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Weak convergence theorems for inertial
Krasnoselskii-Mann iterations in the class of
enriched nonexpansive operators in Hilbert

spaces

Liviu-Ignat Socaciu

Abstract

In this paper, we present some results about the aproximation of
fixed points of nonexpansive and enriched nonexpansive operators. In
order to approximate the fixed points of enriched nonexpansive map-
pings, we use the Krasnoselskii-Mann iteration for which we prove weak
convergence theorem and the theorem which offers the convergence rate
analysis.

Our results in this paper extend some classical convergence theorems
from the literature from the case of nonexpansive mappings to that of
enriched nonexpansive mappings. One of our contributions is that the
convergence analysis and rate of convergence results are obtained using
conditions which appear not complicated and restrictive as assumed in
other previous related results in the literature.

1 Introduction and Preliminaries

Our study is based on some results about the aproximation of fixed points
of nonexpansive and enriched nonexpansive operators. There are numerous
works in this regard (for example [6], [7], [9], [10], [14], [16], [35] and references
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to them). Of course, the bibliografical references are extensive and they are
mentioned at the end of this paper. At the beginning of this research, we
remind some basical notions which will be used in our study.

Definition 1.1. Let K be a nonempty subset of a real normed linear space
X. A mapping T : K → K is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ K. (1)

An element x ∈ K is said to be a fixed point of T is Tx = x and the set of
fixed points of T is denoted by F (T ).

Definition 1.2. [9] Let (X, ‖ · ‖) be a linear normed space. A mapping
T : X → X is said to be an enriched nonexpansive mapping if there exists
b ∈ [0,∞) such that

‖b(x− y) + Tx− Ty‖ ≤ (b+ 1)‖x− y‖,∀x, y ∈ X. (2)

To indicate the constant involved in (2) we shall also call T as a b-enriched
nonexpansive mapping.

Remark 1.3. 1) It is easy to see that any nonexpansive mapping T is a 0-
enriched mapping, i.e., it satisfies (2) with b = 0.

2) We note that, according to Theorem 12.1 in [25], in a Hilbert space any
enriched nonexpansive mapping which is also firmly nonexpansive is non-
expansive. T is said to be firmly nonexpansive if

‖T (x)− T (y)‖2 + ‖(Id− T )(x)− (Id− T )(y)‖2 ≤ ‖x− y‖2

(x, y ∈ X).

3) It is very important to note that, similar to the case of nonexpansive map-
pings, any enriched nonexpansive mapping is continuous.

Example 1.4. 1) T : [0, 4] → [0, 4], Tx = 4 − x, for all x ∈ [0, 4] is nonex-
pansive and T has a unique fixed point, F (T ) = {2}.

2) If T : [0, 10]→ [0, 10], Tx = 2x− 10, then T is not nonexpansive, because,
for x = 5 and y = 4, then ‖Tx− Ty‖ ≤ ‖x− y‖ ⇔ 2 ≤ 1, which is false.

3) [9] Let X =

[
1

2
, 2

]
be endowed with usual norm and T : X → X be defined

by Tx =
1

x
, for all x ∈

[
1

2
, 2

]
. Then T is a

3

2
- enriched nonexpansive

mapping and F (T ) = {1}.
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Throughout this paper, we take H as a real Hilbert space with scalar
product 〈·, ·〉 and induced norm ‖ · ‖.

To approximate fixed point of a nonexpansive mapping T , Krasnoselski-
iMann iteration [27], [33], [38] is often used: x1 ∈ H

xn+1 = (1− αn)xn + αnTxn ∀n = 1, 2, ... (3)

where αn ∈ (0, 1).
Cominetti et al. [20] showed that the fixed point residual

‖xn − Txn‖ = O

(
1
√
σn

)
in (3), where

σn :=

n∑
k=1

αk(1− αk), n ∈ N.

In [11], Bot et al. studied the inertial KrasnoselskiiMann algorithm of the
form: x0, x1 ∈ H, {

yn = xn + θn(xn − xn−1)

xn+1 = yn + αn(Tyn − yn).
(4)

Weak convergence results are obtained in real Hilbert spaces for the class
of nonexpansive operators under the conditions that {θn} is a non-decreasing
sequence with 0 ≤ θn ≤ θ < 1, ∀n ≥ 1 and θ, σ, δ > 0 such that

(a) δ >
θ2(1 + θ) + θσ

1− θ2
; and

(b) 0 < α ≤ αn ≤ µ :=
δ − θ[θ(1 + θ) + θδ + σ]

δ[1 + θ(1 + θ) + θδ + σ]
.

