby parallel to the surface’s normal vector.
Moreover, for the parameter curves to be classified as asymptotic, the inner
product of the velocity vectors and the normal vector of the surface must be
zero. From Eq. (3.2) and the normal vector of the sweeping, the following
equations are obtained;

U ×Ψtt =
1√
δ

(
d3ν
′ρ+ ν2

((
d1ε+ ηd3

2
)
ηu +

(
d2ε+ µd3

2
)
µu
)

+ νρd3
′)T

+
ηu√
δ

(
ν2 (µd1 − ηd2) d3 − εν′ − ν

(
ηd1
′ + µd2

′))D2

+
µu√
δ

(
ν2 (µd1 − ηd2) d3 − εν′ − ν

(
ηd1
′ + µd2

′))D1,
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where δ 6= 0. The linear independence of the vector fields T , D2, and D1 gives
us

d3ν
′ρ+ ν2

((
d1ε+ ηd3

2
)
ηu +

(
d2ε+ µd3

2
)
µu
)

+ νρd3
′ = 0,

ηu
(
ν2 (µd1 − ηd2) d3 − εν′ − ν

(
ηd1
′ + µd2

′)) = 0,

µu
(
ν2 (µd1 − ηd2) d3 − εν′ − ν

(
ηd1
′ + µd2

′)) = 0,

and

〈Ψtt, U〉 =
1√
δ

(
ν2
(
ηu
(
d2ε+ µd3

2
)
− µu

(
d1ε+ ηd3

2
))
− (ηηu + µηu) (d3ν)

′)
.

i. For U × Ψtt = 0, we can easily see that the t−parameter curves are
geodesic under the conditions stated in the hypothesis.

ii. Obviously, ν2
(
ηu
(
d2ε+ µd3

2
)
− µu

(
d1ε+ ηd3

2
))

= (ηηu + µµu) (d3ν)
′

for δ 6= 0 iff 〈Ψtt, U〉 = 0. Thus, we can say that the t−parameter curves
are asymptotic curves under the conditions stated in the hypothesis.

Theorem 3.3. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the u−parameter curves of
the sweeping are

i. geodesic curves if and only if ηuηuu + µuµuu = 0,

ii. not asymptotic curves if and only if ω = 0.

Proof. From Eq. (3.2) and the normal vector of the sweeping surface, the
following equations are obtained;

i.

Ψuu × U = −ηuηuu + µuµuu√
δ

T.

Thus, if ηuηuu+µuµuu = 0, then Ψuu×U = 0, that is, the u−parameter
curves of the sweeping surface are geodesic curves under the conditions
stated in the hypothesis.

ii.
〈Ψuu, U〉 =

ω√
δ
.

Thus, if ω = 0, then 〈Ψuu, U〉 = 0. Therefore, the u−parameter curves of
the sweeping surface cannot be asymptotic under the conditions stated
in the hypothesis.
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Theorem 3.4. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the t and u−parameter curves
of the sweeping surface are principal curvature lines if and only if d3 = 0.

Proof. Let Ψ (t, u) be a sweeping surface constructed by a regular polynomial
spine curve with a Flc frame. If the parameter curves of the sweeping surface
are principal curvature lines, then F = l = 0. From the equations F (t, u) =
−νd3ρ and l (t, u) = −νd3

√
δ, we have d3 = 0 for the conditions F = l = 0. So,

the t and u−parameter curves of the sweeping surface are principal curvature
lines.

Now let’s take the curve r (u) = (0, cosu, sinu) as the planar profile (cross-
section) curve. The unit vector γ, where u is the angle between γ and D2, lies
in the subspace sp {D2, D1}. Also, the unit vector γ is perpendicular to the
tangent vector T . Therefore, we can write

γ (t) = cosuD2 (t) + sinuD1 (t) , (3.3)

which is the characteristic circle of Ψ (t, u). Considering Eq. (3.1) and (3.3),
we can write the parametric equation of the sweeping surface as follows:

Ψ (t, u) = σ (t) + cosuD2 (t) + sinuD1 (t) . (3.4)

Considering Eq. (3.4), the above expressions are easily investigated in a similar
manner. The sweeping surface is then characterized without proof. The partial
derivatives of the the sweeping surface Ψ (t, u) using the Flc frame with respect
to t and u are satisfied

Ψt = −ν (−1 + cosud1 + sinud2)T − νd3 sinuD2 + νd3 cosuD1

and
Ψu = cosuD1 − sinuD2.

Thus, by a straightforward computation from the last equations and Eq. (2.1),
the normal vector field of the sweeping surface is obtained as follows:

U (t, u) = ± (cosuD2 + sinuD1)

also, the positive normal vector is taken into consideration in the operations
of this study.

