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On the metrizability of suprametric space

Erdal Karapınar and Marija Cvetković

Abstract

The question of metrizability of suprametric space is answered posi-
tively. The observed metric coincides with a suprametric in a way that
convergence and continuity are preserved between suprametric space and
associated metric space along with the propery of a Cauchy sequence.
Consequently, a suprametric space is complete if and only if associated
metric space is complete. Fixed point theorems in suprametric space
are obtained as a corollary of well-known fixed point results.

1 Introduction and Preliminaries

Suprametric space presents a generalization of a metric space obtained with
the modified triangle inequality. This idea was introduced by M. Berzig in [5]
where the topological properties of this abstract space were discussed along
with some fixed point results. The impact of suprametric space is seen through
application in solving equations with specific examples on solving matrix and
integral equations. The work of Berzig was further continued in [6, 12, 13, 14]
with various aspects of applications.

In the sequel, we collect essential definitions and fixed point theorems for
both metric and suprametric space.

Definition 1. If X is a non-empty set, then a function d : X × X → [0,∞)
fulfilling:
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(d1) d(x, y) = d(y, x) = 0 ⇐⇒ x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) ≤ d(x, y) + d(y, z);

for all x, y, z ∈ X, is a metric on X and (X, d) is a metric space.

Definition 2. Let (X, d) be a metric space and (xn) be a sequence in X. The
sequence (xn) converges to x ∈ X if for any ε > 0, there exists n0 ∈ N such
that d(xn, x0) < ε for all n ≥ n0.

Definition 3. Let (X, d) be a metric space and (xn) be a sequence in X. If for
all ε > 0, there exists n0 ∈ N such that for all m,n ≥ n0, d(xn, xm) < ε, then
(xn) is a Cauchy sequence in X.

A convergent sequence in a metric space (X, d) is a Cauchy sequence in
(X, d), while converse do not hold in general.

Definition 4. If any Cauchy sequence is convergent in a metric space (X, d),
then (X, d) is a complete metric space.

Evidently, the following result holds.

Lemma 1. Let (X, d) be a metric space and (xn) ⊆ X a sequence.

(1) A sequence (xn) converges to x if and only if limn→ ∞ d(xn, x) = 0.

(2) A sequence (xn) ⊆ X is Cauchy sequence in a metric space (X, d) if and
only if limm,n→∞ d(xm, xn) = 0.

Definition 5. Let (X, d) be a metric space and T : X 7→ X a mapping. If
limn→∞ xn = x implies limn→∞ Txn = Tx for any sequence (xn) ⊆ X, then
T is a continuous mapping.

A self-mapping T on a metric space (X, d) is called a Lipschitz mapping if
there exists q ≥ 0 such that inequality

d(Tx, Ty) ≤ qd(x, y) (1.1)

holds for all x, y ∈ X.
If the inequality (1.1) is fulfilled for q < 1, then the mapping T is a contraction.
Famous Banach results states existence and uniqueness of a fixed point for a
contraction on a complete metric space and further convergence of a sequence
of successive approximations to the observed fixed point.

Theorem 2. [4] Let (X, d) be a non-empty complete metric space and T : X 7→
X a contraction. Then there exists a unique fixed point x∗ ∈ X and for any
x ∈ X the iterative sequence (Tnx) converges to the fixed point of a mapping
T .
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The notion of suprametric originated in [5].

Definition 6. If X is a nonempty set and d : X × X → [0,∞) is a function
fulfilling (d1), (d2) and

(d∗3) d(x, y) ≤ d(x, z) + d(z, y) + ρd(x, z)d(z, y)

for any x, y, z ∈ X, then a mapping d is a suprametric on X. The pair (X, d)
is a suprametric space.

Example 1. Let X = {1, 2, 3} and d : X ×X 7→ [0,∞) fulfilling (d1) and (d2)
such that d(1, 2) = 1, d(1, 3) = 3 and d(2, 3) = 1. Then (X, d) is not a metric
space since d(1, 3) > d(1, 2) + d(2, 3), but is a suprametric space for ρ = 1.

