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Some aspects of statistical causality

Ljiljana Petrović

Abstract

Causal thinking is deeply embedded in scientific understanding of
the problems of applied statistics. This can not always be done by
experiments and the researcher is restricted to observing the system
he wants to describe. This is the case in many fields, for example, in
economics, demography, neuroscience, et cetera.

In this paper we give different concepts of causality between σ-
algebas and between Hilbert spaces, using conditional independence
and conditional orthogonality, respectively, that can be applied on both
stochastic processes and events. These definitions are based on Granger’s
definition of causality which has great applications in economics (see
Florens, Mouchart, 1982; Florens, Fougère, 1996; McCrorie, Chambers,
2006) and also in some other disciplines; for example, see a recent appli-
cation in neuroscience (see Valdes-Sosa, Roebroeck, Daunizeau, Friston,
2011). The study of Granger’s causality has been mainly preoccupied
with discrete time processes (i.e. time series). We shall instead con-
centrate on continuous-time processes. Many of systems to which it is
natural to apply tests of causality, take place in continuous time. For
example, this is generally the case within economy, demography, finance.
The given definitions of causality extend the ones already given in the
case of discrete-time processes.

This paper represents a comprehensive survey of causality concepts
between flows of information represented by filtrations and by Hilbert
spaces. Also, there are given some new results in Section 4 and Section
5.
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1 Introduction

One of the exciting new developments in the field of probability and statistics
is a renewal of interest in the causality concept. This has led to several new
approaches to defining and studying causality in stochastics and statistical
terms. Causality is based on a notion of the past influencing the present and
the future. This has very natural links to the type of stochastic processes.

Many scientific studies focus on finding causal relationships between ob-
served processes. From observations it is possible to infer statistical relations,
but these cannot automatically be considered as causal. A criterion of causal
dependence remains to be found. A good entry point to the statistical liter-
ature on how to detect and measure causal effects could be found in Holland
(1986). One solution is to equate it to stochastic dependence, see Suppes
(1970) and Good (1961/62). A more sophisticated approach is adapted by
Granger (1969) where causality is studied in framework of time series. Pursu-
ing the idea, we shall see that conditional independence can serve as a basis for
a general probabilistic theory of causality for both processes and single events
as it is shown in Florens, Fourege (1996), Florens, Mouchart, Rolin (1990),
Gill, Petrović (1987), Granger (1969), Mykland (1986), Petrović (1989, 1996),
Petrović, Dimitrijević (2011), Petrović, Dimitrijević, Valjarević (2016), Va-
ljarević, Dimitrijević, Petrović (2023).

Attempts at incorporating time when discovering causal effects are further
found in the theories of predictive causality. This is related to probabilistic
causality as defined by Suppes (1970). A development can be collected un-
der the heading predictive causality. One direction is the concept of Granger
causality (Granger, 1969), which is well known in economics, and the closely
related idea of local dependence (Schweder, 1970). The predictive causal ideas
are based on stochastic processes. Granger causality is focused on measure-
ments taken over time and how they may influence one another. The idea is
that causality is about the present and past influencing future occurrences.
The idea behind Granger causality was also formulated by Schweder (1970)
in a Markov chain setting, using the name local dependence, and this concept
was later extended to more general stochastic processes by Mykland (1986).

The object of this paper is to consider the models of causality which are
based on Granger’s model of causality. Granger’s causality relies on the con-
cept of optimal predictor and this is taken to mean optimal predictor in the
last square sense. Granger and Newbold (1972) considered criterion of op-
timality based on conditional independence. This definition is compared to
some concepts in Chamberlain (1982) and Florens and Mouchart (1982). In
this paper we show how conditional independence can serve as a basis for a
general probability theory of causality that can be applied on both processes
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and single events.
After the famous paper of Granger (1969) many authors considered dif-

ferent ways of defining causality. These results mainly belong to predicting
theory. Namely, the question of interest is: is it possible to reduce the available
information in order to predict a given stochastic process? Granger’s causality
is one of the most popular measure to reveal causality influence of time series,
widely applied in economics.

The Granger’s causality is focused on discrete time stochastic processes
(time series), but, many of systems to which it is natural to apply tests of
causality, take place in continuous time. For example, this is generally the
case within economy, demography, neurocsience. Modern finance theory uses
extensively diffusion processes. In this case, it may be difficult to use a discrete-
time model. Also, the observed ”causality” in a discrete-time model may
depend on the length of the interval between each of two successive samplings,
as in the case of Granger’s causality shown in McCrorie and Chambers (2006).

So, in this paper we consider the continuous time processes. We consider
the different causality concepts in continuous time models and analyze their
properties. The given definitions of causality extend the ones already given in
the case of discrete-time processes.

