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Stationary distribution and extinction

in the stochastic model

of human immune system response

to COVID-19 virus under regime switching

Marija Krsti¢, Vuk Vujovi¢, Milica Markovi¢

Abstract

In this paper, in order to study e�ects of the human immune sy-

stem response to spread of COVID-19 virus, we establish a stochastic

competition model between immune cells and COVID-19 particles by

introducing both white and coloured noise. We �rst prove the existence

and uniqueness of the global positive solution of the system under con-

sideration. Furthermore, the stationary distribution and ergodicity of

the system are investigated in order to prove weak persistence in mean.

We also obtain the conditions for extinction of the disease. The obtained

results are related to basic reproduction number of the corresponding

deterministic analogue of the system. Finally, we provide numerical si-

mulations with real life data to support theoretical conclusions obtained

in the paper.

1 Introduction and motivation

Since it �rst appeared in Wuhan, China, in December 2019, coronavirus pan-
demic (COVID-19) has spread to more than 197 countries and threatened the
health and lives of many people all over the world. Therefore, it was necessary
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to develop treatment methods for such infectious disease in order to prevent
and control its further spread.

The pandemic has united the world scienti�c community in solidarity and
sharing knowledge so that e�ective vaccines could be produced quickly, and
now we have vaccines which are available to majority of population. However,
the disease is changing rapidly and new strains, for which existing vaccines are
not e�ective, are constantly appearing. Thus, it is important to study the role
that immune system may have, by preventing the disease from progressing to
the acute phase that may eventually lead to the patient's death. In innate
immune system natural killer cells (NK) are considered the primary defence
lymphocytes against virus-infected cells. Preliminary studies in COVID-19
patients with severe disease symptoms suggest a reduction in the number and
function of NK cells, which results in decreased clearance of infected and acti-
vated cells. Restoring the e�ector functions of NK cells has the potential to
correct the delicate immune balance needed to e�ectively overcome COVID-19
infection. On the other hand, the authors in [7] investigate the role of T-cells
in severe COVID-19 disease, protection, and long term immunity. They high-
lighted that one of the best known recorded symptoms observed in hospitalized
COVID-19 patients is lymphopenia in the blood. The absolute number of T-
cells, which are part of adoptive immune system, was decreased within all of
the studied COVID-19 patients compared to healthy individuals. The decline
in T lymphocytes was especially strong within the more severe cases. In hospi-
talized COVID-19 patients, an increase in the T-cells, was strongly associated
with a successful treatment, while no signi�cant increase in T-cell numbers
was observed in failed treatments. These observations show that the amount
of T cells in the blood is associated with disease outcome. For more details
we refer reader to [7] and references cited therein.

In epidemiology and immunology, mathematical models (deterministic and
stochastic) are used to understand the dynamics of infectious diseases (see [2],
[12]�[15], [17], [18], [22], [23], for instance). Due to the fact that it a�ected
the lives of many people, COVID-19 is, in addition to medical, one of the
most dominant topics in mathematical literature, too. Lately, many authors
proposed to describe the dynamics of the COVID-19 in terms of standard and
stochastic epidemiological models (see [3, 11, 19, 20], among the others).

However, there are few papers that deal with interaction of humans immune
system and COVID-19 particles. In paper [6], the authors propose to develop
a fractional-order mathematical model for the immune system response to
the virus in COVID-19 patients. They consider interaction of the COVID-19
particles (S), a cell population of the NK cells (N), and a cell population
of the cytotoxic (CD8+) T-cells (T ). The assumptions of the model are:
the population of COVID-19 particles in the absence of an immune response
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grows logistically; the infected virus can be cleared by both NK and T-cells;
the virus promotes an initial activation of NK and T-cells at the beginning
of the disease; the total number of NK cells was decreased in patients after
some number of encounters with coronavirus particles. Thus, the system of
fractional di�erential equations for representing interactions of the COVID-19
particles and the immune system is given by

DαS(t)=a1S(t) (1−bS(t))−dstS(t)F(S, T )−dsnS(t)N(t)−d1S(t)

DαT (t)=bt+rG(S)T (t)+e1N(t)S(t)−qT (t)S(t)−dtT (t) (1)

DαN(t)=bn+kG(S)N(t)−dnsN(t)S(t)−dnN(t),

with initial condition S(0) = S0, T (0) = S0, N(0) = S0, while Dα = dα

dtα is
derivative de�ned in Caputo sense. Function F(S, T ) = (T/S)α

z+(T/S)α represents
viral clearance rate of rational form by activated T-cells, while 0 < α ≤ 1 is
derivative order, or fractional virus kill power and z is steepness coe�cient of
virus lysis by T-cells. Also, G(S) = Sn

c1+Sn is a modi�ed Michaelis-Menten term
for T-cells activation and NK cell recruitment by COVID-19 virus particles,
where n represents Michaelis-Menten order, while c1 is steepness coe�cient
of NK cels recruitment. In this paper we will assume that n = 2. Model
parameters of system (1) are given in the following table.

Parameter Biological interpretation
a1 replication rate of COVID-19 particles
1
b carrying capacity of COVID-19 particles
dst rate of virus lysis by T-cells
dsn rate of virus death due to NK cells
d1 natural death rate of virus particles
dt natural death rate of T-cells
dn natural death rate of NK cells
bt T-cells proliferation
bn NK cells proliferation
r T-cells activation rate
k NK cells activation rate
e1 recruitment rate of T-cells by virus lysed by NK cells
q inactivation rate of T-cells by virus
dns inactivation rate of NK cells by virus

Table 1: Biological interpretation of the parameters of system (1)