Inspired by the works of Bot et al. [11] and Liang et al. [28], in this paper,
we first give weak convergence analysis and the nonasymptotic O(1/n) conver-
gence rate result in terms of fixed point residual of inertial KrasnoselskiiMann
iteration (1.2) under different conditions assumed by Bot et al. [11].
The following tools will be needed in proving our convergence result.

Lemma 1.5. [35] Let X be a real inner product space. Then

‖tx+ sy‖2 = t(t+ s)‖x‖2 + s(t+ s)‖y‖2 − st‖x− y‖2,

∀x, y ∈ X, ∀s, t ∈ R.

Lemma 1.6. [32] Assume ϕn ∈ [0,∞) and δn ∈ [0,∞) satisfy:
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(1). ϕn+1 − ϕn ≤ θn(ϕn − ϕn−1) + δn,

(2).
∑∞
n=1 δn <∞,

(3). {θn} ⊂ [0, θ], where θ ∈ (0, 1).

Then the sequence {ϕn} is convergent with

∞∑
n=1

[ϕn+1 − ϕn]+ <∞,

where [t]+ := max{t, 0}, for any t ∈ R.

2 Convergence Analysis

In this section, we consider the convergence analysis of (4) for the class of
enriched nonexpansive operators and under a seemingly weaker condition, dif-
ferent from the conditions imposed in [11].

Theorem 2.1. Let C be a bounded closed convex subset of a Hilbert space H
and T : C → C be an enriched nonexpansive operator and F (T ) 6= ∅. Let the
sequence {xn} in C be generated by: x0 = x1 ∈ C,{

yn = xn + θn(xn − xn−1)

xn+1 = yn + αn(Tyn − yn),
(5)

where we assume that {αn} ⊂ (0, 1) and {θn} ⊂ [0, 1) such that the following
conditions hold:

(a) 0 ≤ θn ≤ θn+1 < θ, where θ <

√
1 + 8ε− 1− 2ε

2(1− ε)
, for some ε ∈ (0, 1),

and

(b) 0 < α ≤ αn ≤
1

1 + ε
.

Then {xn} converges weakly to a fixed point of T .

Proof. Step 1: We first prove that limn→∞‖xn+1 − xn‖ = 0. Let x∗ ∈ F (T ).
From (5), we get

‖xn+1 − x∗‖2 = (1− αn)‖yn − x∗‖2 + αn‖Tyn − x∗‖2 (6)

−αn(1− αn)‖yn − Tyn‖2

≤ ‖yn − x∗‖2 − αn(1− αn)‖yn − Tyn‖2.



WEAK CONVERGENCE THEOREMS FOR INERTIAL KRASNOSELSKII-MANN
ITERATIONS IN THE CLASS OF ENRICHED NONEXPANSIVE OPERATORS IN
HILBERT SPACES 265

Now,

‖yn − x∗‖2 = ‖xn + θn(xn − xn−1)− x∗‖2

= ‖(1 + θn)(xn − x∗)− θn(xn−1 − x∗)‖2 (7)

= (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x∗‖2 + θn(1 + θn)‖xn − xn−1‖2.

Observe that
‖xn+1 − yn‖2 = α2

n‖yn − Tyn‖2

and so

‖yn − Tyn‖2 =
1

α2
n

‖xn+1 − yn‖2. (8)

Putting (8) into (6), we get

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 − αn(1− αn)‖yn − Tyn‖2

= ‖yn − x∗‖2 −
(1− αn)

αn
‖xn+1 − yn‖2. (9)

Now,
‖xn+1 − yn‖2 = ‖xn+1 − xn − θn(xn − xn−1)‖2

= ‖xn+1 − xn‖2 + θ2n‖xn − xn−1‖2 − 2θn〈xn+1 − xn, xn − xn−1〉

≥ ‖xn+1 − xn‖2 + θ2n‖xn − xn−1‖2 − 2θn‖xn+1 − xn‖‖xn − xn−1‖

≥ (1− θn)‖xn+1 − xn‖2 + (θ2n − θn)‖xn − xn−1‖2. (10)