Evidently, any metric is a suprametric, but there are several approaches on
creating a suprametric from metric and omitting triangle inequality in general.

Example 2. If (X, d) is a metric space, then the functions

dα(x, y) = d(x, y)(d(x, y) + α),

dβ(x, y) = β(ed(x,y) − 1)

for any x, y ∈ X are suprametrics on X with ρ = 2
α and ρ = 1

β , respectively.
While the function

dγ(x, y) = e−γd(x,y)
2

− 1

for any x, y ∈ X is a suprametric with a constant ρ = 1.

Note that if (d∗3) is fulfilled for some ρ > 0 then it also holds for any greater
value of constant ρ.
The terms of convergent and Cauchy sequence along with the continuity of
mappings are introduced analogously to equivalent terms in metric space.

Definition 7. Let (X, d) be a suprametric space and (xn) be a sequence in X.
The sequence (xn) converges to x ∈ X if for any ε > 0, there exists n0 ∈ N
such that d(xn, x0) < ε for all n ≥ n0.

Definition 8. Let (X, d) be a suprametric space and (xn) be a sequence in X.
If for all ε > 0, there is n0 ∈ N such that d(xn, xm) < ε for all m,n ≥ n0, then
(xn) is a Cauchy sequence in X.

Definition 9. If any Cauchy sequence is convergent in a suprametric space
(X, d), then (X, d) is a complete suprametric space.

Definition 10. Let (X, d) be a suprametric space. A mapping T : X 7→ X
is continuous at a point x ∈ X if for any ε > 0 there exists δ > 0 such that
d(Tx, Ty) < ε whenever d(x, y) < δ. If T is continuous at every point of X,
then it is a continuous mapping on a suprametric space (X, d).
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In order to obtain some fixed point results in suprametric space, we intend
to use local approach to the contraction and for that purpose we list several
theorems concerning this topic. Meyers in [11] introduced a term of a local
contraction.

Definition 11. A mapping T : X 7→ X on a metric space (X, d) is a local
contraction if there exist functions λ, µ : X 7→ [0,∞) for which a mapping T
is a contraction on a B[x, µ(x)] with a contractive constant λ(x), i.e.,

(∀x ∈ X) (∀y ∈ X) d(x, y) ≤ µ(x) =⇒ d(Tx, Ty) ≤ λ(x)d(x, y).

If both functions λ and µ are constant, then a local contraction is an uni-
form local contraction. In order to emphasize with respect to which functions,
we will use the notion of a µ, λ-uniform local contraction.
The existence of a fixed point of a local contraction is associated to the ques-
tion of chainability of a metric space (X, d).

Definition 12. A metric space (X, d) is ε-chainable for some ε > 0 if for any
x, y ∈ X there exists a path x0 = x, x1, . . . , xn−1, xn = y ∈ X such that
d(xi, xi+1) < ε for any i = 0, n− 1.

Among several results of [11] concerning existence and uniqueness of a fixed
point of a local contraction, we present the following:

Theorem 3. [11] Let T : X 7→ X be a µ, λ-uniform local contraction on the µ-
chainable metric space (X, d). There exists a metric d∗ topologically equivalent
to d under which T is a contraction. Moreover, (X, d) is complete whenever
(X, d∗) is.

Corollary 4. If T : X 7→ X is a µ, λ-uniform local contraction on the µ-
chainable complete metric space (X, d) then it possesses a unique fixed point
in X.

Proof. Theorem 3 claims existence of a complete metric d∗ on X in dependence
to which T is a contraction. Having a contraction on a complete metric spaces,
conclusion follows from Theorem 2,

2 Main results

Theorem 5. If (X, d) is a suprametric space for some ρ > 0 and D : X ×X 7→
[0,∞) a mapping defined by

D(x, y) = ln(ρd(x, y) + 1) (2.1)

for any x, y ∈ X, then (X,D) is a metric space.
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Proof. Assume that (X, d) is a suprametric space with some ρ > 0 and that
D : X × X 7→ [0,∞) is defined as in (2.1). Evidently, a mapping D is well-
defined since for arbitrary x, y ∈ X,

d(x, y) ≥ 0 =⇒ ρd(x, y) + 1 ≥ 1 =⇒ D(x, y) ≥ 0.