Theorem 3.5. Let Ψ (t, u) be a sweeping surface constructed by a regular poly-
nomial spine curve with the Flc frame, then the Gaussian and mean curvatures
of the sweeping surfaces are

K (t, u) =
cosud1 + sinud2

cosud1 + sinud2 − 1
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and

H (t, u) =
2 cosud1 + 2 sinud2 − 1

2 (1− cosud1 − sinud2)
,

where cosud1 + sinud2 6= 1.

Corollary 2. Let Ψ (t, u) be a sweeping surface constructed by regular poly-
nomial spine curve with the Flc frame, then the sweeping surface is

i. developable surface if and only if u = arctan
(
−d1d2

)
,

ii. minimal surface if and only if u = ∓ arccos

(
d1∓
√
−d22+4d21d

2
2+4d42

2(d21+d22)

)
.

Theorem 3.6. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the sweeping surface is a
Weingarten surface.

Proof. Let Ψ (t, u) be a sweeping surface constructed by a regular polynomial
spine curve with a Flc frame. If the partial differentiation of the equations of
the Gaussian and mean curvatures of the sweeping surface given by Theorem
3.5 in terms of t and u, we get

Kt = − cosud1
′ + sinud2

′

(−1 + cosud1 + sinud2)
2 ,

Ku =
cscu (d1 − cotud2)

(− cscu+ cotud1 + d2)
2

and 
Ht =

cosud1
′ + sinud2

′

2(−1 + cosud1 + sinud2)
2 ,

Hu =
− sinud1 + cosud2

2(−1 + cosud1 + sinud2)
2 .

Thus, we find KtHu −KuHt = 0. So, we can say that the sweeping surface is
a Weingarten surface.

Theorem 3.7. Let Ψ (t, u) be a sweeping surface constructed by regular poly-
nomial spine curve with the Flc frame, then the t−parameter curves of the
sweeping are

i. geodesic curves if and only if

ν′ =
ν2 (− sinud1 + cosud2) d3 + ν

(
cosud1

′ + sinud2
′)

(1− cosud1 − sinud2)
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and

(d3ν)
′

= ν2

(
sinud1 − cosud2 + cos 2ud2d1 −

sin 2u

2

)
,

ii. asymptotic curves if and only if

u = arctan

(
−d1

d2

)
and d3 = 0.

Theorem 3.8. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the u−parameter curves of
the sweeping are

i. geodesic curves,

ii. not asymptotic curves.

Theorem 3.9. Let Ψ (t, u) be a sweeping surface constructed by a regular
polynomial spine curve with the Flc frame, then the t and u−parameter curves
of the sweeping surface are principal curvature lines if and only if d3 = 0.

4 Modeling Examples of Sweeping Surfaces with Regular
Polynomial Spine Curves

Example 4.1. Let us consider a 4rd degree polynomial curve σ (t) represented
by

σ (t) =
(
t, t, t4

)
,

see Figure 1. It is obvious that it is impossible to construct the Frenet frame at
t = 0. Thus, applying to the Frenet-like curve apparatus {T,D2, D1, d1, d2, d3}
of this polynomial curve is a necessity. They are found as follows:

T =

(
1√

2 + 16t6
,

1√
2 + 16t6

,
4t3√

2 + 16t6

)
,

D2 =

(√
2

2
,−
√

2

2
, 0

)
,

D1 =

(
− 2

√
2t3√

2 + 16t6
,− 2

√
2t3√

2 + 16t6
,

√
2√

2 + 16t6

)

and
d1 = 1, d2 = 0, d3 = 0.
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Figure 1: The polynomial spine curve σ (t), and its tangent vectors T (green),
normal-like vectors D2 (red), and binormal-like vectors D1 (blue) for t ∈
(−1, 1).

Considering the planar profile curve r (u) = (0, cosu, sinu), the equation
of the sweeping surface with respect to the Flc frame defined by Eq. (3.4) takes
the form:

Ψ (t, u) =

(
t− 2t3 cosu√

1 + 8t6
+

sinu√
2
, t− 2t3 cosu√

1 + 8t6
− sinu√

2
, t4 +

cosu√
1 + 8t6

)
.

see Figure 2. The partial derivatives of Ψ (t, u) in terms of t and u are
Ψt =

(
1− 6t2 cosu

(1 + 8t6)
3/2

, 1− 6t2 cosu

(1 + 8t6)
3/2

, 4t3 − 24t5 cosu

(1 + 8t6)
3/2

)
,

Ψu =

(
cosu√

2
+

2t3 sinu√
1 + 8t6

,−cosu√
2

+
2t3 sinu√

1 + 8t6
,− sinu√

1 + 8t6

)
.