The paper is organized as follows. After Introduction, in Section 2 we,
first, consider concept of causality between events and between σ-algebras.
In Section 3 we develop concept of causality between flows of information
that are represented by filtrations, we work in σ-algebraic framework. Also,
in this section, we extend the given causality concept from fixed times to
stopping times. This concept of causality is shown to be closely related with
the notion of extremality of measures (Petrović and Valjarević (2018a)), stable
subspaces (Petrović and Valjarević (2013)), separable processes (Valjarević
and Petrović (2020)) and measurable separability of σ-algebras (Valjarević and
Merkle, 2021). In (Valjarević and Merkle, 2021) some results are applied on
Bayesian experiment. Also, weak solutions of stochastic differential equations,
as well as solutions of martingale problem can be expressed using the given
concept of causality (Petrović and Valjarević, 2015, 2018b).

In the Section 4 we present different concepts of causality between flows of
information that are represented by families of Hilbert spaces. In the Section 5
we consider a problem (that follows directly from realization problem): how to
find Markovian representations for a given family of Hilbert spaces (understood
as outputs of a stochastic dynamic system S1) provided it is in a certain
causality relationship with another family of Hilbert spaces (i. e. with some
information about states of a stochastic dynamic system S2).
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2 Causality between events and between σ-algebras

A probabilistic model for a time–dependent system is described by (Ω,A,Ft, P )
where (Ω,A, P ) is a probability space with filtration {Ft, t ∈ I} where Ft is a
set of all events in the model up to and including time t and Ft is a subset of
A. F∞ is the smallest σ−algebra containing all the Ft (even if sup I < +∞),
F∞ =

∨
t∈I Ft.

The definition of causality uses the conditional independence of σ-algebras.
Let us recall that two σ-algebras M1 and M2 are called independent if,

E[x1x2] = E[x1]E[x2],

where the random variable x1 : Ω → R+ is M1-measurable and x2 : Ω → R+

is M2-measurable.

Conditional independence is like independence but formulated in terms of
conditional expectations.

Definition 2.1. (compare with Rozanov, 1977 and Dellacherie and Me-
yer, 1980a)

Let(Ω,A, P ) be a probability space and M1, M2 and M arbitrary sub-σ-
algebras from A. It is said that M is splitting for M1 and M2 or that M1 and
M2 are conditionally independent given M (and written as M1 ⊥M2|M) if

E[x1x2|M] = E[x1|M]E[x2|M],

where x1, x2 denote positive random variables measurable with respect to the
corresponding σ-algebras M1 and M2, respectively. Also, the basic properties
are given in Florens at al. (1990).

Some equivalent conditions for conditional independence are presented be-
low.

Proposition 2.1. (compare with Florens, Mouchart, Rolin, 1990)
Let M1,M2 be σ-algebras from A. The following statements are equivalent:
a) M1 ⊥ M2|M;
b) M2 ⊥ M1|M;
c) E[x1|M2 ∨M] = E[x1|M] for all M1-measurable random variables x1.
d) E[x1|M2∨M] is M-measurable for all M2-measurable random variables

x1.

Now, we give a definition of causality using conditional indenpendence.

Definition 2.2. (see Mykland, 1986)
Let

M1 ⊂ F∞.
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be a σ-algebra. A σ-algebra M2 is a cause of M1 at time t (relative to
(Ω,A,Ft, P )) if and only if

M2 ⊂ Ft (1)

and
M1 ⊥ Ft|M2. (2)

This way we can describe the causes of single events (M1 = {∅,Ω, A,Ac})
and sets of events. Note that if

M1 ⊂ Ft,

then M1 is a cause of M1 at time t.

This model of causality is closely related to the Bayesian definition of suf-
ficiency. In Bayesian terminology, (1) and (2) would define M2 as a sufficient
σ-algebra if Ft and M1 had represented observations and parameters, respec-
tively. For more details see Florens, Mouchart (1979) and Mouchart, Rolin
(1979).

For a probability space (Ω,A, P ) define the set of all sub-σ-algebras,

F = {M ∈ A|M a σ-algebra containing all null sets of A}.

For a sub-σ-algebra M ∈ F define the set of all positive random variables
x : Ω→ R+ which are measurable with respect to M and denote it by

L+(Ω, R+,M) = L+(M) = {x : Ω→ R+| x is M−measurable}.

The motivation to introduce the projection of σ-algebras is to construct
the ”smallest” sub-σ-algebra of a σ-algebra M2 conditionally on which M2

becomes independent of another given σ-algebra M1.
The projection of a σ-algebra M1 on a σ-algebra M2 is the smallest sub-σ-

algebra of M2 with respect to which conditional expectations of M1-measurable
functions given M2 are measurable. More precisely, we have the following def-
inition.

Definition 2.3.
Let M1,M2 be σ-algebras from A. The projection of the σ-algebra M1 on

M2 is the σ-algebra

σ(M1|M2) = σ{E[x1|M2] : x1 ∈ L+(M1)}.
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In words, the projection is the smallest σ-algebra with respect to which
the indicated conditional expectation is measurable. Note that the projection
crucially depends on the probability measure.

Now, it is easy to prove the following result which gives an alternative way
of defining causality.