It remains to prove the validity of (d1)− (d3) for a mapping D.
(d1) If x, y ∈ X are such that D(x, y) = 0, then

D(x, y) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y

follows from (d∗1).
(d2) For any x, y ∈ X, the symmetry of suprametric implies

D(x, y) = ln(ρd(x, y) + 1) = ln(ρd(y, x) + 1) = D(y, x).

(d3) If x, y, z ∈ X are arbitrary, then

D(x, y) = ln(ρd(x, y) + 1)

≤ ln (ρ(d(x, z) + d(z, y) + ρd(x, z)d(z, y)) + 1)

= ln (ρd(x, z) + 1) (ρd(z, y) + 1)

= ln (ρd(x, z) + 1) + ln (ρd(z, y) + 1)

= D(x, z) +D(z, y).

Thus, triangle inequality holds for any x, y, z ∈ X.
According to previous considerations, (X,D) is a metric space.

Considering the topological properties of induced metric space, we may
note the relation between the open balls in both settings and recall that their
collection in both cases presents a base of a observed Hausdorff topology. To
make a distinction, the open ball with center x and radius r > 0 in suprametric
space (X, d) will be denoted with Bd(x, r), while for the metric space (X,D)
we intend to use BD(x, r).

Theorem 6. Let (X, d) be a suprametric space and D a metric on X defined
by (2.1). If x ∈ X and r > 0 are arbitrary, then

Bd(x, r) = BD(x, ln(1 + ρr))

Proof. If x ∈ X is arbitrary point in suprametric space (X, d) with some ρ > 0
and r > 0, then

y ∈ Bd(x, r)⇐⇒ d(x, y) < r ⇐⇒ D(x, y) < ln(1+ρr)⇐⇒ y ∈ BD(x, ln(1+ρr)).

Evidently, r > 0 is equivalent to ln(1 + ρr) > 0, and the assertion hold.
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Theorem 7. Let (X, d) be a suprametric space and D a metric on X defined
by (2.1). If x ∈ X and r > 0 are arbitrary, then

Bd[x, r] = BD[x, ln(1 + ρr)].

Proof. Proof is analogous to the proof of Theorem 6. For some x ∈ X and
r > 0, we have

d(x, y) ≤ r ⇐⇒, D(x, y) ≤ ln(1 + ρr).

Further, Bd[x, r] = BD[x, ln(1 + ρr)].

Since we intend to discuss on fixed point results in suprametric space, it
is important to consider the question of completeness in the case of newly
obtained metric space.

Theorem 8. A suprametric space (X, d) is complete if and only if the induced
metric space (X,D) is complete where D : X×X 7→ [0,∞) is defined by (2.1).

Proof. Suppose that (X, d) is a suprametric space with a constant ρ > 0 and
D : X ×X 7→ [0,∞) is defined by (2.1).
If (X, d) is a complete suprametric space, observe a Cauchy sequence (xn) ⊆ X
in a metric space (X,D). For arbitrary ε > 0 let δ > 0 be such that eδ−1 < ρε.
Due to the presumption that it is a Cauchy sequence, there exists some n0 ∈ N
such that D(xn, xm) < δ for any n,m ≥ n0. The inequality further implies
d(xn, xm) < 1

ρ

(
eδ − 1

)
< ε and the sequence (xn) is a Cauchy sequence in

a suprametric space (X, d). Since it is a complete suprametric space, there
exists the limit of the sequence x∗ ∈ X satisfying limn→∞ d(xn, x

∗) = 0.
Furthermore,

lim
n→∞

D(xn, x
∗) = lim

n→∞
ln (ρd(xn, x

∗) + 1) = 0.