All populations in nature are inevitably in�uenced by environmental inter-
ference from factors, such as temperature, radiation, oxygen supply, nutrients,
etc. They a�ect activity of enzymes, and therefore growth of cells and their
activation, among other processes related to cell population. Thus, in order to
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take in�uence of random variations into account, we suppose that they a�e-
ct activation rates of immune cells, and perturb them by linear functions of
white noise, i.e. r → r + σ1ẇ1(t) and k → k + σ2ẇ2(t). On the other hand,
depending on the variations in the virus strain, the di�erent virus �ow (virus
isolation and prevention measures) as well as the degree of immunity of the
population, the result of the interaction between the virus and the popula-
tion may be di�erent. When talking about mutual income, one should take
into account the tendency towards seasonal oscillations in the spread of the
COVID-19 virus. As the majority of human respiratory viral infections oc-
cur in winter, it is expected that the COVID-19 virus will follow this pattern.
Also, an increased number of infected people was noticed after the annual holi-
days, which corresponds to the period of late summer and early autumn. In
order to take into account seasonal e�ect on interaction between immune cell
and virus particles, besides the Gaussian white noise, we introduce coloured or
telegraphic noise, which will be represented by right-continuous Markov chain
{ξ(t), t ≥ 0}, de�ned on complete probability space (Ω,F,P) with the �ltration
{Ft}t≥0 satisfying the usual conditions (it is right continuous and increasing,
while F0 contains all P-null sets), independent of Brownian motions w1(t) and
w2(t) and taking values in a �nite space S = {1, 2, . . . , M̄}. Hence, system (1)
becomes

dS(t)=
[
a1(ξ(t))S(t)(1−b(ξ(t))S(t))−dst(ξ(t))S(t)F(S, T )−dsn(ξ(t))S(t)N(t)

−d1(ξ(t))S(t)
]
dt

dT (t)=
[
bt(ξ(t))+r(ξ(t))G(S)T (t)+e1(ξ(t))N(t)S(t)−q(ξ(t))T (t)S(t)

−dt(ξ(t))T (t)
]
dt+σ1(ξ(t))G(S)T (t)dw1(t) (2)

dN(t)=[bn(ξ(t))+k(ξ(t))G(S)N(t)−dns(ξ(t))N(t)S(t)−dn(ξ(t))N(t)]dt

+σ2(ξ(t))G(S)N(t)dw2(t), t ≥ 0,

with initial condition

S(0) = S0, T (0) = T0, N(0) = N0, ξ(0) ∈ S, (3)

and for any i ∈ S, coe�cients a1(i), b(i), dst(i), dsn(i), d1(i), bt(i), r(i), e1(i),
q(i), dt(i), bn(i), k(i), dns(i), dn(i), σ1(i), and σ2(i) are positive.

The in�nitesimal generator matrix Γ = [γij ]M̄×M̄ is de�ned by

P{ξ(t+ ∆) = j|ξ(t) = i} =

{
γij∆ + o(∆), i 6= j,

1 + γii∆ + o(∆), i = j,

where γij ≥ 0 is the transition rate from state i to state j if i 6= j, while γii =
−
∑
j 6=i γij . We assume that γij > 0 for i, j = 1, 2, . . . , M̄ with i 6= j. This
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assumption provides that the Markov chain ξ(t) is irreducible, i.e. there exists
a unique stationary distribution π = (πi)1×M̄ such that πΓ = 0,

∑M̄
i=1 πi = 1

and π > 0 for any i ∈ S.
For discussion convenience, let us de�ne ρ̂=mini∈S ρ(i) and ρ̌=maxi∈S ρ(i).
The rest of the paper is arranged as follows. In Section 2 we provide

auxiliary de�nitions and lemmas which will be used for proving main results.
Section 3 is devoted to veri�cation of the existence and uniqueness of the global
positive solution of system (2). In Section 4, we give su�cient conditions
under which there exists unique stationary distribution in order to prove weak
persistence in mean of system (2). Results on extinction are presented in
Section 5. In Section 6, we illustrate the theoretical results using real data
from virological analysis on nine COVID-19 patients who were hospitalized in
the hospital in Munich. We close the paper with a conclusion section.

2 Preliminaries

Let {(x(t), ξ(t)), t ≥ 0} be the di�usion Markov process which satis�es the
following equation

dx(t) = f(x(t), ξ(t))dt+ g(x(t), ξ(t))dw(t), t ≥ 0, (4)

with the initial condition

x(0) = x0 ∈ Rd, ξ(0) = ξ0 ∈ S,

where f : Rd × S→ Rd, g : Rd × S→ Rd×m, while A(x, k)=g(x, k) · gT(x, k)
=(aij(x, k)), i, j = 1, . . . , d, is a di�usion matrix of process {(x(t), ξ(t)), t ≥ 0}.
For each k ∈ S, let V (·, k) be any twice continuously di�erentiable function.
The di�erential operator L of Eq. (4) is de�ned by

L(x, k) =

d∑
i=1

fi(x, k)
∂V (x, k)

∂xi
+

1

2

d∑
i=1

aij(x,k)
∂2V (x, k)

∂xi∂xj
+

M̄∑
l=1

γklV (x, l), k ∈ S.

In the sequel we formulate lemma which will be used to prove the main results
of this paper.

Lemma 2.1. If the following conditions are satis�ed:
(C.1) γij > 0, for any i 6= j;
(C.2) there exist some i ∈ {1, 2, . . . , d} and positive constant κ such that

aii(x) ≥ κ, for any x ∈ D ⊂ Rd,

where D represents a nonempty open set with compact closure;
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(C.3) there exists a nonempty open set D with compact closure, satisfying that,
for each k ∈ S there exists nonegative function V : Dc → R which is twice
continuously di�erentiable, and that for some θ > 0,

LV (x) < −θ, (x, k) ∈ Dc × S,

then {(x(t), ξ(t)), t ≥ 0} is positive recurrent and ergodic. Namely, there exi-
sts a unique stationary distribution π(·, ·) such that for any Borel measurable
function ϕ : Rd × S→ R, satisfying

∑
k∈S

∫
Rd |ϕ(x, k)|π(dx, k) <∞, we have

P

{
lim
t→∞

1

t

∫ t

0

ϕ(x(s), ξ(s))ds =
∑
k∈S

∫
Rd
|ϕ(x, k)|π(dx, k)

}
= 1.