Proposition 2.2.
Let the probability system (Ω,A,Ft, P ) be given and let M1 be sub-σ-

algebra from F∞. M2 is a cause of M1 at time t if and only if

M2 ⊂ Ft

and
σ(M1|Ft) ⊂M2.

It follows directly from Florens, Mouchart (1982).

The Proposition 2.2, says that up-to null sets, M2 is cause at time t iff it
contains the cause at time t and has itself to be occured by t.

Proposition 2.2, also, implies invariance of causality under stochastic equiv-
alence (see Mykland 1986): If M2 is a cause of M1 at time t (relative to
(Ω,A,Ft, P )) and if

M1 = M′1, M2 = M′2, {Ft} = {F′t} (P − a.s.)

and
M′1 ⊂ F′∞, M′2 ⊂ F′t,

then M′2 is a cause of M′1 at time t relative to (relative to (Ω,A,F′t, P )).

3 Causality between filtrations

In this part we develop a concept of causality between flows of information
that are represented by filtrations, we work in σ-algebraic framework. The
benefit of this approach is to obtain a theory invariant not only to linear
transformation of the variables, but also to any change of coordinates and
theory which easily can deal with nonlinear transformations.

Let the system (Ω,A,Ft, P ) be given, where (Ω,A, P ) is a probability
space and {Ft, t ∈ I} is a filtration, Ft is a σ-algebra of all events in the
model up to and including time t and Ft is a subset of A. We suppose that
the filtration {Ft} satisfies the ”usual conditions”, which means that each Ft is
right continuous and complete. Analogous notation will be used for filtrations
E = {Et, t ∈ I} and G = {Gt, t ∈ I}.
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We now give a definition of causality formulated in terms of σ-algebras
(filtrations).

Definition 3.1. (compare with Gill, Petrović, 1987 and Valjarević, Petrović,
2020)

Let F = {Ft}, G = {Gt} and E = {Et, }, t ∈ I be filtrations on the same
probability space. It is said that G is a cause of E within F relative to P
(and written as E |< G; F;P) if E∞ ⊂ F∞, Gt ⊆ Ft and if E∞ is conditionally
independent of Ft given Gt for each t,

E∞ ⊥ Ft|Gt

i.e.
(∀t ∈ I)(∀A ∈ E∞) P (A|Ft) = P (A|Gt).

If there is no doubt about P , we omit ”relative to P”.

Intuitively, E |< G; F means that, for arbitrary t, information about E∞
provided by Ft is not ”bigger” than that provided by Gt.

A definition, similar to Definition 3.1 was first given in (Mykland, 1986):
”It is said that G is a cause of E within F relative to P (and written as
E |< G; F;P) if Et ⊆ Ft, Gt ⊆ Ft and if E∞ ⊥ Ft|Gt for each t”. However,
the definition from (Mykland, 1986) contains also the condition Et ⊆ Ft for
each t, (instead of E∞ ⊆ F∞ in Definition 3.1) which does not have intuitive
justification. Since Definition 3.1 is more general than the definition given in
(Mykland, 1986), all results related to causality in the sense of Definition 3.1
will be true and in the sense of the definition from (Mykland, 1986), when we
add the condition Et ⊆ Ft for each t to them.

If G and F are such that G |< G; F, we shall say that G is its own cause
within F or that G is self-caused within F (compare with Mykland, 1986).
It should be mentioned that the notion of subordination (as introduced by
Rozanov, 1977) is equivalent to the notion of being one’s own cause, as defined
here.

The following result shows that the relationship ”being one’s own cause”
for the σ-fields is the transitive relationship.

Proposition 3.1. (see Petrović, Valjarević, Dimitrijević, 2016)
Let E = {Et}, G = {Gt} and F = {Ft}, t ∈ I ⊂ R, be filtrations on

the same probability space (Ω,A, P ). Then from E |< E; G and G |< G; F it
follows that E |< E; F holds.

If G and F are such that G |< G; G
∨

F (where G
∨

F is a family de-
termined by (G

∨
F )t = Gt

∨
Ft), we shall say that F does not cause G. It
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is clear that the interpretation of Granger’s causality is now that F does not
cause G if G |< G; G

∨
F (see Mykland, 1986). Without difficulty, it can be

shown that this term and the term ”F does not anticipate G” (as introduced
by Rozanov, 1982) are identical.

It should be mentioned that the definition of causality in Mykland (1986)
is equivalent to the definition of strong global noncausality, given by Florens
and Fougères (1996). So, Definition 3.2 is a generalization of the notion of
strong global noncausality.

A family of σ-algebras induced by a stochastic process X = {Xt, t ∈ I} is
given by FX = {FX

t , t ∈ I}, where

FX
t = σ{Xu, u ∈ I, u ≤ t},

being the smallest σ-algebra with respect to which the random variables
Xu, u ≤ t are measurable.

The process {Xt} is (Ft)-adapted if FX
t ⊆ Ft for each t.