Putting (7) and (10) into (9), we get

‖xn+1 − x∗‖2 ≤ (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x∗‖2+

θn(1 + θn)‖xn − xn−1‖2 −
(1− αn)

αn
[(1− θn)‖xn+1 − xn‖2

+(θ2n − θn)‖xn − xn−1‖2] = (1 + θn)‖xn − x∗‖2

−θn‖xn−1 − x∗‖2 −
(1− αn)

αn
(1− θn)‖xn+1 − xn‖2

+[θn(1 + θn)− (1− αn)

αn
(θ2n − θn)]‖xn − xn−1‖2

= (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x∗‖2 − ρn‖xn+1 − xn‖2 (11)

+σn‖xn − xn−1‖2, where ρn :=
(1− αn)

αn
(1 − θn) and σn := θn(1 + θn) −

(1− αn)

αn
(θ2n − θn).
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Let Γn := ‖xn − x∗‖2 − θn‖xn−1 − x∗‖2 + σn‖xn − xn−1‖2. Then we obtain
from (11) that

Γn+1 − Γn = ‖xn+1 − x∗‖2 − (1 + θn+1)‖xn − x∗‖2

+θn‖xn−1 − x∗‖2 + σn+1‖xn+1 − xn‖2 − σn‖xn − xn−1‖2

≤ ‖xn+1 − x∗‖2 − (1 + θn)‖xn − x∗‖2

+θn‖xn−1 − x∗‖2 + σn+1‖xn+1 − xn‖2 − σn‖xn − xn−1‖2

≤ −(ρn − σn+1)‖xn+1 − xn‖2. (12)

Since 0 ≤ θn ≤ θn+1 < θ, we have

ρn − σn+1 =
(1− αn)

αn
(1− θn)− θn+1(1 + θn+1)

+
(1− αn+1)

αn+1
(θ2n+1 − θn+1) ≥ (1− αn)

αn
(1− θn+1)

−θn+1(1 + θn+1) +
(1− αn+1)

αn+1
(θ2n+1 − θn+1)

≥ e(1− θ)− θ(1 + θ) + e(θ2 − θ) = e− 2eθ − θ − θ2 + eθ2 = (13)

−(1− e)θ2 − (1 + 2e)θ + e. Combining (12) and (13), we get

Γn+1 − Γn ≤ −δ‖xn+1 − xn‖2, (14)

where δ := −(1− e)θ2 − (1 + 2e)θ + e. Therefore, Γn+1 ≤ Γn. Hence {Γn} is
nonincreasing. Furthermore,

Γn = ‖xn − x∗‖2 − θn‖xn−1 − x∗‖2 + σn‖xn − xn−1‖2

‖xn − x∗‖2 − θn‖xn−1 − x∗‖2.

Therefore,
‖xn − x∗‖2 ≤ θn‖xn−1 − x∗‖2 + Γn

≤ θ‖xn−1 − x∗‖2 + Γ1

...

≤ θn‖x0 − x∗‖2 + Γ1(θn−1 + θn−2 + ...+ 1)

≤ θn‖x0 − x∗‖2 +
Γ1

1− θ
(15)
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and it can also be seen that

−θ‖xn−1 − x∗‖2 ≤ ‖xn − x∗‖2 − θ‖xn−1 − x∗‖2 ≤ Γn ≤ Γ1. (16)

Note that

Γn+1 = ‖xn+1 − x∗‖2 − θn+1‖xn − x∗‖2 + σn+1‖xn+1 − xn‖2

≥ −θn+1‖xn − x∗‖2. (17)

Using (15) and (17), we get

−Γn+1 ≤ θn+1‖xn − x∗‖2 ≤ θ‖xn − x∗‖2

≤ θn+1‖x0 − x∗‖2 +
θΓ1

1− θ
.

By (14), we have
δ‖xn+1 − xn‖2 ≤ Γn − Γn+1,

and so by (15) and (16), we get

δ

n∑
j=1

‖xj+1 − xj‖2 ≤ Γ1 − Γn+1 ≤ Γ1 + θ‖xn − x∗‖2

≤ Γ1 + θn+1‖x0 − x∗‖2 +
θΓ1

1− θ
= θn+1‖x0 − x∗‖2 +

Γ1

1− θ
. (18)

This shows that
∞∑
n=1

‖xn+1 − xn‖2 ≤
Γ1

δ(1− θ)
<∞. (19)

Therefore,
∞∑
n=1

θn‖xn+1 − xn‖2 <∞.