Remark 1. Conditions (C.1), (C.2) and (C.3) in Lemma 2.1 represent di�e-
rent variants of su�cient conditions for the existence of a unique stationary
distribution (see [1], [4], [5], [10], [21], [26], for instance).

3 Existence and uniqueness of positive solution

Since S(t), T (t), N(t), t ≥ 0, in system (2) represent the number of virus par-
ticles, T-cells and NK cells, respectively, it is natural to consider only positive
global solution of system (2).

Theorem 3.1. For any initial value (3), system (2) has unique global solution
(S(t), T (t), N(t)), for all t ≥ 0. Moreover, the solution remains in R3

+ with
probability 1.

Proof. Since the coe�cients of system (2) are locally Lipshitz continuous for
any initial condition (3) in R3

+, then system (2) has a unique local positive
solution for t ∈ [0, τε), where τε represents explosion time [16]. To prove the
globality of the solution, it only needs to be shown that the solution does not
explode in a �nite time, i.e. that τε =∞ almost surely.

Thus, let k0 > 0 be su�cient large number such that the values S0, T0, N0

are lying within the interval
[

1
k0
, k0

]
. For each integer k ≥ k0, de�ne the

stopping time

τk = inf

{
t ∈ [0, τε) :S(t) /∈

(
1

k
, k

)
iliT (t) /∈

(
1

k
, k

)
iliN(t) /∈

(
1

k
, k

)}
,

where we �x inf ∅ =∞ (∅ is the empty set).
Apparently, when k → ∞ then τk is increasing. Let τ∞ = limk→∞ τk.

Then τ∞ ≤ τε almost surely. If τ∞ =∞ almost surely, then τε = ∞ and
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(S(t), T (t), N(t)) ∈ R3
+ almost surely for t ≥ 0. Hence, let us prove that

τ∞ =∞ almost surely. If this were not true, then there exist a pair of positive
constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Therefore, there
exists an integer k1 ≥ k0, such that

P{τ∞ ≤ T}≥ε for every k ≥ k1. (5)

In addition we de�ne function V ∈ C2(R3
+,R+) as

V (S, T,N) = S − 1− lnS +A(T − 1− lnT ) +N − 1− lnN,

where A is positive constant to be determined later. By applying the Itô
formula

dV (S, T,N)=LV (S, T,N)dt+Aσ1(ξ)(T−1)G(S)dw1+Aσ2(ξ)(N−1)G(S)dw2,

where

LV (S, T,N)=

(
1− 1

S

)
[a1(ξ)S(1−b(ξ)S)−dst(ξ)SF(S, T )−dsn(ξ)SN−d1(ξ)S]

+A

(
1− 1

T

)
[bt(ξ)+r(ξ)G(S)T+e1(ξ)NS−q(ξ)TS−dt(ξ)T ]

+

(
1− 1

N

)
[bn(ξ)+k(ξ)G(S)N−dns(ξ)NS−dn(ξ)N ]

+
A

2
σ2

1(ξ)G2(S)+
σ2

2(ξ)

2
G2(S)

=a1(ξ)S−a1(ξ)b(ξ)S2−dst(ξ)SF(S, T )−dsn(ξ)SN−d1(ξ)S

−a1(ξ)+a1(ξ)b(ξ)S +dst(ξ)F(S, T )+dsn(ξ)N+d1(ξ)+Abt(ξ)

+Ar(ξ)G(S)T+Ae1(ξ)NS−Aq(ξ)TS −Adt(ξ)T−Ar(ξ)G(S)

−Ae1(ξ)
NS

T
+Aq(ξ)S+Adt(ξ)+

A

2
σ2

1(ξ)G2(S)+bn(ξ)

+k(ξ)G(S)N−dns(ξ)SN−dn(ξ)N− bn(ξ)

N
−k(ξ)G(S)

+dns(ξ)S+dn(ξ)+
σ2

2(ξ)

2
G2(S).
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If we remove some nonpositive terms, we get

LV (S, T,N)

≤dst(ξ)+d1(ξ)+bn(ξ)+dn(ξ)+A(bt(ξ)+dt(ξ))+A
σ2

1(ξ)

2
+
σ2

2(ξ)

2
+ (a1(ξ)+a1(ξ)b(ξ)+dns(ξ)+Aq(ξ))S+(dsn(ξ)+k(ξ))N+Ar(ξ)T

+ (Ae1(ξ)− (dns(ξ) + dsn(ξ)))SN

≤ ďst+ď1+b̌n+ďn+A(b̌t+ďt)+A
σ̌2

1

2
+
σ̌2

2

2
+
(
ǎ1+ǎ1b̌+ďns+Aq̌

)
S

+
(
ďsn+ǩ

)
N+AřT + (Aě1 − (d̂ns + d̂sn))SN

≤ K1 +K2(S +AT +N)

where K1 = ďst+ď1+b̌n+ďn+A(b̌t+ďt)+A
σ̌2
1

2 +
σ̌2
2

2 and K2 =max
{
ǎ1+ǎ1b̌+ďns+

Aq̌, ďsn+ ǩ, ř
}
, while constant A is chosen to annul the term in the bracket

that multiplies SN , i.e. A = d̂ns+d̂sn
ě1

.
By using inequality x < 2(x− 1− lnx+ 1), x > 0, and recalling the form

of function V (S, T,N), the last estimation for LV (S, T,N) becomes

LV (S, T,N)≤K1+2K2(S−1−lnS+A(T−1−lnT )+N−1−lnN+2+A)

=K1+2K2(2+A)+2K2V (S, T,N).

