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A digital 3D Jordan-Brouwer separation
theorem

Josef Šlapal

Abstract

We introduce a connectedness in the digital space Z3 induced by a
quaternary relation. Using this connectedness, we prove a digital 3D
Jordan-Brouwer separation theorem for boundary surfaces of the digital
polyhedra that may be face-to-face tiled with certain digital tetrahedra
in Z3. An advantage of the digital Jordan surfaces obtained over those
given by the Khalimsky topology is that the former may bend at the
acute dihedral angle π

4
.

1 Introduction

Digital images represent an important source of data and the role of computer
imagery is to extract and process these data to make them convenient as input
for computer programs to get the desired information. For example, digital
image data may be used for diagnosing the objects investigated in medicine,
material science, etc. And 3D imaging has a major role as modern efficient
imaging technologies are being developed providing high quality 3D digital
image data (e.g., 3D tomograph data in medicine).

In 3D imagery, a significant role is played by digital Jordan surfaces, i.e.,
the surfaces satisfying a digital analog of the 3D Jordan-Brouwer separation
theorem – cf. [2]. Such surfaces separate the digital space Z3 into two con-
nected components, hence represent boundaries of objects in digital pictures.

Key Words: Digital space, Digital Jordan surface, Connectedness, Quaternary relation,
Digital 3D tiling.
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Therefore, when studying and processing 3D digital images, it is desirable
to equip the digital space Z3 with a connectedness allowing to define digital
Jordan surfaces. In the classical approach, adjacency relations (6-, 18- and 26-
adjacencies) are employed to obtain connectedness on Z3 – see [6, 11]. Such an
approach was used, for instance, in [1, 5, 9, 10] to introduce and study digital
Jordan surfaces. A disadvantage of the classical approach is that two kinds of
connectedness have to be similtaneously employed, one for the surface and the
other for its complement. Therefore, a new approach was proposed in [4] using
just one connectedness, namely that one provided by the Kahlimsky topology.
Digital Jordan surfaces with respect to the Khalimsky topology were studied
in [7] and [8].

In this note, we propose another approach to defining digital Jordan sur-
faces, namely an approach based on employing a quaternary relation to obtain
a connectedness in Z3. More precisely, we introduce a quaternary relation R
on Z and study the connectedness in Z3 induced by the relation R3 obtained
as a special product of three copies of the relation R. We prove a digital
analog of the 3D Jordan-Brouwer separation theorem for the digital space Z3

equipped with the (connectedness induced by the) relation R3. More precisely,
we show that the boundary surfaces of a polyhedron that may be face-to-face
tiled with certain digital tetrahedra separates Z3 into exactly two connected
components. This may be considered to be a 3D extension of the digital Jor-
dan curve theorem proved in [13] that is based on employing a connectedness
in Z2 induced by a ternary relation. But, first of all, it improves the result
in [15] where a similar statement was proved for the boundary surfaces of the
polyhedra obtained by face-to-face tiling with certain digital prisms. We also
show an advantage of the digital Jordan surfaces with respect to the connect-
edness induced by the relation R3 over those with respect to the Khalimsky
topology on Z3.

2 Preliminaries

As usual, by a quaternary relation R on X we understand a subset R ⊆ X4, i.e.,
a set of ordered quadruples (x0, x1, x2, x3) = (xi | i < 4) with x0, x1, x2, x3 ∈
X. The pair (X,R) is then called a quaternary relational system. We denote
by ∆X the quaternary diagonal on X, i.e., the quaternary relation ∆X = {(xi |
i < 4) ∈ Xn; x0 = x1 = x2 = x3}. For every quaternary relation R on X, we
put R̄ = R ∪∆X . R̄ is called the reflexive hull of R.

Let Rj be a quaternary relation on a set Xj for every j = 1, 2, ...,m
(m > 1 an integer). Recall that the Cartesian product of the relations Rj ,
j = 1, 2, ...,m, is the quaternary relation

∏m
j=1 Rj on the Cartesian product∏m

j=1 Xj of the sets Xj , j = 1, 2, ...,m, given by
∏m
j=1 Rj = {((x1

i , x
2
i , ..., x

m
i ) |
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i < 4); (xji | i < 4) ∈ Rj for every j ∈ J}. We put
⊗m

j=1 Rj =
∏m
j=1 R̄j −∆Y

where Y =
∏m
j=1 Xj and call the n-ary relation

⊗m
j=1 Rj on

∏m
j=1 Xj the

strong product of Rj , j = 1, 2, ...,m.
If Xj = X and Rj = R for every j = 1, 2, ...,m, we write Rm instead of⊗m
j=1 Rj .
Given a quaternary relation R on a set X, we put

R∗ = {(xi | i ≤ m) ∈ Xm+1; 0 < m < 4 and there exists (yi | i < 4) ∈ R such
that xi = yi for every i ≤ m or xi = ym−i for every i ≤ m}.
The elements of R∗ will be called R-initial segments. Thus, the R-initial
segments are the ordered sequences of at least two and at most four members
that are the initial parts of the quadruples belonging to R ordered according
to the quadruples or conversely.