A family of σ-algebras may be induced by several processes, e.g. FX,Y =
{FX,Y

t , t ∈ I}, where

F
X,Y
t = FX

t

∨
FY
t , t ∈ I.

Definition 3.1 can be applied to stochastic processes. It will be said that
stochastic processes are in a certain relationship if and only if the corre-
sponding induced filtrations are in that relationship. Specially, (Ft)−adapted
stochastic process X = {Xt} is its own cause if FX = (FX

t ) is its own cause
within F = (Ft) if FX |< FX; F; P.

Now we give some properties of causality concept from Definition 3.1.

Lemma 3.1.
E |< G; F if and only if E∞ ⊂ F∞, Gt ⊆ Ft and σ(E∞|Ft) = σ(E∞|Gt).
It follows directly from Florens, Mouchart (1982).

The following result gives the invariance under convergence for causality
concept from Definition 3.1.

Proposition 3.2 (see Mykland, 1986 and Petrović, Dimitrijević, 2011)
Let E = {Et}, G = {Gt} and F = {Ft}, t ∈ I ⊂ R, be filtrations on the

same probability space (Ω,A, P ). If {Xn
t } is a sequence of stochstic processes

satisfying Xn
t converges to Xt in probability when n→∞, for each t ∈ I and

FXn |< G; F for each n, then for the process X = {Xt, t ∈ I} holds FX |< G; F.

Some of the properties of causality relationship from Definition 3.1 could
be find in Mykland (1986), Gill, Petrović (1987), Petrović, Dimitrijević, Va-
ljarević, (2016), Petrović, Valjarević, (2018), Valjarević,, Petrović (2020).
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Gégout-Petit and Commenges (2009) use conditional independence of fil-
trations to establish some causality relations, too. In their terminology causal-
ity relationship FX |< FX ; FX,Z would be interpreted as (FX

t ) is filtration-
based strong local independent of filtration (FZ

t ).

Remark.
The condition of Granger’s causality is actually a condition of transitivity

largely used in sequential analysis (in statistics), see (Bahadur, 1954) and
(Hall, Wijsman, Gosh, 1965).

We now extend Definition 3.1 from fixed times to stopping times, i.e. we
give characterization of causality using σ-field associated to stopping times.
This generalization involves stopping times – a class of random variables that
plays the essential role in the Theory of Martingales (for details see Elliot,
1982 and Cohen, Elliot, 2015).

Let us briefly recall some basics about stopping times and σ-algebras.
Suppose that (Ω,A, P ) is a probability space and F = {Ft, t ∈ I} is a

given filtration (Ft ⊆ A for each t ∈ I).

• A random variable T : Ω→ R ∪ {∞} is a stopping time with respect to
filtration F = {Ft}, provided that {ω | T (ω) ≤ t} ∈ Ft, for all t.

• FT = {A ∈ F | A ∩ {T ≤ t} ∈ Ft, for all t} is σ-field and intuitively FT

is the information available at time T .

• If S and T are stopping times with respect to the filtration F, then S∧T
is a stopping time with respect to the filtration F, too. Specially, if T is
a stopping time and t some real number, then t ∧ T defined by

t ∧ T (ω) = min(t, T (ω)) =

 T (ω), T (ω) < t

t, T (ω) ≥ t

is a stopping time.

• If S and T are stopping times such that S ≤ T then FS ⊆ FT , and as a
consequence we get that Fs∧T ⊆ Ft∧T for all s < t.

In many situations we observe some systems up to some random time, for
example till the time when something happens for the first time. For a process
X, we set XT (ω) = XT (ω)(ω), whenever T (ω) < +∞. We define the stopped
process XT = {Xt∧T , t ∈ I} with

XT
t (ω) = Xt∧T (ω)(ω) = Xt1{t<T} +XT 1{t≥T}.
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Now, we define a concept of causality for the stopped processes as a gener-
alization of the concept given by the Definition 3.1. More precisely, we define
the concept of causality for the stopped (progressively measurable) process XT

using the stopped filtration FT = {Ft∧T }, i.e. using the σ-algebras associated
to stopping times.

The following definition gives causality between filtrations F, G and E up
to stopping time T .

Definition 3.2. (see Petrović, Dimitrijević, Valjarević,, 2016)
Let F = {Ft}, G = {Gt}, E = {Et}, t ∈ I, be given filtrations on the

probability space (Ω,F, P ) and let T be a stopping time relative to filtration
E. It is said that filtration G is a cause of E within F relative to P up to
stopping time T or that filtration GT is a cause of ET within FT relative
to P (and written as ET |< GT ; FT ;P ) if ET ⊆ FT , GT ⊆ FT and if ET is
conditionally independent of Ft∧T given Gt∧T for each t, i.e.

ET ⊥ Ft∧T |Gt∧T ,

or, equivalently,

(∀t ∈ I)(∀A ∈ ET ) P (A|Ft∧T ) = P (A|Gt∧T ).

The causality between stopped processes and stopped filtrations are con-
sidered in papers Petrović, Dimitrijević, Valjarević, (2016) and Valjarević,
Petrović (2021).