Substituting the above equations Ψt and Ψu into the equation (2.1), the normal
vector field of Ψ (t, u) is obtained as follows:

U (t, u) = ρ
(

2
√

2t3 cosu−
√

1 + 8t6 sinu, 2
√

2t3 cosu−
√

1 + 8t6 sinu,− cosu
)

where

ρ =

(
1 + 8t6

)3/2 − 6t2 cosu√
(1 + 8t6)

(
(1 + 8t6)

3 − 12t2(1 + 8t6)
3/2

cosu+ 36t4cos2u
)

and (
1 + 8t6

)3 − 12t2
(
1 + 8t6

)3/2
cosu+ 36t4cos2u 6= 0.
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The first fundamental quadratic form I of Ψ (t, u) is defined by

I = Edt2 + 2Fdtdu+Gdu2

such that

E =
2
((

1 + 8t6
)3 − 12t2

(
1 + 8t6

)3/2
cosu+ 36t4 cot2 u

)
(1 + 8t6)

2 ,

F = 0, G = 1.

On the other hand, the second fundamental quadratic form II of Ψ (t, u) is
defined by

II = kdt2 + 2ldtdu+mdu2

where

k = −
12t2 cosu

√
1 + 8t6 (3 + 8t6 (3 + 8t6)) − 12t2 cosu

(
(1 + 8t6)3/2 − 3t2 cosu

)
(1 + 8t6)2

,

l = 0, m =

(
1 + 8t6

)3/2 − 6t2 cosu√
(1 + 8t6)3 − 12t2(1 + 8t6)3/2 cosu + 36t4 cot2 u

.

The Gaussian and mean curvatures of Ψ (t, u) are

K (t, u) = − 6t2 cosu

(1 + 8t6)
3/2 − 6t2 cosu

and

H (t, u) =

(
1 + 8t6

)3/2 − 12t2 cosu

2

√
(1 + 8t6)

3 − 12t2(1 + 8t6)
3/2

cosu+ 36t4 cot2 u

,

where
(
1 + 8t6

)3 − 12t2
(
1 + 8t6

)3/2
cosu+ 36t4 cosu2 6= 0 and(

1 + 8t6
)3/2 − 6t2 cosu 6= 0.

The necessary and sufficient condition for this sweeping surface to be a
developable surface is cosu = 0, i.e., u = ∓π2 . However, in that case the
profile curve degenerates to (0, 0,∓1), and then Ψ (t, u) degenerates to the

curve
{
t+ 1√

2
, t− 1√

2
, t4
}

.

Secondly, the necessary and sufficient condition for this sweeping surface

Ψ (t, u) to be a minimal surface is
(
1 + 8t6

)3/2
= 12t2 cosu. In other words,

the condition to be minimal is

u = ∓ arccos(

√
1 + 8t6 + 8t6

√
1 + 8t6

12t2
) and t 6= 0.
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The partial derivatives of the Gaussian and mean curvatures of this surface
in terms of t and u are

Kt =
12t
√

1 + 8t6
(
−1 + 28t6

)
cosu(

(1 + 8t6)
3/2 − 6t2 cosu

)2 ,

Ku =
6t2
(
1 + 8t6

)3/2
sinu(

(1 + 8t6)
3/2 − 6t2 cosu

)2

and 

Ht =
6t
(
−1 + 28t6

)
cosu

((
1 + 8t6

)2 − 6t2
√

1 + 8t6 cosu
)

(
(1 + 8t6)

3 − 12t2(1 + 8t6)
3/2

cosu+ 36t4 cot2 u
)3/2

,

Hu =
3t2
(
1 + 8t6

) ((
1 + 8t6

)2 − 6t2
√

1 + 8t6 cosu
)

sinu(
(1 + 8t6)

3 − 12t2(1 + 8t6)
3/2

cosu+ 36t4 cot2 u
)3/2

.

Thus, we get KtHu −KuHt = 0. So, we can say that Ψ (t, u) is a Wein-
garten surface.