Consequently,

dV (S, T,N)=LV (S, T,N)+Aσ1(ξ)(T−1)G(S)dw1+σ2(ξ)(N−1)G(S)dw2

≤ (K1+2K2(2 +A)+2K2V (S, T,N))dt

+Aσ1(ξ)(T−1)G(S)dw1+σ2(ξ)(N−1)G(S)dw2. (6)

Integrating (6) from 0 to τk∧T, and then taking the expectation on both sides,
we obtain

EV (S(τk∧T), T (τk∧T), N(τk∧T))

≤V (S0, T0, N0)

+

∫ T

0

(K1+2K2(2 +A)+2K2EV (S(τk ∧ T), T (τk ∧ TT ), N(τk ∧ T))))dz

=V (S0, T0, N0)+(K1+2K2(2 +A))T

+2K2

∫ T

0

(EV (S(τk ∧ T), T (τk ∧ T), N(τk ∧ T))) dz.

The Gronwall-Belman inequality implies

EV (S(τk∧T), T (τk∧T), N(τk∧T))≤
[
V (S0, T0, N0)+(K1+2K2(2+A))T

]
e2K2T.

(7)
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Let Ωk = {τk ≤ T} for k ≥ k1. According to (5), we get P( Ωk) ≥ ε. Obvious,
for ω ∈ Ωk, there is at least one of S(τk, ω), T (τk, ω) or N(τk, ω) equaling
either 1

k or k, such that

V (S(τk), T (τk), N(τk))≥(k − 1− ln k)∨
(

1

k
− 1− ln

1

k

)
.

By using (7) and the last inequality, yields

∞ > [V (S0, T0, N0)+(K1+2K2(2+A))T] e2K2T

≥ E[IΩk(ω)V (S(τk), T (τk), N(τk))]

≥ ε
[
(k−1−ln k)∨

(
1

k
−1−ln

1

k

)]
,

where IΩk is the indicator function of Ωk. When k →∞, then

∞ > [V (S0, T0, N0) + (K1+2K2(2 +A))T] e2K2T ≥ ∞,

which leads to a contradiction, from what follows τ∞ =∞ almost surely, which
proves the theorem.

By using Theorem 3.1 it can be shown that the set

Θ = {(S,N, T ) ∈ R3
+|0 < S(t) ≤ ǎ1

b̂â1

, N > 0, T > 0} (8)

is positively invariant for system (2).

Theorem 3.2. The region Θ is almost surely positively invariant set of system
(2), i.e. if (S0, T0, N0) ∈ Θ then

P((S(t), T (t), N(t)) ∈ Θ) = 1,

for all t ≥ 0.

Proof. Let (S0, T0, N0) ∈ Θ. In view of Theorem 3.1, for the �rst equation of
system (2) we obtain

dS(t) ≤ (ǎ1S(t)− â1b̂S
2(t))dt, t ≥ 0.

Equation
dX(t) = (ǎ1 − â1b̂X(t))X(t)dt, t ≥ 0,

with initial condition X(0) = S0, has a solution

X(t) =
1

ǎ1−â1b̂S0

S0
e−ǎ1t + b̂â1

ǎ1

, t ≥ 0.
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Bearing in mind the assumption S0 ∈ Θ, we get the following estimation

X(t) ≤ ǎ1

b̂â1

, t ≥ 0.

Applying the Comparison theorem for di�erential equations, we have

S(t) ≤ ǎ1

b̂â1

, t ≥ 0,

which completes the proof.

4 Existence of stationary distribution

In this section we discuss the existence of the ergodic stationary distribution of
system (2). From biological point of view the existence of stationary distribu-
tion indicates the prevalence of the disease in population, (see [24]). Also, this
means that the stochastic system oscillates around the endemic equilibrium of
the corresponding deterministic system.

For simplicity, in the sequel we use the following notation

J =

∑M̄
l=1 πlΛ(l)∑M̄

l=1 πlu(l)
∑M̄
l=1 πlv(l)

∑M̄
l=1 πlbt(l)

∑M̄
l=1 πlbn(l)

,

where Λ(l) = bt(l)bn(l)(dt(l)−r(l))(dn(l)−k(l)), u(l) = ǎ1
b̂â1
q(l)+dt(l)+

σ2
1(l)
2 ,

while v(l) = ǎ1
b̂â1
dns(l) + dn(l) +

σ2
2(l)
2 , for all l ∈ S.

Theorem 4.1. Let parameters of system (2) satisfy the condition J > 1 as
well as conditions

d̂t > ř, (9)

d̂n > ǩ, (10)

ě1b̌n < d̂nsb̂t. (11)

Then, the solution (S(t), T (t), N(t)), t ≥ 0 of system (2) has a unique ergodic
stationary distribution in Θ for any initial value (S0, T0, N0) ∈ Θ.

Proof. In order to prove the mentioned property, we need to check conditions
of Lemma 2.1.

The di�usion matrix of system (2) is

A =

 0 0 0
0 σ2

1(k)G2(S)T 2(t) σ1(k)σ2(k)G2(S)T (t)N(t)
0 σ1(k)σ2(k)G2(S)T (t)N(t) σ2

2(k)G2(S)T 2(t)

 .
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The assumption γij > 0, i 6= j, from Introduction section, implies that the
condition (C.1 ) from Lemma 2.1 is full�led. On the other hand, let us consider
the following open subset of Θ

Dε =

{
(S, T,N) ∈ Θ : ε < S <

ǎ1

b̂â1

− ε, ε < T <
1

ε
, ε < N <

1

ε

}
,

where ε ∈ (0, 1). For (S, T,N) ∈ Θ\Dε, and, for example i = 3, we have

a33(S, T,N) = σ2
2(ξ(t))G2(S)T 2(t) ≥ σ̂2

2ε
n+2

c1 +
(
ǎ1
b̂â1
− ε
)n ,

which means that the condition (C.2 ) from from Lemma 2.1 is met.
To verify the condition (C.3 ) in Lemma 2.1, let us de�ne

V1(T,N) = −c̄1 lnT − c̄2 lnN + c̄3T + c̄4N,

where c̄1, c̄2, c̄3 and c̄4 represent positive constants which will be chosen in
the sequel.