The following results give some properties of the causality concept up to
some stopping time.

Theorem 3.1. (see Petrović, Dimitrijević, Valjarević, 2016)
On the probability space (Ω,F, P ), let the filtrations F = {Ft}, G =

{Gt}, H = {Ht} and J = {Jt} be given and let T be a stopping time relative
to J and H. Then the following statements are equivalent

(i) JT |< HT ; GT ;P and JT |< GT ; FT ;P ,

(ii) JT |< HT ; FT ;P and HT ⊆ GT ⊆ FT ;P .

From the following result it follows that the relationship ”being its own
cause” for filtrations associated to stopping times is transitive relationship.

Theorem 3.2. (see Petrović, Dimitrijević, Valjarević, 2016)
Let F = {Ft}, G = {Gt}, H = {Ht} be filtrations on the probability space

(Ω,F, P ). If T is a stopping time relative to H, then from

HT |< HT ; GT ;P and GT |< GT ; FT ;P,
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it follows that
HT |< HT ; FT ;P.

If relationship ”being one’s own cause” holds up to stopping time T and
if S is another stopping time such that S ≤ T , it is natural to expect that
the same relationship will hold up to stopping time S, as is shown in the next
theorem.

Theorem 3.3. (see Petrović, Dimitrijević, Valjarević, 2016)
Let F = {Ft} and G = {Gt} be filtrations on the probability space (Ω,F, P )

such that G ⊆ F and let T and S be a two stopping times relative to G, such
that S ≤ T . Then, from

GT |< GT ; FT ;P it follows GS |< GS ; FS ;P .

Now, we consider the connection between the preservation martingale prop-
erty and given causality concept. If filtration G is its own cause within fil-
tration F, then every G-martingale is F-martingale, too (see Bremaund, Yor,
1978 and Yor, 1979). Notice that there is a strong connectionn between the
preservation of the martingale property and the causality concept. It is well
known that the martingale property remains valid if the filtration decrease,
but if the filtration increases the preservation of martingale property is di-
rectly connected to the concept of self causality. Namely, in the theory of
martingales the concept of selfcausality is equivalent to the hypothesis (H): if
G ⊆ F, every G-martingale is a F-martingale, that is, G is immersed in F.

Now, we give the similar result for the concept of causality up to some
stopping time T and the stopped martingales.

Theorem 3.4. (see Petrović, Dimitrijević, Valjarević, 2016)
Let the process M be a uniformly integrable right continuous martingale

with respect to the filtration G = {Gt}, T is a (Gt)-stopping time and G ⊂ F.
Then the stopped process MT is martingale with respect to the filtration
FT = {Ft∧T } if and only if GT |< GT ; FT ;P .

4 Causality between families of Hilbert spaces

Causality concepts between families of Hilbert spaces were studied by Hosoya
(1977), Florens and Mouchart (1985). In the papers of Florens and Mouchart
(1982), Mykland (1986), Gill and Petrović (1987), Petrović (1989, 1996, 2013)
it is shown how conditional orthogonality can serve as a basis for a general
probabilistic theory of causality for both processes and single events.
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Let F be a Hilbert space whose inner product is defined by (·, ·). For
arbitrary subspaces F1 and F2 of F (all subspaces are taken to be closed) we
have that:

• F1 ⊥ F2 means that F1 and F2 are orthogonal,

• the orthogonal projection of x ∈ F1 onto F2 is denoted by P (x|F2),

• P (F1|F2) will denote the orthogonal projection of F1 onto F2,

• F1 	 F2 will denote a Hilbert space generated by all elements
x− P (x|F2), where x ∈ F1.

If F2 ⊆ F1, then F1 	 F2 coincides with F1 ∩ F⊥2 , where F⊥2 is the
orthogonal complement of F2 in F; i.e. F⊥2 = F 	 F2.

Definition 4.1. (see Gill, Petrović, 1987)
If F1 and F2 are arbitrary subspaces of Hilbert space F, then it is said that

X is splitting for F1 and F2 or that F1 and F2 are conditionally orthogonal
given X (and written as F1 ⊥ F2|X) if

(1) F1 	X ⊥ F2 	X,

or, equivalently,

(x1, x2) = (P (x1|X), P (x2|X)) for all x1 ∈ F1, x2 ∈ F2.

When X is trivial, i.e. X = {0}, this reduces to the usual orthogonality
F1 ⊥ F2.

The notion of splitting was first given by M. P. Kean 1963.

The following results gives an alternative way of defining splitting.

Lemma 4.1. (see Gill, Petrović, 1987 and Putten and Schuppen, 1979)
F1 ⊥ F2|X if and only if P (Fi|Fj ∨X) ⊆ X, for i, j = 1, 2, i 6= j.
Corollary 4.1.1.
F1 ⊥ F2|F if and only if F ′1 ⊥ F ′2|F for all F ′i ⊆ Fi

∨
F , i = 1, 2.

The following result will be needed later.