From above, we deduce that limn→∞‖xn+1 − xn‖ = 0.
Step 2: We show that limn→∞‖xn − x∗‖ exists and limn→∞‖yn − Tyn‖ = 0.
Using (7) in (6), we have

‖xn+1 − x∗‖2 ≤ (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x∗‖2

+θn(1 + θn)‖xn − xn−1‖2 − αn(1− αn)‖yn − Tyn‖2

≤ ‖xn − x∗‖2 − θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2)

+2‖xn − xn−1‖2 − αn(1− αn)‖yn − Tyn‖2.
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Therefore,

αn(1− αn)‖yn − Tyn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

−θ(‖xn−1 − x∗‖2 − ‖xn − x∗‖2) + 2‖xn − xn−1‖2 (20)

From (11), we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + θn(‖xn − x∗‖2

−‖xn−1 − x∗‖2) + θn(1 + θn)‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2) + 2‖xn − xn−1‖2 (21)

Using Lemma 1.6, we see that limn→∞‖xn−x∗‖ exists. Since limn→∞‖xn+1−
xn‖ = 0, we have from (20) that

limn→∞αn(1− αn)‖yn − Tyn‖ = 0. (22)

In view of condition (b) in (22), this yields

limn→∞‖yn − Tyn‖ = 0.

Step 3: Finally, we show that {xn} converges weakly to a fixed point of T .
From (5), we have that

limn→∞‖yn − xn‖ = limn→∞θn‖xn − xn−1‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} that converges

weakly to some element p ∈ H. Also, limn→∞‖yn−xn‖ = 0 implies that there
exists a subsequence {ynk

} of {yn} that converges weakly to p ∈ H. Following
the same method of proof given in [6, Teorema 5.14 (iii)] and [11, Teorema
5] we can show that the entire sequence {xn} converges weakly to p ∈ F (T ).
This completes the proof.

Remark 2.2. We can see from the conditions (a) and (b) placed on the
inertial factor θn and parameter αn that

lim
ε→0

√
1 + 8ε− 1− 2ε

2(1− ε)
= 0 and lim

ε→1

√
1 + 8ε− 1− 2ε

2(1− ε)
=

1

3
;

and

lim
ε→0

1

1 + ε
= 1 and lim

ε→1

1

1 + ε
=

1

2
.

This implies that (5) is reduced to the KrasnoselskiiMann iteration (3) when
ε is chosen very close to zero and in this case, there is no much advantage of
(5) over (3). On the other hand, there is significant advantage of (5) over (3)
when ε is chosen close to 1.
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3 Rate of Convergence

In this section, we investigate the convergence rate analysis of inertial Krasnoselskii-
Mann algorithm proposed in (5) under the conditions (a) and (b) of Theorem
2.1. The arguments of proof of the result in this section are similar to the ones
used in [39].

Theorem 3.1. Let C be a bounded closed convex subset of a Hilbert space H
and T : C → C be an enriched nonexpansive operator and F (T ) 6= ∅. Suppose
{xn} is generated by (5), with {αn} and {θn} in [0, 1] satisfying conditions (a)
and (b) in Theorem 2.1 above. Then, for any x∗ ∈ F (T ) and n > 0, it holds
that

min
1≤i≤n

‖xi − Txi‖ = O(
1√
n

).

Proof. Let x∗ ∈ F (T ). By Lemma 1.5, we get

‖xn+1 − x∗‖2 = (1− αn)‖yn − x∗‖2 + αn‖Tyn − x∗‖2

−αn(1− αn)‖Tyn − yn‖2

≤ ‖yn − x∗‖2 − αn(1− αn)‖Tyn − yn‖2. (23)

Using Lemma 1.5 in (5), we obtain

‖yn − x∗‖2 = ‖(1 + θn)(xn − x∗)− θn(xn−1 − x∗)‖2

= (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x∗‖2 + θn(1 + θn)‖xn − xn−1‖2.