Note that function V1(S, T,N, l) is not only continuous, but also tends to
∞ as (S, T,N, l) approaches the the boundary of Θ× S. Therefore, it must be
lower bounded and it achieves this lower bound at a point (S̄, T̄ , N̄ , l̄) in the
interior of Θ× S. Then, we de�ne a function V̄1 ∈ C2(Θ× S,R+) by

V̄1(S, T,N, l) = V1(S, T,N, l)− V1(S̄, T̄ , N̄ , l̄).

Application of the Itô formula on V̄1, using the fact that G(S) ≤ 1 and
omitting some nonpositive therms yield

LV̄1(S, T,N)=− c̄1bt(l)
T
−c̄1r(l)G(S)−c̄1e1(l)

SN

T
+c̄1q(l)S+

1

2
c̄1σ

2
1(l)G2(S)

− c̄2bn(l)

N
−c̄2k(l)G(S)+c̄2dns(l)S+c̄2dn(l) +

1

2
c̄2σ

2
2(l)G2(S)

+c̄3r(l)G(S)T+c̄3e1(l)NS−c̄3q(l)TS−c̄3dt(l)T+c̄4bn(l)

−c̄4dn(l)N+c̄4k(l)G(S)N+c1dt(l)+c̄3bt(l)−c̄4dns(l)NS

≤− c̄1bt(l)
T
− c̄2bn(l)

N
−c̄3(dt(l)−r(l))T−c̄4(dn(l)−k(l))N

+c̄3bt(l) +c̄1

(
ǎ1

b̂â1

q(l)+dt(l)+
1

2
c̄1σ

2
1(l)

)
+c̄2

(
ǎ1

b̂â1

dns(l)+dn(l)+
1

2
c̄1σ

2
2(l)

)
+(c̄3e1(l)−c̄4dns(l))NS

+c̄4bn(l).
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By using the well known AM −GM inequality, we obtain

LV̄1(S, T,N)≤−4 4
√
bt(l)bn(l)(dt(l)−r(l))(dn(l)−k(l))c̄1c2c̄3c̄4

+c̄1u(l)+c̄2v(l)+c̄3bt(l)+c̄4bn(l)+(c̄3e1(l)−c̄4dns(l))NS
=B0(l)+(c̄3e1(l)−c̄4dns(l))NS,

where B0(l)=−4 4
√
bt(l)bn(l)(dt(l)−r(l))(dn(l)−k(l))c̄1c̄2c̄3c̄4+c̄1u(l)+c̄2v(l)+

c̄3bt(l)+ c̄4bn(l). Let (ω(1), ω(2), ..., ω(M̄))T be the solution of the following
Poisson system

Γω =

M̄∑
l=1

πlB0(l)


1
1
...
1

−B0,

while B0 = (B0(1), B0(2), . . . , B0(M̄))T. If we choose constants c̄1, c̄2, c̄3 and
c̄4 in the following way

c̄1 =

∑M̄
l=1 πlΛ(l)∑M̄
l=1 πlu(l)

, c̄2 =

∑M̄
l=1 πlΛ(l)∑M̄
l=1 πlv(l)

, c̄3 =

∑M̄
l=1 πlΛ(l)∑M̄
l=1 πlbt(l)

, c̄4 =

∑M̄
l=1 πlΛ(l)∑M̄
l=1 πlbn(l)

,

bearing in mind condition (11), application of di�erential operator L on V̄1 +
ω(l) gives us

L(V̄1 + ω(l))≤B0(l) +
∑
j∈S

γljω(j)

=

M̄∑
l=1

πlB0(l)

=−4

M̄∑
l=1

π(l)Λ(l)
(

4
√
J− 1

)
.

De�ne the functions V2 = S, V3 = N, V4 = T . Application of the Itô formula



STATIONARY DISTRIBUTION AND EXTINCTION IN THE STOCHASTIC

MODEL OF HUMAN IMMUNE SYSTEM RESPONSE TO COVID-19 VIRUS

UNDER REGIME SWITCHING 227

to de�ned functions yields

LV2 =a1(l)S−a1(l)b(l)S2−dst(l)SF(S, T )−dsn(l)SN−d1(l)S

≤(a1(l)−d1(l))S−a1(l)b(l)S2−dsn(l)SN

≤(ǎ1−d̂1)S−â1b̂S
2−d̂snSN, (12)

LV3 =bn(l)+k(l)G(S)N−dns(l)NS−dn(l)N

≤bn(l)−(dn(l)−k(l))N−dns(l)NS
≤ b̌n−(d̂n−ǩ)N−d̂nsNS, (13)

LV4 =bt(l)+r(l)G(S)T+e1(l)NS−q(l)TS−dt(l)T
≤bt(l)+e1(l)NS−(dt(l)−r(l))T
≤ b̌t+ě1NS−(d̂t−ř)T. (14)

Let V5 = V2 + V3 + aV4 be a positive function, where a is positive constant
which will be chosen later. In view of (12), (13) and (14), we get

LV5≤ (ǎ1−d̂1)S−â1b̂1S
2+b̌n−(d̂n−ǩ)N+ab̌t

−a(ďt−r̂)T−(d̂ns+d̂sn−aě1)NS

=(ǎ1−d̂1)S−â1b̂1S
2+b̌n−(d̂n−ǩ)N+ab̌t−a(ďt−r̂)T,

which is obtained by choosing a = d̂ns+d̂sn
ě1

. It is obvious that

LV5 ≤ H,

where H is positive constant.
Finally, let us de�ne nonegative C2(Θ× S,R+) function

V (S, T,N, l) = QV̄1 + V5.

Application of the Itô formula to �nction V yields

LV ≤ −4Q

M̄∑
l=1

πlΛ(l)
(

4
√
J−1

)
+H

= −QΠ +H, (15)

where

Π = 4

M̄∑
l=1

πlΛ(l)
(

4
√
J− 1

)
> 0.