Definition 2.1. Let R be a quaternary relation on a set X. A sequence
C = (xi | i ≤ r), r > 0 an integer, of elements of X is called an R-walk if there
is an increasing sequence (ik | k ≤ p) of non-negative integers with i0 = 0 and
ip = r such that ik − ik−1 < 4 and (xi | ik−1 ≤ i ≤ ik) ∈ R∗ for every k with
0 < k ≤ p.

Evidently, every R-initial segment is an R-walk. Observe also that, if
(xi| i ≤ r) is an R-walk, then its reverse, i.e., the sequence (xr−i| i ≤ r), is an
R-walk, too. And, if (xi| i ≤ r) and (yi| i ≤ s) are R-walks such that xr = y0,
then their union, i.e., the sequence (zi| i ≤ r + s) where zi = xi for all i ≤ r
and zi = yi−r for all i with r ≤ i ≤ r + s, is an R-walk, too.

Definition 2.2. Let R be a quaternary relation on a set X. A set Y ⊆ X
is said to be R-connected if any two different elements x, y ∈ Y can be joined
by an R-walk contained in Y (i.e., there is an R-walk (xi | i ≤ r) with {xi |
i ≤ r} ⊆ Y such that x0 = x and xr = y). A maximal (with respect to set
inclusion) R-connected set is called an R-component of X.

Note that, given a quaternary relation R on a set X, every R-initial segment
is R-connected. Of course, the union of a finite sequence of nonempty R-
connected sets is R-connected if the intersection of every consecutive pair of
sets in the sequence is nonempty. In particular, every R-walk is R-connected.

If R is a quaternary relation on a set X and Y ⊆ X, then there is a
quaternary relation on Y induced by R, namely R∩Y 4. The relational system
(Y,R∩Y 4) is then called a relational subsystem of (X,R) and is denoted by Y
for short. If a subset A ⊆ Y is R ∩ Y 4-connected or is an R ∩ Y 4-component
of Y , then we briefly say that it is R-connected or is an R-component of Y ,
respectively. And we say that Y separates X into exactly two R-components
if the subset X − Y of X has exactly two R-components.

We will need the following statement (Theorem 3.5) proved in [14]:
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Figure 1: A portion of R.

Proposition 2.3. Let Rj be a quaternary relation on a set Xj and Yj ⊆ Xj

be a subset for every j = 1, 2, ...,m (m > 0 an integer). If Yj is Rj-connected
for every j = 1, 2, ..., m, then

⊗m
j=1 Yj is

∏m
j=1 Rj-connected.

As usual, two quaternary relational systems (X,R) and (Y, S) are said
to be isomorphic if there exists a bijection f : X → Y such that, for every
(xi | i < 4) ∈ X4, (xi | i < 4) ∈ R⇔ (f(xi) | i < 4) ∈ S. Clearly, in this case,
a subset A ⊆ X is R-connected if and only if f(A) is S-connected.

In the sequel, we will work with digital polygons in Z2 and digital polyhe-
dra in Z3, namely with digital squares, digital triangles, digital cubes, digital
prisms and digital tetrahedra. They are obtained by digitizing the squares and
triangles in R2 and the cubes, prisms, and tetrahedra in R3 having vertices
with integer coordinates, i.e., by their intersections with Z2 and Z3, respec-
tively. We will also employ the concepts such as sides, faces and diagonals of
the digital polygons or digital polyhedra. These are obtained by digitizing the
corresponding concepts concerning the polygons or polyhedra (in R2 or R3)
from which the digital polygons or digital polyhedra under consideration have
been digitized.

3 A connectedness in Z3 associated with a quaternary
relation

From now on, R will denote the quaternary relation on Z given as follows:
R = {(xi | i < 4); there exists an integer k such that xi = (3+6k)+i for all i <
4 or xi = (3 + 6k)− i for all i < 4}.
The quaternary relation R is demonstrated in Figure 1 where the quadruples
belonging to R are represented by line segments directed from the first to the
last members of the quadruples.