Figure 2: The sweeping surface Ψ (t, u) with polynomial spine curve (black),
and the planar profile curve (gray) for t ∈ (−1, 1) and u ∈ (−π,−π) .
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Example 4.2. Let us consider a 3rd degree polynomial curve σ (t) represented
by

σ (t) =

(
t,
t2

2
,
t3

6

)
,

see Figure 3 and the Frenet-like curve apparatus {T,D2, D1, d1, d2, d3} of this
polynomial curve is found as follows:

T =

(
2

2 + t2
,

2t

2 + t2
,

t2

2 + t2

)
,

D2 =

(
− t2√

1 + t2 (2 + t2)
,− t3√

1 + t2 (2 + t2)
,

2
√

1 + t2

2 + t2

)
,

D1 =

(
s√

1 + t2
,− 1√

1 + t2
, 0

)
and

d1 =
4s

√
1 + t2(2 + t2)

2 , d2 = − 4
√

1 + t2(2 + t2)
2 , d3 =

2t2

(1 + t2) (2 + t2)
2 .

Figure 3: The polynomial spine curve σ (t), and its tangent vectors T (green),
normal-like vectors D2 (red), and binormal-like vectors D1 (blue) for t ∈
(−2, 2) .
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For the planar profile (cross-section) curve r (u) = (0, cosu, sinu), the
equation of the sweeping surface defined by Eq. (3.4) based on the Flc frame,
takes the following form:

Ψ (t, u) =


t

(
1 +
−t cosu+

(
2 + t2

)
sinu

√
1 + t2 (2 + t2)

)
,
t2

2
−
t3 cosu+

(
2 + t2

)
sinu

√
1 + t2 (2 + t2)

,

t3

6
+

2
√

1 + t2 cosu

2 + t2

 ,

see Figure 4.
By straightforward computations, the normal vector field of the sweeping sur-
face is obtained as follows:

U (t, u) =

(
− t

2 cosu+ t sinu√
1 + t2 (2 + t2)

,− t3 cosu− sinu√
1 + t2 (2 + t2)

,
2
√

1 + t2 cosu

2 + t2

)
.

The Gaussian and mean curvatures of the sweeping surfaces given by Eq. (3.4)
are obtained as

K (t, u) =
4 (t cosu− sinu)

4t cosu− 4 sinu−
√

1 + t2(2 + t2)
2

and

H (t, u) =
8t cosu− 8 sinu−

√
1 + t2

(
2 + t2

)2
2
(

4 sinu− 4t cosu+
√

1 + t2(2 + t2)
2
) ,

where 4 sinu− 4t cosu+
√

1 + t2
(
2 + t2

)2 6= 0.
So, the Ψ (t, u) is

i. a developable surface if and only if u = arctan t,

ii. a minimal surface if and only if 8t cosu− 8 sinu =
√

1 + t2
(
2 + t2

)2
.

On the other hand, the partial differentiation of the equations of the Gaus-
sian and mean curvatures of this sweeping surface in terms of t and u are
found 

Kt =

(
2 + t2

) (
4
(
−2 + 3t2 + 4t4

)
cosu− 4t

(
6 + 5t2

)
sinu

)
√

1 + t2
(

4t cosu− 4 sinu−
√

1 + t2(2 + t2)
2
)2 ,

Ku =

√
1 + t2

(
2 + t2

)2
cscu (4s+ 4 cotu)(

4t cotu−
√

1 + t2(2 + t2)
2

cscu− 4
)2
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and 

Ht =

(
2 + t2

) (
−4
(
−2 + 3t2 + 4t4

)
cosu+ 4t

(
6 + 5t2

)
sinu

)
2
√

1 + t2
(

4t cosu− 4 sinu−
√

1 + t2(2 + t2)
2
)2 ,

Hu =
−
√

1 + t2
(
2 + t2

)2
(4t sinu+ 4 cosu)

2
(

4t cosu− 4 sinu−
√

1 + t2(2 + t2)
2
)2 .

Thus, we get KtHu −KuHt = 0. So, it is seen that this sweeping surface is a
Weingarten surface.

Figure 4: The sweeping surface Ψ (t, u) with polynomial spine curve (black),
and the planar profile curve (gray) for t ∈ (−2, 2) and u ∈ (−π/2,−π/2) .

5 Conclusion

This paper investigates sweeping surfaces in Euclidean 3-space with polyno-
mial spine curves. The novelty is using the Frenet-like curve frame instead
of the Frenet frame of the polynomial spine curves. The research includes
deriving conditions for sweeping surfaces to be minimal, developable, and
Weingarten surface. A comprehensive analysis of the parameter curves of
the sweeping surface is conducted to determine conditions for them to be
geodesics, asymptotics, and principal curvature lines. Furthermore, the re-
search provides some examples of sweeping surfaces along with illustrated
graphics. The study contributes novel insights, as sweeping surfaces have not
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been previously examined in the context of the Flc Frame elements that make
an original contribution to the field. This study stands as a valuable founda-
tion for future research in the intersection of sweeping surfaces and polynomial
curves.
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