If we choose constant Q in (15) such that

Q ≥ H + 1

Π
,
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we conclude that,
LV ≤ −1,

for every (S, T,N) ∈ Θ\Dε, which proves the theorem.

5 Extinction of disease

From epidemiological point of view, it is important to determine the conditions
for the coe�cients of the system (2) which guarantee the extinction of virus
particles from human organism.

Theorem 5.1. If the following condition holds

M̄∑
l=1

πl (a1(l)− d1(l)) < 0, (16)

then the number of virus particles S of system (2) almost surely exponentially
tends to zero.

Proof. By applying the Itô formula on lnS(t) we get

d lnS(t)

=
[
a1(ξ(t))−a1(ξ(t))b(ξ(t))S−dst(ξ(t))F(S, T )−dsn(ξ(t))N−d1(ξ(t))

]
dt

≤
[
a1(ξ(t))− d1(ξ(t))

]
dt. (17)

According to the ergodic property of Markov chain ξ(t), it holds that

lim sup
t→∞

1

t

∫ t

0

(a1(ξ(t))− d1(ξ(t)))dt =

M̄∑
l=1

πl (a1(l)− d1(l)) . (18)

Integrating d lnS from 0 to t yields

lnS(t)− lnS(0) ≤
∫ t

0

(a1(ξ(s))− d1(ξ(s)))ds. (19)

Having in mind condition (16), as well as (17) and (18), we get

lim sup
t→∞

lnS(t)

t
≤

M̄∑
l=1

πl (a1(l)− d1(l)) < 0. a.s.

which completes the proof.
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Remark 2. Condition (16) suggests that the relation between replication rate
of virus particles and their natural death rate is important for extinction of the
disease. More precisely, if the natural death rate of virus particles is greater
that their replication rate (condition (16)), then the extinction of disease will
occur.

Remark 3. Let us note that in [6] the authors obtained the basic reprodu-
ction number. The basic reproductive number, R0, is de�ned as the expected
number of secondary infections arising from a single individual during his or
her entire infectious period, in a population of susceptible, or as the number
of secondary infection due to a single infection in a completely susceptible
population. They obtained that

R0 =
a1dtdn
d1

.

Our goal is to try to connect J from Theorem 4.1 with R0. From de�nition of
J, we can conclude that

J ≤ b̌tb̌nďtďn

d̂td̂nb̂tb̂n
.

Assume that following condition holds

b̌tb̌n

b̂tb̂n
≤ ǎ1d̂td̂n

d̂1

. (20)

In that case we obtain that J ≤ ǎ1ďtďn
d̂1

:= RS0 . It is obvious that RS0 > 1 if
J > 1.

On the other hand, condition (16) is equivalent to

I =

∑M̄
l=1 πla1(l)∑M̄
l=1 πld1(l)

≤ 1.

Since ǎ1
d̂1
≥ RS0 , because ďt and ďn represent death rates, we have that RS0 < 1

holds if I < 1.
Also, let us note that without Markovian switching, RS0 becomes R0, while

condition (20) becomes R0 > 1.
Therefore, conditions J > 1 can also be su�cient condition for persistence

of COVID-19 virus particles in deterministic system (1), and condition I < 1
is su�cient condition under which extinction of disease will occur in system
(1).

Thus, we can conclude that the dynamical properties of stochastic sys-
tem (2) are consistent with the corresponding deterministic system (1) when
colored noise is not present.
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6 Numerical simulation

The COVID-19 is an infectious disease caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) virus.

As it was already mentioned in the Introduction section, the �rst case
of infected COVID-19 patient was detected in Wuhan, China in December
2019. Considering that the virus quickly spread to other countries around the
world, all because of the fact that a large number of people traveled during
the holidays because they did not even know they were infected, the World
Health Organization (WHO) characterized the outbreak of this disease as a
pandemic on 11 March 2020.

From the �rst case of COVID-19 in the Europe, over 2 million people
have died from the disease. Compared to many other countries, Germany has
managed the COVID-19 crisis well. The main reason for that is proper health
system [9]. Due to that, there are many laboratories all over the Germany,
that can test for the virus, and to investigate its dynamics with the immune
system of the infected individuals.

In this example, we turn our attention to the study of Wö�el et al. [25].
Their investigation is based on a detailed virological analysis of nine cases
of COVID-19 that provides proof of active virus replication in tissues of the
upper respiratory tract. Namely, they have examined the kinetics of viral load
and measured the virus replication in tissues of the upper respiratory tract.
The infection in the patient was proven, before they have been taken into
consideration. The patient were hospitalized in the hospital in Munich that
cooperated with laboratories that are equipped with the same technology in
PCR-PT and the same standards for virus isolation. All the samples (sputum,
throat swab and stool samples) were taken between two and four days after
the onset of symptoms.

Depending on the immune system, the dynamics of COVID-19 virus di�er
from person to person. It is shown that age a�ects the disease (see [25]), but
also seasonal character of the disease is important. More precisely, COVID-
19 is more active during the period of summer holidays due to fact that a
large number of people travel for their annual vacation, and also in winter,
as majority of respiratory illnesses. Therefore, we will take seasonal e�ect
by introducing two di�erent states in our Markov chain, i.e. S = {1, 2} and
generator matrix is of the form

Γ =

[
−2 2
3 −3

]
.