Since Z is evidently R-connected, Proposition 2.3 implies:

Theorem 3.1. Zm is Rm-connected for every positive integer m.

Remark 3.2. For every positive integer m, the relation Rm induces a graph
G with the vertex set Zm and the set of edges {{p, q}; p, q ∈ Zm and there are
(ri | i < 4) ∈ Rm and i0, 0 ≤ i0 < 4, such that p = ri0 and q = ri0+1}. The
elements (quadruples) of Rm may be considered to be paths of length 4 in the
graph G. Then G is a graph with 4-path partition according to the terminology
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Figure 2: A portion of R2.

introduced in [12] where graphs with n-path partitions (n > 1 an integer) were
used for structuring the digital spaces.

The relation R2 is demonstrated in Figure 2 where, as in Figure 1, the
quadruples belonging to R2 are represented by line segments directed from
the first to the last members of the quadruples.

Definition 3.3. Each of the following subsets of Z2 will be called an R2-
triangle:

(1) {(x, y) ∈ Z2; 6k ≤ x ≤ 6k + 6, 6l ≤ y ≤ x + 6l − 6k}, k, l ∈ Z,

(2) {(x, y) ∈ Z2; 6k ≤ x ≤ 6k + 6, x + 6l − 6k ≤ y ≤ 6l + 6}, k, l ∈ Z,

(3) {(x, y) ∈ Z2; 6k ≤ x ≤ 6k + 6, 6l ≤ y ≤ 6k + 6l + 6− x}, k, l ∈ Z,

(4) {(x, y) ∈ Z2; 6k ≤ x ≤ 6k + 6, 6k + 6l + 6− x ≤ y ≤ 6l + 6}, k, l ∈ Z.

Every R2-triangle is a digital rectangular triangle having 28 points. If we
define R2-squares to be the sets {(x, y) ∈ Z2; 6k ≤ x ≤ 6k+6, 6l ≤ y ≤ 6l+6},
k, l ∈ Z, then every R2-triangle is one of the two (digital) triangles obtained
by splitting an R2-square along one of its two diagonals - cf. Figure 2.

The following statement follows from (the proof of) Theorem 4.7 in [14]:
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Lemma 3.4. Every R2-triangle is R2-connected and so is every set obtained
from an R2-triangle by deleting some of its sides.

Since every R2-square is the union of a pair of R2-triangles having a com-
mon hypotenuse (which is a diagonal of the square), Lemma 1 is valid for
R2-squares as well.

Now, we will proceed from Z2 to Z3. Clearly, the coordinate planes xy, xz,
and zy, when regarded as the relational subsystems of (Z3, R3), are isomorphic
to (Z2, R2). The same is true for the digital planes {(x, y, 6k); (x, y) ∈ Z2},
{(x, 6k, z); (x, y) ∈ Z2}, and {(6k, y, z); (x, y) ∈ Z2} where k ∈ Z (these
planes may be obtained by shifting the coordinate planes along the coordinate
axes perpendicular to them).

Definition 3.5. A subsets P ⊆ Z3 will be called an R3-prism if:

(1) There are an R2-triangle A in the coordinate plane xy and an integer
k ∈ Z such that P = {(x, y, z) ∈ Z3; (x, y) ∈ A and 6k ≤ z ≤ (6k + 6)}
or

(2) there are an R2-triangle A in the coordinate plane xz and an integer
k ∈ Z such that P = {(x, y, z) ∈ Z3; (x, z) ∈ A and 6k ≤ y ≤ (6k + 6)}
or

(3) there are an R2-triangle A in the coordinate plane yz and an integer
k ∈ Z such that P = {(x, y, z) ∈ Z3; (y, z) ∈ A and 6k ≤ x ≤ (6k + 6)}.

Similarly to subsets of the Euclidean space R3, a pair of subsets of Z3 is
said to be congruent if one may be transformed into the other by a combination
of a translation, a rotation and a reflection (i.e., mirroring). We will also use
the concepts of a 3D tiling or, equivalently, tessellation (see [3]) restricted from
R3 to Z3. More precisely, we will work with a face-to-face tiling (tessellation)
of a digital polyhedron in Z3 with certain digital polyhedra (so that any two
polyhedra of such a tiling are disjoint or only share one vertex or one full edge
or one full face).