Lemma 4.2.
A minimal space F i ⊆ Fi such that F1 ⊥ F2|F i is defined by F i =

P (Fj |Fi), where i, j = 1, 2, i 6= j.
Proof.
From F1 	 F2 = F1 	 P (F1|F2) ⊥ F2 and P (F1|F2) ⊆ F2, it follows

that F1 	 P (F1|F2) ⊥ F2 	 P (F1|F2), i. e. F1 ⊥ F2|P (F1|F2). To prove the
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minimality of F 2 = P (F1|F2), let us suppose that F ⊆ F2 is such that F1 ⊥
F2|F . According to Lemma 4.1, F1 ⊥ F2|F is equivalent to P (F1|F2

∨
F ) ⊆

F . However, since F ⊆ F2, the last inclusion becomes F 2 ⊆ F , as we wanted
to prove.

Let F = (Ft), t ∈ R be a family of Hilbert spaces. We shall think about
Ft as an information available at time t, or as a current information. Total
information F∞ carried by F is defined by F∞ = ∨t∈RFt, while past and
future information of F at t is defined as F≤t = ∨s≤tFs and F≥t = ∨s≥tFs,
respectively.

Analogous notation will be used for families of Hilbert spaces G = (Gt)
and E = (Et).

We use the following intuitively plausible notion of causality between fam-
ilies of Hilbert spaces.

Definition 4.2. (Gill, Petrović, 1987; Petrović, 1996)
Let E, G and F be arbitrary families of Hilbert spaces. It is said that G

is a cause of E within F (and written as E |< G; F) if E∞ ⊆ F∞, G≤t ⊆ F≤t
and

E∞ ⊥ F≤t|G≤t (3)

for each t.

The essence of (3) is that all information about E∞ that gives F≤t comes
via G≤t for arbitrary t; equivalently, G≤t contains all the information from
the F≤t needed for predicting E∞.

Intuitively, E |< G; F means that, for arbitrary t, information about E∞
provided by F≤t is not ”bigger” than that provided by G≤t.

If G and F are such that G |< G; F, we shall say that G is its own cause
within F., or, equivalently, that G is self caused within F .

If G and F are such that G |< G; G
∨

F (where G
∨

F is a family deter-
mined by (G

∨
F )t = Gt

∨
Ft), we shall say that F does not cause G. It

is clear that the interpretation of Granger’s causality is now that F does not
cause G if G |< G; G

∨
F (see Mykland, 1986). Without difficulty, it can be

shown that this term and the term ”F does not anticipate G” (as introduced
by Rozanov, 1982) are identical.

The Definition 4.2 can be applied to stochastic processes.

Definition 4.3.
It will be said that second order stochastic processes are in a certain rela-

tionship if and only if the Hilbert spaces they generate are in that relationship.



SOME ASPECTS OF STATISTICAL CAUSALITY 252

So, from the Definition 4.3 it follows that:
stochastic process Y is a cause of a process X within process Z relative to P
(i.e. that FX |< FY; FZ holds) if FX

∞ ⊆ FZ
∞, FY

≤t ⊆ FZ
≤t and if FX

∞ and FZ
≤t

are conditionally orthogonal of given FY
≤t for each t, i.e.

FX
∞ ⊥ FZ

≤t|FY
≤t for each t.

Now we give one example to illustrate the notions from this part.

Example 4.1.

Let X(t) =
N∑

n=1

∫ t

−∞ gn(t, u) dZn(u), t ∈ [0, 1] be a proper canonical (or

Hida–Cramer) representation of the stochastic process X(t), t ∈ [0, 1]. Any
process Zn(t), n = 1, N , is its own cause within X(t), i. e. FZn |< FZn ; FX

holds for any n = 1, N . If we define the process Y (t) as a non–anticipative
transformation of Zn(t), i. e.

Y (t) =

∫ t

0

h(t, u)Zn(u) du , t ∈ [0, 1],

it is easy to see that Zn is a cause of Y within X, i. e. that FY |< FZn ; FX

holds.

Example 4.2.
Let Z(t), 0 ≤ t ≤ T be a (t, ω)–measurable signal process such that∫ T

0
E|Z(t)|2 dt <∞ and let

Y (t) =

∫ t

0

Z(s) ds+W (t) , 0 ≤ t ≤ T ,

be the observation process where W (t) is a Wiener process such that W (t)−
W (s) is orthogonal on FW

≤s
∨
FZ
≤s for 0 ≤ s ≤ t ≤ T . Then Z(t) does not

cause W (t), i. e. FW |< FW; FW∨Z holds.
If FW ⊆ FY, then FW |< FW; FY and FW |< FY; FW∨Z hold.

In the next section we give some applications. Especially, we consider a
problem (that follows directly from realization problem): how to find Marko-
vian representations (even minimal) for a given family of Hilbert spaces (un-
derstood as outputs of a stochastic dynamic system S1) provided it is in a
certain causality relationship with another family of Hilbert spaces (i. e. with
some informations about states of a stochastic dynamic system S2).
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5 Causality and Stochastic Dynamic Systems

We first give some definitions that we need later.