The stationary distribution is given by π = (π1, π2) = (0.6, 0.4). According to
[6] and references cited therein, the values of parameters are given in Table 2.
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Parameter Unit Value 1 Value 2
a1 1/day 2.86 6.87
b ml/RNA copies e−9 e−9.9

dst 1/day 0.0275 0.3
dsn ml/cell (day) 1.2 · e−11 2 · e−10

d1 1/day 0.001 0.1
bt ml/cell (day) 500 1500
r 1/day 0.001 0.0021
e1 ml/RNA copies 2.1 · e−5 1.1 · e−5

q ml/RNA copies 1.1 · e−10 9.5 · e−10

dt ml/cell (day) 0.03 0.8
bn cell/ml (day) 100 84
k cell/ml (day) 0.002 0.017
dns ml/RNA copies (day) 1.02 · e−5 1.02 · e−4

dn 1/day 4.2 · e−2 4.21 · e−2

z / 0.01 0.1
c1 / e3 e6

α / 0.95 0.98
σ2

1 / 0.0002 0.0000001
σ2

2 / 0.02 0.093
Table 2: The values of the model parameters

Finally, let the initial condition be

(S(0), T (0), N(0), r(0)) =
(
10−2, 104, 103, 1

)
. (21)

The value of J from Theorem 4.1 is J = 1.00138 > 1. It is not di�cult
to check out that other conditions of the theorem also hold, and thus, we
expect the solution of system (2) to oscillate around endemic equilibrium E∗

of system (1), which yields to the long COVID, or post COVID-19 syndrome.
This phenomenon involves a long-term symptoms of acute COVID-19 disease,
which means that disease persists after a normal recovery period, which is
presented in Figure 1.

According to [8], the median time from onset to clinical recovery for mild
cases is approximately two weeks, and 3− 6 weeks for patients with severe or
critical disease symptoms. However, about 1 in 13 people infected with the
COVID-19 have experienced long-term symptoms which last longer than 12
weeks. In Figures 2 and 4, we can observe that with time number of T-cells
and NK cells will decrease, which is known as immunity exhaustion which, in
particular, refers to the NK cells exhaustion due to high infections. Hence,
in the �rst days of the disease, it is important to apply antiviral therapy
to suppresses the virus activity and, thereby, support the immune system
reaction.
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Figure 1: Stochastic trajectory for number of COVID-19 virus particles S(t)
of system (2) with model parameters from Table 2, initial value (21) and unit
of time ∆t = 1

365 .

Figure 2: Stochastic trajectories for number of T-cells T (t) of system (2) with
model parameters from Table 2, initial value (21) and unit of time ∆t = 1

365 .

A computer simulation of the single path of Markov chain with two states
ξ(t) with initial value ξ(0) = 1 is plotted in Figure 4. We can notice that the
state chain takes more time on the �rst environment than on the second one.
Our second environment is the one with higher risk of infection by COVID-19
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Figure 3: Stochastic trajectories for number of NK cellsN(t) of system (2) with
model parameters from Table 2, initial value (21) and unit of time ∆t = 1

365 .

virus and, as we have already explained, it corresponds to winter and late
summer period of the year. Thus, it is reasonable that the state chain spends
less time in state two than in state one.

Figure 4: Computer simulation of a single path of Markov chain with two
states ξ(t) with initial value ξ(0) = 1.
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7 Conclusions

In this paper we establish and analyze a stochastic competition model between
immune cells and COVID-19 particles to examine the e�ects of the human
immune system response to spread of COVID-19 virus. For that purpose,
besides the Gaussian white noise, we introduce coloured or telegraphic noise,
represented by right-continuous Markov chain, to consider seasonal e�ects on
interaction between immune cells and virus particles. The inclusion of the
Markov chain is of particular importance given the facts that, as most human
respiratory viral infections, COVID-19 is more frequent during the winter pe-
riod, as well as in the period of late summer and early autumn due to annual
holidays.

We obtained that if natural death rates are greater than activation rates
of immune cells, and for J from Theorem 4.1 it holds that J > 1, the so-
lution of system (2) will oscillate around endemic equilibrium E∗ of system
(1), which leads to the long COVID phenomenon. Thus, the COVID-19 pa-
tients will exhibit symptoms of acute COVID-19 disease even after a normal
recovery period. This phenomenon implies the other one known as immunity
exhaustion, which, primarily, refers to the NK cells exhaustion due to high
infections. We veri�ed the obtained result by real life example in which nine
cases of COVID-19 patients were considered. They were admitted in the hos-
pital in Munich for examining the kinetics of viral load and measuring the
virus replication in tissues of the upper respiratory tract.

Furthermore, we consider conditions that ensure disease extinction. We
obtain that extinction of the disease doesn't depend on the immune system
response to the virus directly, but indirectly does, bearing in mind that im-
mune cells in�uence the replication of virus cells. Namely, if the natural death
rate of virus particles is greater that their replication rate then the extinction
of disease will occur.

We were able to connect dynamical properties of stochastic system (2) and
deterministic system (1). More precisely, we demonstrated that conditions
obtained in Theorem 4.1 and Theorem 5.1 can also be su�cient condition
for persistence and extinction of COVID-19 virus particles in deterministic
system (1), respectively. Thus, we can conclude that the dynamical properties
of stochastic system (2) are consistent with the corresponding deterministic
system (1) in absence of the coloured noise.

Acknowledgment

The research is supported by the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia. Contract Number for the �rst



STATIONARY DISTRIBUTION AND EXTINCTION IN THE STOCHASTIC

MODEL OF HUMAN IMMUNE SYSTEM RESPONSE TO COVID-19 VIRUS

UNDER REGIME SWITCHING 235

author: 451-03-137/2025-03/ 200124, Contract Number for the third author:
451-03-137/2025-03/2001109.

References

[1] Y. Ding, J. Jiao, Q. Zhang, Y. Zhang, X. Ren, Stationary Distribution and
Extinction in a Stochastic SIQR Epidemic Model Incorporating Media
Coverage and Markovian Switching, Symmetry, 13 (2021), 1122.

[2] J. Ðor�evi¢, B. Jovanovi¢, Dynamical analysis of a stochastic delayed
epidemic model with lévy jumps and regime switching, Journal of the
Franklin Institute, 360 (2023), 1252-1283.

[3] J. Ðor�evi¢, I. Papi¢, N. �uvak, A two di�usion stochastic model for
the spread of the new corona virus SARS-CoV-2, Chaos, Solitons and
Fractals, 148 (2021), 110991.