Therefore, (xn) is convergent in a metric space (X,D) with the same limit
point.
Otherwise, assume that induced metric space (X,D) is complete and observe
a Cauchy sequence (xn) in a suprametric space (X, d). For arbitrary ε > 0
choose δ > 0 such that ln(ρδ+ 1) < ε. For a chosen δ let m0 ∈ N be such that
d(xn, xm) < δ for any n,m ≥ m0. Then,

D(xn, xm) = ln(ρd(xn, xm) + 1) < ln(ρδ + 1) < ε,

for any n,m ≥ m0. Accordingly, (xn) is a Cauchy sequence in (X,D) and thus
converges to some x∗ ∈ X with respect doD, meaning that limn→∞D(xn, x

∗) =
0.
Moreover,

lim
n→∞

d(xn, x
∗) = lim

n→∞

1

ρ

(
eD(xn,x

∗) − 1
)

= 0.
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Consequently, (xn) is a Cauchy sequence in (X, d) with the identical limit x∗.
It is proven that completeness of a suprametric space implies completeness of
induced metric space from Theorem 5 and vice versa.

Remark 1. The inequality x − x2

2 < ln(1 + x) < x (or x < ex − 1) for any
x > 0 may be used in the proof of Theorem 8 instead of observed estimations.

Theorem 9. A mapping T : X 7→ X is continuous with respect to suprametric
d with a constant ρ > 0 if and only if it is continuous with respect to the
induced metric D defined in (2.1).

Proof. This proof is easily deduced from the proof of Theorem 8.
Since limn→∞ d(Txn, Tx) = 0 if and only if limn→∞D(Txn, Tx) = 0 as men-
tioned in the previous remark for arbitrary point x ∈ X and a sequence
(xn) ⊆ X converging towards it in either (X, d) or (X,D).

3 Fixed point results

Theorem 10. If (X, d) is a complete suprametric space with ρ > 0 and T :
X 7→ X a contraction, then T is a local contraction in an associated metric
space (X,D).

Proof. Let (X, d) be a complete suprametric space for some ρ > 0 and T : X 7→
X a contraction on (X, d) with a contractive constant q ∈ [0, 1), meaning that

d(Tx, Ty) ≤ qd(x, y), (3.1)

for all x, y ∈ X.
The inequality

(ρt+ 1)1−
1
n > ρqt+ 1 (3.2)

has a solution n0 (and any n ≥ n0) in the set of integers for t ∈ (0, ε(n0)).
For arbitrary x ∈ X let n0 be a large enough solution of the inequality (3.2)
such that 2

1−qd(x, Tx) ∈ (0, ε(n0)). Let r = 1
1−qd(x, Tx) and X∗ = Bd[x, r]

presents a complete subspace of a metric space (X,D) due to the Theorem 7.
We will discuss on the restriction of a mapping T on a set X∗ and its codomain.
If y ∈ X∗, then

d(Ty, x) ≤ d(Ty, Tx) + d(Tx, x)

≤ qd(x, y) + d(x, Tx)

≤ qr + d(x, Tx)

=

(
q

1− q
+ 1

)
d(x, Tx)

= r,
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leads to the conclusion that Ty ∈ X∗ and, as mentioned, we may observe a
restriction T ∗ : X∗ 7→ X∗ of a mapping T .
For any x1, x2 ∈ X∗, due to (3.1), we get

D(T ∗x1, T
∗x2) = D(Tx1, Tx2)

= ln(ρd(Tx1, Tx2) + 1)

≤ ln(ρqd(x1, x2) + 1)

< ln

(
(ρd(x1, x2) + 1)

(
1− 1

n0

))
=

(
1− 1

n0

)
ln ((ρd(x1, x2) + 1))

=

(
1− 1

n0

)
D(x1, x2)

since d(x1, x2) ≤ d(x1, x) + d(x, x2) ≤ 2
1−qd(x, Tx) implies that d(x1, x2) ∈

(0, ε(n0)) and (3.2) is fulfilled.
Accordingly, T ∗ is a contraction on a complete metric space X∗ and by Banach
fixed point theorem it possesses a unique fixed point in X∗.
The perceived fixed point in X∗ is unique in whole space X because of (3.1).

Theorem 11. If (X, d) is a complete suprametric space with a constant ρ > 0
and T : X 7→ X a contraction on (X, d) with a contractive constant q > 0 such
that µ = supx∈X d(x, Tx) <∞, then T is a ρµ,q-uniform local contraction on
X.