The notion of minimality and maximality of families of Hilbert spaces is
specified in the following definition.

Definition 5.1.
It will be said that F is a minimal family having a certain property if there

is no family F∗ having the same property which is submitted to F.
It will be said that F is a maximal family having a certain property if there

is no family F∗ having the same property such that family F is submitted to
F∗.

It should be understood that a minimal and maximal family having a
certain property are not necessarily unique.

In this paper the following definition of markovian property will be used.

Definition 5.2. (compare with Rozanov, 1977)
Family G = (Gt) will be called Markovian if P (G≥t|G≤t) = Gt for each t.

Now we give a definition of a stochastic dynamic system in terms of Hilbert
spaces. The characterizing property is the condition that past informations of
outputs and states and future informations of outputs and states are condi-
tionally orthogonal given the current state.

Definition 5.3 (compare with Putten and Schuppen, 1979)
A stochastic dynamic system (s.d.s.) is a set of two families: H (outputs)

and G (states), that satisfy the condition

H<t ∨G<t ⊥ H>t ∨G>t|Gt. (4)

For given family of outputs H, any family G satisfying (4) is called a realization
of a s.d.s. with those outputs.

It is clear that realization of a s.d.s. is Markovian.

Suppose that a stochastic dynamic system S1 causes, in a certain sense,
changes of another stochastic dynamic system S2. It is natural to assume that
outputs H of system S1 can be registered and that some information E about
the states (or perhaps states themselves) of system S2 is given. Results that we
shall prove will tell us under which conditions concerning the relationships be-
tween H and E it is possible to find states G (i.e. Markovian representations)
of system S1 having certain causality relationship in the sense of Definition
1.4 with H and E.
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More precisely, the following cases can be considered:
1◦ available information about s.d.s. S2 are a cause of states of a s.d.s. S1

within outputs of a s.d.s. S1, i.e. G |< E; H holds;
2◦ outputs of a s.d.s. S1 are cause of states of the same system within

available information about s.d.s. S2, i.e. G |< H; E holds;
3◦ states of a s.d.s. S1 are a cause of the available information about s.d.s.

S2 within outputs of a s.d.s. S1, i.e. E |< G; H holds
4◦ states of a s.d.s. S1 are a cause of outputs of the same system within

available information about s.d.s. S2, i.e. H |< G; E holds;
5◦ the available information about S2 is a cause of outputs of S1 within

states of S1, i.e. H |< E; G holds;
6◦ outputs of a s.d.s. S1 are cause of the available information about S2

within states of a s.d.s. S1, i.e. E |< H; G holds.

We consider different kinds of causality between families G, H and E,
while G and H are in the same relationship, that is, G is a realization of an
s.d.s. with outputs H in all cases.

In all cases 1◦ - 6◦ it is of interest to find minimal and maximal realiza-
tions that satisfy given conditions. We can see that, in some cases, family of
extremal realizations is trivial, so as that extremal realizations is unique.

This paper is continuation of the papers (Gill and Petrović 1987), (Petrović
1996 and 2013). In these papers cases 1◦, 2◦, 4◦, 5◦ and 6◦ are considered.
In the remaining part of this paper we consider case 3◦.

For the case 3◦, we define some minimal realizations G ( of a s.d.s. with
given outputs H) such that E |< G; H holds. It is easy to see that maximal
families G for which E |< G; H holds are all families such that G≤t = H≤t for
each t.

In case 3◦ we want to find Markovian family G which for arbitrary t con-
tains all the information from H≤t needed for predicting E∞. The next results
give conditions under which G is a minimal realization of s. d. s. with outputs
H such that E |< G; H holds.

Theorem 5.1.
Let E and H be such that E∞ ⊆ H∞, P (Ht|E∞) ⊆ H≤t and H<t ⊥

H>t|P (Ht|E∞) for each t. If H is Markovian, then the family G, defined by

Gt = P (Ht|E∞), t ∈ R , (5)

is a minimal realization (of a s. d. s. with outputs H) which is a cause of E
within H.

Proof.
FromG≤t = P (H≤t|E<∞) and Lemma 4.1 it follows that E<∞ ⊥ H≤t|G≤t.

Also, the definition of G and the assumption P (Ht|E<∞) ⊆ H≤t imply G≤t ⊆
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H≤t, which together with the previous conclusion means that E |< G; H. The
minimality of G follows from Lemma 4.2.

From E |< G; H and the obvious equality G<∞ = E<∞ it follows that
G |< G; H. From G≤t ⊆ H≤t, the fact that P (G≥t|G≤t) = P (H≥t|G≤t) and
the assumption that H is Markovian we obtain

P (G≥t|G≤t) = P (P (H≥t|H≤t)|G≤t) = P (Ht|G≤t) . (6)

However, G |< G; H means in particular that Ht ⊥ G<∞ 	 G≤t so that
(6) becomes

P (G≥t|G≤t) = P (Ht|G<∞) = P (Ht|E<∞) = Gt

which means that G is Markovian.
From G |< G; H, the fact that G is Markovian and Corollary 4.1.1 it follows

that, for any t, H<t ⊥ G≥t|Gt, which (together with H<t ⊥ H>t|Gt) gives
H<t ⊥ H>t

∨
G≥t|Gt. However, since G≤t ⊆ H≤t, the last relation implies

that G is a realization of a s. d. s. with outputs H. The proof is completed.