[4] A. Gray, D. Greenhalgh, X. Mao, J. Pan, The SIS epidemic model with
Markovian switching, Journal of Mathematical Analysis and Applica-
tions, 394 (2012), 496-516.

[5] X. Gua, J. Luo, Stationary distribution and extinction of SIR model with
nonlinear incident rate under Markovian switching, Physica A, (2018),
471-481.

[6] Y. Fadaei, F. A. Rihan, C. Rajivganthi, Immunokinetic Model for
COVID-19 Patients, Complexity, Vol. 2022, Article ID 8321848, 13 pages
doi.org/10.1155/2022/8321848.

[7] J. M. Hermens, C. Kesmir, Role of T cells in severe COVID-19 disease,
protection, and long term immunity, Immunogenetics, 75(3) (2023), 295-
307.

[8] https://ada.com/covid/covid-19-recovery-time/

[9] https://www.weforum.org/agenda/2020/05/how-germany-contained-
the-coronavirus/

[10] J. Hu, Z. Li, T. Zeng, Z. Teng, A Note on the Stationary Distribution of
Stochastic SIS Epidemic Model with Vaccination Under Regime Switch-
ing, Filomat, 32:13 (2018), 4773-4785.

[11] B. Jovanovi¢, J. Ðor�evi¢, J. Manojlovi¢, Nenad �uvak, Analysis of Sta-
bility and Sensitivity of Deterministic and Stochastic Models for the
Spread of the New Corona Virus SARS-CoV-2, Filomat, 35:3 (2021),
1045-1063.



STATIONARY DISTRIBUTION AND EXTINCTION IN THE STOCHASTIC

MODEL OF HUMAN IMMUNE SYSTEM RESPONSE TO COVID-19 VIRUS

UNDER REGIME SWITCHING 236

[12] M. Jovanovi¢, M. Krsti¢, Stochastically perturbed vector-borne disease
models with direct transmission, Applied Mathematical Modelling, 36
(2012), 5214-5228.

[13] M. Jovanovi¢, V. Vujovi¢, Stability of stochastic heroin model with two
distributed delays, Discrete and Continuous Dynamical Systems - Series
B, 25(7) (2020), 2407-2432.

[14] M. Krsti¢, On Stability of Stochastic Delay Model for Tumor-Immune
Interaction, Filomat, 32:4 (2018), 1273-1283.

[15] M. Krsti¢, The e�ect of stochastic perturbation on a nonlinear delay
malaria epidemic model, Mathematics and Computers in Simulation, 82
(2011), 558-569.

[16] X. Mao, C. Yuan, Stochastic Di�erential Equations with Markovian
Switching, Imperial College Press (2006), London.

[17] M. Markovi¢, M. Krsti¢, On a stochastic generalized delayed SIR model
with vaccination and treatment, Nonlinearity, 36(12) (2023), 7007-7024.

[18] M. Milunovi¢, M. Krsti¢, Long Time Behavior of an Two Di�usion
Stochastic SIR Epidemic Model with Nonlinear Incidence and Treatment,
Filomat, 36:8 (2022), 2829-2846.

[19] F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic
model with time-delay for COVID-19, Advances in Di�erence Equations
502 (2020), doi.org/10.1186/s13662-020-02964-8

[20] Z. Shi, D. Jiang, Dynamics and density function of a stochastic COVID-19
epidemic model with Ornstein-Uhlenbeck process, Nonlinear Dynamics,
111 (2023), 18559-18584.

[21] Z. Shi, X. Zhang, Modeling a stochastic avian in�uenza model under
regime switching and with human-to-human tranmission, International
Journal of Biomathematics, 13(7) (2020), 2050064.

[22] V. Vujovi¢, M. Krsti¢, Stability of Stochastic Model for Hepatitis C Trans-
mission with an Isolation Stage, Filomat, 34:14 (2020), 4795-4809.

[23] V. Vujovi¢, In�uence of environmental �uctuations on Hepatitis C trans-
mission, Mathematics and Computers in Simulation, 191 (2022), 203-218.

[24] W. M. Wonham, Lyapunov Criteria for Weak Stochastic Stability, Journal
of Di�erential Equations, 2 (1966), 195-207.



STATIONARY DISTRIBUTION AND EXTINCTION IN THE STOCHASTIC

MODEL OF HUMAN IMMUNE SYSTEM RESPONSE TO COVID-19 VIRUS

UNDER REGIME SWITCHING 237

[25] R. Wölfel, V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. A.
Müller, D. Niemeyer, T. C. Jones, P. Vollmar, C. Rothe, M. Hoelscher,
T. Bleicker, S. Brünink, J. Schneider, R. Ehmann, K. Zwirglmaier, C.
Drosten, C. Wendtner, Virological assessment of hospitalized patients
with COVID-2019, Nature, 581(7809) (2020), 465-469.

[26] C. Zhu, G. Yin, Asymptotic properties of hybrid di�usion systems, SIAM
Journal on Control and Optimization, 46 (2007), 1155-1179.

Marija KRSTI�,
Department of Mathematics,
Faculty of Science and Mathematics,
University of Ni²,
Vi²egradska 33, 18000 Ni², Serbia.
Email: marija.krstic@pmf.edu.rs

Vuk VUJOVI�,
Department of Mathematics,
Faculty of Science and Mathematics,
University of Ni²,
Vi²egradska 33, 18000 Ni², Serbia.
Email: vukpharm@gmail.com

Milica MARKOVI�,
Faculty of Mechanical Engineering,
University of Ni²,
Aleksandra Medvedeva 14, 18000 Ni², Serbia.
Email: milica.milunovic@masfak.ni.ac.rs



STATIONARY DISTRIBUTION AND EXTINCTION IN THE STOCHASTIC

MODEL OF HUMAN IMMUNE SYSTEM RESPONSE TO COVID-19 VIRUS

UNDER REGIME SWITCHING 238