Using the last equality in (23) and (5), we obtain

‖xn+1 − x∗‖2 − (1 + θn)‖xn − x∗‖2 + θn‖xn−1 − x∗‖2

≤ −αn(1− αn)‖Tyn − yn‖2 + θn(1− θn)‖xn − xn−1‖2

=
−αn(1− αn)

α2
n

‖xn+1 − yn‖2 + θn(1− θn)‖xn − xn−1‖2

=
−(1− αn)

αn
‖xn+1 − yn‖2 + θn(1− θn)‖xn − xn−1‖2

≤ − e

α(1 + e)
‖xn+1 − yn‖2 + θn(1− θn)‖xn − xn−1‖2. (24)

This implies from (24) that

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 − θn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2)
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≤ − e

α(1 + e)
‖xn+1 − yn‖2 + θn(1− θn)‖xn − xn−1‖2. (25)

Let
δn := θn(1 + θn)‖xn − xn−1‖2;

ϕn := ‖xn − x∗‖2;

Vn := ϕn − ϕn−1.

and
[Vn]+ := max{Vn, 0}, ∀n ≥ 1.

Then, we obtain from (25) that

e

α(1 + e)
‖xn+1 − yn‖2 ≤ ϕn − ϕn+1 + θn(ϕn − ϕn−1) + δn

ϕn − ϕn+1 + θ[Vn]+ + δn. (26)

From (19), we have

∞∑
n=1

‖xn+1 − xn‖2 ≤
Γ1

1− θ
≤ ‖x0 − x

∗‖2

1− θ
.

Furthermore, we get

∞∑
n=1

θn(1 + θn)‖xn − xn−1‖2

≤
∞∑
n=1

θ(1 + θ)‖xn − xn−1‖2

= θ(1 + θ)

∞∑
n=1

‖xn − xn−1‖2

≤ θ(1 + θ)‖x0 − x∗‖2

1− θ
:= C1.

From (25,) we obtain

Vn+1 ≤ θnVn + δn ≤ θ[Vn]+ + δn.

Therefore,
[Vn+1]+ ≤ θ[Vn]+ + δn

≤ θn[V1]+ +

n∑
j=1

θj−1δn+1−j . (27)
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Since x0 = x1, we get
V1 = [V1]+ = 0, δ1 = 0.

From (27), we get
∞∑
n=2

[Vn]+ ≤
1

1− θ

∞∑
n=1

δn

=
1

1− θ

∞∑
n=2

δn. (28)

From (26), we get

e

α(1 + e)

n∑
i=1

‖xi+1 − yi‖2 ≤ ϕ1 − ϕn + θ

n∑
i=1

[Vi]+ (29)

+

n∑
i=2

δi ≤ ϕ1 + θC2 + C1, (30)

where

C2 :=
C1

1− θ
≥ 1

1− θ

∞∑
i=2

δi

≥
∞∑
i=1

[Vi]+

by (28). Now, since ϕ1 = ϕ0, we get

ϕ1 + θC2 + C1 = ϕ1 +
θC1

1− θ
+
θ(1 + θ)‖x0 − x∗‖2

1− θ

= ϕ1 +
θ

1− θ

[
θ(1 + θ)‖x0 − x∗‖2

1− θ

]
+
θ(1 + θ)‖x0 − x∗‖2

1− θ

=

[
1 +

θ2(1 + θ)

(1− θ)2
+
θ(1 + θ)

1− θ

]
‖x0 − x∗‖2. (31)

From (29) and (31), we obtain

n∑
i=1

‖xi+1 − yi‖2 ≤
α(1 + e)

e

[
1 +

θ2(1 + θ)

(1− θ)2
+
θ(1 + θ)

1− θ

]
‖x0 − x∗‖2.

Thus,

min
1≤i≤n

‖xi+1 − yi‖2 ≤
α

1− θ

[
1 +

θ2(1 + θ)

(1− θ)2
+
θ(1 + θ)

1− θ

]
‖x0 − x∗‖2

n
. (32)
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By (5), we obtain from (32) that

min
1≤i≤n

‖yi − Tyi‖2 ≤
α(1 + e)

α2e

[
1 +

θ2(1 + θ)

(1− θ)2
+
θ(1 + θ)

1− θ

]
‖x0 − x∗‖2

n
.