We obtain a simpler version of the Theorem 5.1 if E is its own cause within
H.

Corollary 5.1.1.
Let E be its own cause within H and H<t ⊥ H>t|P (Ht|E≤t) for each t. If

H is Markovian, then the family G, defined by

Gt = P (Ht|E≤t), t ∈ R,

is a minimal realization (of a s. d. s. with outputs H) which is a cause of E
within H.

The assumption in Theorem 5.1 that H itself is Markovian is rather strong,
simply because H represents outputs of a s. d. s., and thus the properties of
H could hardly be controlled. The following result does not require H to be
Markovian, but provides a realization whose information at time t is equal to
its total information accumulated ut to t.

Theorem 5.2. (see Petrović 1998)
Let E and H be such that E<∞ ⊆ H<∞, P (Ht|E<∞) ⊆ H≤t and H<t ⊥

H>t|P (H≤t|E<∞) for each t. The family G, defined by

Gt = P (H≤t|E<∞), t ∈ R , (7)

is a minimal realization (of a s. d. s. with outputs H) which is a cause of E
within H.
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Proof.
Since Gt = G≤t for all t, it is immediately clear that G is Markovian.

From Lemma 4.1 it follows E<∞ ⊥ H≤t|Gt; that is E<∞ ⊥ H≤t|G≤t, which
together with G≤t ⊆ H≤t, means that E |< G; H. From the last relation and
G<∞ = E<∞ it follows that G |< G; H. Now, on a similar way as in Theorem
5.1, we can prove that G is a realization (of a s. d. s. with outputs H). The
minimality of G follows from Lemma 4.2.

Remark.
It is of an interest to find conditions for the existence of a realization with

certain properties less restrictive than those obtained in this paper.
Also, the problems considered here and in the papers Gill and Petrović

(1987), Petrović (1996) and (2005) can be considered in the σ-algebraic ap-
proach when stochastic dynamic system is defined as a set of two families of
σ-algebras ,see Lindquist, Picci, Ruckebush, (1979).

It is clear that all results from this section can be extended on the σ-
algebras generated by finite dimensional Gaussian random variables. But, in
the case that σ-algebras are arbitrary, the extensions of the proofs from this
paper is nontrivial because one can not take an orthogonal complement with
respect to a σ-algebra as one can with respect to subspaces in Hilbert space.

6 Conclusion - Some Applications

The study of Granger’s causality has been mainly preoccupied with time se-
ries. (see Granger, 1969, 1977; McCrorie, Chambers, 2006). But, many of the
systems to which it is natural to apply tests of causality, take place in contin-
uous time (see Mykland, 1986; Gill, Petrović,1987; Florens, Fougères,1996) .
So, in this paper we considered continuous time processes.

The given concept of causality can be applied to weak solutions of stochas-
tic differential equations (driven by standard Brownian motion, by fractional
Brownian motion and with driving semimartingales). These results are given
in Mykland (1986), Petrović, Stanojević (2010), Petrović, Dimitrijević, Va-
ljarević (2016).

In Gill, Petrović (1987) the causality concept is applied to some problems
that follows directly from stochastic realization problem.

Also, this concept of causality is closely connected to the notion of ex-
tremality of measures and martingale problem (see Petrović and Stanojević
(2010); Petrović and Valjarević (2018)). The concept of statistical causality
is related to the notion separability of stochastic processes (see Valjarević,
Petrović, 2020) and measurable separability of σ-algebras and filtrations (Val-
jarević and Merkle, 2021). In (Valjarević and Merkle, 2021) some results are
applied on Bayesian experiment.
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The given concept of causality can be connected to the purely discontinuous
martingale and filtrations ( see Valjarević, Petrović, 2020).

The given causality concept is connected to the optional and predictable
processes important in stochastic integration. More precisely, in (Valjarević,
Dimitrijević and Petrović, 2023) was established that the preservation of pre-
dictability with respect to larger filtrations is implied by the considered notion
of (self-)causality. Also in the same paper were considered the connections be-
tween the given causality concept and the optional and predictable projections
of a stochastic process, which play an important role in the general theory of
stochastic processes, semimartingale theory, and stochastic calculus. Some re-
sults show that the (self-)causality implies indistinguishability of the optional
(or predictable) projections with respect to considered filtrations from those
with respect to larger filtrations.

Finally, it should be noted that the notion ”being its own cause” sometimes
occurs as a useful assumption in the theory of martingales and stochastic
integration (see Yor 1979; Strook and Yor 1980).
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