Proof. In a complete suprametric space with a contraction T : X 7→ X deter-
mined by a constant q ∈ [0, 1) observe arbitrary points x, y ∈ X. The question
of chainability will be answered for a complete metric space (X,D) associated
to suprametric space as in Theorems 5 and 8.
If µ = supx∈X d(x, Tx) <∞, then

d(Tnx, Tny) ≤ qnd(x, y),

implies that there exists some n0 ∈ N such that d(Tnx, Tny) < µ for any
n ≥ n0.
Additionally, d(T ix, T i+1x) ≤ d(x, Tx) for any i ∈ N due to the contractive
condition.
Consequently, x0 = x, x1 = Tx,. . ., xn0

= Tn0x, xn0+1 = Tn0y, xn0+2 =
Tn0−1y,. . . , x2n0 = Ty and x2n0+1 = y is a ρµ-chain between x and y as
d(xi, xi+1) < µ gives

D(xi, xi+1) = ln(ρd(xi, xi+1) + 1) ≤ ρµ
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for any i = 0, 2n0 due to the previous considerations. Thus, the space (X,D)
is ρµ-chainable.
There exists some λ ∈ [0, 1) such that qρt+ 1 ≤ (ρt+ 1)λ for any t ∈ [0, 2ρµ].
A mapping T is a contraction with a contractive constant λ on a closed ball
B[x, ρµ] for each x ∈ X as the inequalities

D(Ty, Tz) = ln(ρd(Ty, Tz) + 1)

≤ ln(qρd(y, z) + 1)

≤ ln (ρd(y, z) + 1)
λ

= λD(y, z)

hold for any y, z ∈ B[x, ρµ].

Recalling Mayer’s result presented in Theorem 3, we may state the follow-
ing

Theorem 12. If (X, d) is a complete suprametric space and T : X 7→ X a
contraction such that supx∈X d(x, Tx) < ∞, then there exists a complete
metric d∗ on X such that T is a contraction on a complete metric space
(X, d∗). Moreover, d∗ is topologically equivalent to the induced metric D on
X defined in Theorem 5.

Proof. With respect to Theorem 11 we conclude that a contraction T : X 7→ X
on a complete suprametric space (X, d) with a constant ρ is ρµ,q-uniform
local contraction on a complete metric space (X,D) where q is a contractive
constant associated to T and µ = supx∈X d(x, Tx) < ∞. Hence, Theorem 3
implies existence of a complete metric d∗ on X topologically equivalent to D
such that T is a contraction on (X, d∗).

If X is a topological space, T : X 7→ X a mapping and x0 ∈ X, then the
ω-limit set is the set

ωT (x0) =
⋂
n∈N
{T kx0 | k ≥ n}.

Recall the result of Lipeinš [9] regarding the relation between the limit set and
the existence of a fixed point of a continuous mapping.

Theorem 13. [9] Let X be a topological space and T : X 7→ X a continuous
mapping. If there exists a continuous mapping d : X ×X 7→ R satisfying

|d(Tx, Ty)| < |d(x, y)|

for all distinct x, y ∈ X and there exists some x0 ∈ X such that ωT (x0) 6=
∅, then T has a unique fixed point in X. Moreover, the iterative sequence
(Tnx0) ⊆ X converges to the fixed point for an arbitrary initial point x0 ∈ X.
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The succeeding result was obtained in [5] based on Theorem 13.

Theorem 14. [5] If (X, d) is a suprametric space, a mapping T : X 7→ X
satisfies

d(Tx, Ty) < d(x, y)

for all mutually distinct x, y ∈ X and there exists x0 ∈ X such that ωT (x0) 6=
∅, then T has a unique fixed point. Moreover, the iterative sequence (Tnx0) ⊆
X converges to the fixed point in a suprametric space (X, d) for an arbitrary
initial point x0 ∈ X.

Theorem 13 is equivalent to Edelstein theorem in the case of a metric space.

Theorem 15. [7] Let (X, d) be a metric space, T : X 7→ X a contractive
mapping satisfying such that ωT (x0) 6= ∅ for some x0 ∈ X, then the sequence
(Tnx0) is convergent and its limit is a unique fixed point of a mapping T .