In other words,

min
1≤i≤n

‖yi − Tyi‖2 = O

(
1

n

)
. (33)

Consequently, from (18), one can show that

min
1≤i≤n

‖xi+1 − xi‖2 = O

(
1

n

)
.

By (5), we have, for all i = 1, 2, ..., n, that

‖yi − xi‖ = θi‖xi − xi−1‖ ≤ ‖xi − xi−1‖.

Also,
‖xi − Txi‖ ≤ ‖Tyi − xi‖+ ‖Txi − Tyi‖

≤ ‖yi − Tyi‖+ ‖yi − xi‖+ ‖xi − yi‖

= ‖yi − Tyi‖+ 2‖xi − yi‖.

Therefore,

min
1≤i≤n

‖xi − Txi‖ ≤ min
1≤i≤n

‖yi − Tyi‖+ 2 min
1≤i≤n

‖xi − yi‖.

This implies that

min
1≤i≤n

‖xi − Txi‖ = O

(
1√
n

)
.

4 Numerical experiments

In this section, we firstly present two examples refering to the analysis of the
convergence of the algorithm given by Theorem 2.1.

Example 4.1. We choose ε =
1

2
in algorithm (5). It means that θn <

√
5−2.

We choose θn =
1

5
, αn =

1

4
, ∀n, in algorithm (5) and x0 = x1 = 2. Let



WEAK CONVERGENCE THEOREMS FOR INERTIAL KRASNOSELSKII-MANN
ITERATIONS IN THE CLASS OF ENRICHED NONEXPANSIVE OPERATORS IN
HILBERT SPACES 273

Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
- enriched nonexpansive and F (T ) = {1}.

Thus, algorithm (5) reduces to
yn = xn +

1

5
(xn − xn−1)

xn+1 = yn +
1

4
(Tyn − yn)

⇔


yn =

6

5
xn −

1

5
xn−1

xn+1 = yn +
1

4

(
1

yn
− yn

)
.

In other words,

xn+1 =
9

10
xn −

3

20
xn−1 +

1
24

5
xn −

4

5
xn−1

, x0 = x1 = 2.

We see that

x2 = 1.6250 x9 = 1.0005

x3 = 1.3238 x10 = 1.0001

x4 = 1.1455 x11 = 1

x5 = 1.0576 x12 = 1

x6 = 1.0204 x13 = 1

x7 = 1.0065 x14 = 1

x8 = 1.0019
...

We can see that {xn} converge to 1.

We remark here that if the conditions imposed on sequences {αn} and
{θn} in Theorem 2.1 are not satisfied, there is no convergence of the sequence
{xn} generated by algorithm (5) to a fixed point of T as the following example
shows.



WEAK CONVERGENCE THEOREMS FOR INERTIAL KRASNOSELSKII-MANN
ITERATIONS IN THE CLASS OF ENRICHED NONEXPANSIVE OPERATORS IN
HILBERT SPACES 274

Example 4.2. Suppose that ε = 1, θn = 1, ∀n, αn :=
4

5
and x0 = x1 = 2 in

algorithm (5). Let Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
- enriched nonexpansive

and F (T ) = {1}. Moreover, algorithm (5) reduces toyn = 2xn − xn−1
xn+1 =

1

5
yn +

4

5yn
.

In other words, xn+1 =
2

5
xn −

1

5
xn−1 +

4

10xn − 5xn−1
,

x0 = x1 = 2.
We see that

x2 = 0.8000

x3 = −2.0800

x4 = −1.1533

x5 = −3.5761

...

x13 = −31.9831

x14 = −12.9693

...

x33 = −3.1732

...

We can see that {xn} does not converge to 1.

In both Example 4.1 and 4.2, the convergence results in [11] cannot be
applied here, mainly because T is enriched nonexpansive but not nonexpansive
and, secondary, because the assumptions on parameters in Theorem 2.1 are
weaker than the corresponding ones in [11].

Further, we present some numerical experiments intended to illustrate
the effectiveness of the Krasnoselskii-Mann iteration (3) and of the inertial
Krasnoselskii-Mann algorithm (4) in the class of enriched nonexpansive map-
pings. We remind that the Krasnoselskii-Mann iteration is obtained from the
inertial Krasnoselskii-Mann algorithm when θn = 0.