Consequently, Theorem 12 yields that Theorem 14 is equivalent to Theorem
15.

4 Supratopology and suprametric

The supratopology was introduced in [10] in 1983. as a collection of subsets
of a non-empty set X containing X and closed for arbitrary union. It was
further investigated in [1, 2, 3, 8, 15] among many others. Known examples
are the families of semiopen subsets or preopen subsets of a topological space.
Unfortunately, this notation is of earlier term and the choice of denoting the
described metric as suprametric was unfortunate since those two terms do not
correlate in general.

Definition 13. If X is a non-empty set and τ∗ ⊆ P(X) a family of subsets
satisfying

(τ1) ∅, X ∈ τ∗;

(τ2) (∀A ⊆ τ∗)
⋃
A ∈ τ∗;

is a supratopology on X and (X, τ∗) is a supratopological space.

Topological space is a supratopological space, but converse do not hold in
general.

Example 3. If X = {1, 2, 3} and τ∗ = {∅, {1, 2}, {1, 3}, X}, then τ∗ is a
supratopology on X, but not a topology.

The family generated by open balls

τ = {A ⊆ X | (∀x ∈ A) (∃r > 0)Bd(x, r) ⊆ A}
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in a suprametric space (X, d) presents a Hausdorff topology on X as marked
in [5] and as also follows from our observation that the ball Bd(x, r) coincides
with a open ball in a metric space (X,D) and that the metric topology is
Hausdorff.

Theorem 16. Intersection of two open balls in a suprametric space (X, d) is
open set in a generated topological space (X, τ).

Proof. Let x, y ∈ X be arbitrary points of a suprametric space (X, d) with
a constant ρ > 0 and ε, δ > 0. Assume that z ∈ B(x, ε) ∩ B(y, δ) (it
their intersection is empty then it is an open set by definition) and let r =

min
{
ε−d(z,x)
1+ρd(z,x) ,

δ−d(z,y)
1+ρd(z,y)

}
, then for arbitrary w ∈ B(z, r)

d(x,w) ≤ d(x, z) + d(z, w) + ρd(x, z)d(z, w)

< d(x, z) +
ε− d(z, x)

1 + ρd(z, x)
+ ρd(x, z)

ε− d(z, x)

1 + ρd(z, x)

= ε

and

d(y, w) ≤ d(y, z) + d(z, w) + ρd(y, z)d(z, w)

< d(y, z) +
δ − d(z, y)

1 + ρd(z, y)
+ ρd(y, z)

δ − d(z, y)

1 + ρd(z, y)

= δ

imply that z ∈ B(z, r) ⊆ B(x, ε) ∩B(y, δ).

On the other hand, we may define a supratopology that does not generate
a suprametric since not every supratopology is a topology.

Example 4. Let X = {1, 2, 3} and τ∗ = {∅, {1, 2}, {1, 3}, X} a supratopology
on X. Then τ is not generated by any suprametric d : X × X 7→ [0,∞)
since for d(1, 2) = a, d(1, 3) = b and d(2, 3) = c define r < min{a, b, c} and
B(1, r) = {1} /∈ τ∗.

It would be expected that a suprametric generates a supratopology instead
of a topology which is not the case and that is why we needed to emphasize
that there is no relation between mentioned terms (except that any topology
is a supratopology).



ON THE METRIZABILITY OF SUPRAMETRIC SPACE 212

5 Conclusion

The notion of suprametric was introduced with a presumption of novelty and
potential for further applications. Unfortunately, from the proposed metriza-
tion of suprametric which preserves a property of completeness we may con-
clude that that a setting of a complete suprametric space may be observed
through a obtained metric space. Moreover, observed fixed point theorems
are a direct corollary of some well-known result in metric space. We believe
that the same approach may be applied for various generalizations of supra-
metric and that the expected outcome would be analogous equivalent of a
generalization of a metric space.
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Serbia
Email: marija.cvetkovic@pmf.edu.rs



ON THE METRIZABILITY OF SUPRAMETRIC SPACE 214