Let Tx =
1

x
, x ∈

[
1

2
, 2

]
. Then T is

3

2
- enriched nonexpansive mapping and
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F (T ) = {1}.
In the Table 1, it is easily seen that the Krasnoselskii-Mann iteration (3) con-
verges to x∗ = 1, for αn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The starting values are
x0 = x1 = 2. The numerical experiments illustrate the convergence of the
Krasnoselskii-Mann iteration. N denotes the number of iterations needed to
reach the exact solution with four exact digits. Note also the fact that, for
small values of αn, the Krasnoselskii-Mann iteration converges slowly, while
for high values of αn, it converges faster.

Table 1: Results of the numerical experiments of (3) for
αn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

αn 0.1 0.2 0.3 0.4 0.5
n

0 2 2 2 2 2

1 2 2 2 2 2

2 1.8500 1.7000 1.5500 1.4000 1.2500

3 1.7191 1.4776 1.2785 1.1257 1.0250

4 1.6012 1.3175 1.1296 1.0308 1.0003

5 1.5035 1.2058 1.0663 1.0065 1

6 1.4197 1.1305 1.0234 1.0013 1

7 1.3482 1.0813 1.0095 1.0003 1

8 1.2875 1.0500 1.0038 1.0001 1

9 1.2364 1.0305 1.0015 1 1

10 1.1937 1.0185 1.0006 1 1

11 1.1581 1.0111 1.0002 1 1

12 1.1286 1.0067 1.0001 1 1

13 1.1044 1.0040 1 1 1

N 47 21 12 8 4

In the Table 2, it is easily seen that the inertial Krasnoselskii-Mann algo-
rithm (4) converges to x∗ = 1, for (αn, θn) ∈ {(0.1, 0.1), (0.1, 0.5), (0.1, 0.8), (0.5, 0.1), (0.5, 0.5), (0.5, 0.8)}.
The starting values are x0 = x1 = 2. The numerical experiments illustrate the
convergence of the inertial Krasnoselskii-Mann algorithm. N denotes the num-
ber of iterations needed to reach the exact solution with four exact digits. Note
also the fact that, for small values of αn and θn, the inertial Krasnoselskii-
Mann algorithm converges slowly, while for high values of αn, it converges
faster, regardless of the values of θn.

Table 2: Results of the numerical experiments of (4) for
(αn, θn) ∈ {(0.1, 0.1), (0.1, 0.5), (0.1, 0.8), (0.5, 0.1), (0.5, 0.5), (0.5, 0.8)}
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αn 0.1 0.1 0.1 0.5 0.5 0.5
θn 0.1 0.5 0.8 0.1 0.5 0.8

n

0 2 2 2 2 2 2

1 2 2 2 2 2 2

2 1.8500 1.8500 1.8500 1.2500 1.2500 1.2500

3 1.7060 1.6538 1.6148 1.0130 1.0089 1.0942

4 1.5816 1.4645 1.3541 1.0001 1.0070 1.0005

5 1.4759 1.3058 1.1182 1 1 1.0030

6 1.3871 1.1854 0.9442 1 1 1

7 1.3129 1.1015 0.8487 1 1 1

8 1.2516 1.0480 0.8245 1 1 1

9 1.20124 1.0170 0.8489 1 1 1

10 1.1601 1.0012 0.8967 1 1 1

11 1.1269 0.9947 0.9484 1 1 1

12 1.1002 0.9931 0.9918 1 1 1

13 1.0789 0.9939 1.0213 1 1 1

N 42 23 44 4 4 5

From Tables 1 and 2, we see that, for small values of αn, the inertial
Krasnoselskii-Mann algorithm is more efficient than the Krasnoselskii-Mann
iteration, in terms of number of iterations, while for high values of αn, the two
algorithms converge almost as fast.

5 Final remarks

In this paper we studied the class of enriched nonexpansive mappings in
the setting of a Hilbert space H.

The focus of this paper is centered on weak convergence results (Theorem

2.1) and nonasymptotic O

(
1

n

)
convergence rate analysis (Theorem 3.1) of

inertial KrasnoselskiiMann iteration in real Hilbert spaces under seemly easy
to implement conditions on the iterative parameters.

Theorem 2.1 is an extension of Theorem 2.1 from [35], by considering
enriched nonexpansive mappings instead of nonexpansive mappings.
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