Clearly, all R3-prisms are congruent to each other and each of them is a
digital triangular prism with 196 points. If we define R3-cubes to be the sets
{(x, y, z) ∈ Z3; 6k ≤ x ≤ 6k + 6, 6l ≤ y ≤ (6l + 6), 6m ≤ z ≤ (6k + 6)},
k, l,m ∈ Z, then each R3-prism is one of the two (digital) prisms obtained by
splitting an R3-cube along a plane perpendicular to a face of the cube and
containing a diagonal of the face. In other words, every R3-cube may be tiled
(in six ways) with a pair of R3-prisms. A splitting of an R3-cube into a pair
of R3-prisms is demonstrated in Figure 3 where only the edges of the pair
of R3-prisms are visualized. Thus, every R3-cube gives rise to 12 different
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Figure 3: Splitting an R3-cube into a pair of R3-prisms

R3-prisms and the cube is the union of any pair of them having a common
face.

The following digital 3D Jordan-Brouwer separation theorem follows from
[15], Theorem 2:

Theorem 3.6. Let S be the boundary surface of such a digital polyhedron
that may be tiled with R-prisms. Then S separates Z3 into exactly two R3-
components and the union of S with each of them is R3-connected.

The goal of this note is to improve Theorem 3.6 by proving its statement
for boundary surfaces of the polyhedra that may be face-to-face tiled with
certain tetrahedra finer than the R3-prisms. Of course, if a triangular prism
is one of the two prisms obtained by cutting a cube (in R3) by a plane that is
perpendicular to a face of the cube and contains a diagonal of the face, then
the prism can be tessellated with three tetrahedra congruent to each other
and such a tessellation may be done in two different ways. Each of the two
tessellations is called canonical and this concept applies also to the digital
case. Thus, there are two canonical tessellations of every R3-prism, each with
three digital tetrahedra congruent to each other.

Definition 3.7. Each digital tetrahedron of a canonical tessellation of an
R3-prism will be called an R3-tetrahedron.

A canonical tessellation of an R3-prism is demonstrated in Figure 4 where
only the edges of the three R3-tetrahedra of the tessellation are visualized.
Clearly, each of the three R3-tetrahedra is a digital tetrahedron with 84 points.



A DIGITAL 3D JORDAN-BROUWER SEPARATION THEOREM 168

�
�
�
�

�
�
�
�

r r r r
r r r

r r r r
r r r

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

r r
r r

r r
r

r r
r r

r r
r

r r r r r r r
r r r r r r r

r r r r r r r

rr
rr
rr
r

rr
rr
rr
r

@
@
@
@B
B
B
B
B
B
B
B
B
B
B
B

@
@

@
@
@

@
@
@

r r r r r r rrr
rr

rr
r

rrrrrrr

(6k+6,6l,6m)

(6k,6l+6,6m)

(6k,6l+6,6m+6)(6k,6l,6m+6)

(6k+6,6l+6,6m)

(6k,6l,6m)

Figure 4: A canonical tessellation of an R3-prism.

Every R3-cube may be tessellated, in 4 ways, with 6 different (but congru-
ent) R3-tetrahedra. Thus, each R3-cube gives rise to 24 different but congruent
R3-tetrahedra:

Given k, l,m ∈ Z, put A = (6k, 6l, 6m), B = (6k + 6, 6l, 6m), C = (6k +
6, 6l+6, 6m), D = (6k, 6l+6, 6m), E = (6k, 6l, 6m+6), F = (6k+6, 6l, 6m+6),
G = (6k + 6, 6l + 6, 6m + 6), H = (6k, 6l + 6, 6m + 6). The 24 R3-tetrahedra
are ABCE, ACDE, CDEH, ABDH, BCDH, ABEH, BEFH, BFGH,
BCGH, CEFG, CEGH, BCEF , BCFG, BFGH, BCDF , ABDF , ADEF ,
DEFH, ACDG, ADGH, AEGH, ABFG, AEFG, and ABCG.

Since the digital space Z3 may be tiled with the (congruent) R3-cubes, it
may be tiled with (congruent) R3-tetrahedra.

Proposition 3.8. Every R3-tetrahedron is R3-connected and so is every set
obtained from an R3-tetrahedron by removing some of its faces.

Proof. Let k, l,m ∈ Z and let T be the R3-tetrahedron with vertices (6k, 6l, 6m),
(6k + 6, 6l, 6m), (6k + 6, 6l + 6, 6m), (6k, 6l, 6m + 6) (see Figure 4). Put
T1 = {(x, y, z) ∈ T ; 6k ≤ x ≤ 6k + 3, 6l ≤ y ≤ x + 6l − 6k}, T2 = {(x, y, z) ∈
T ; 6k + 3 ≤ x ≤ 6k + 6, 6l ≤ y ≤ 6l + 3)}, T3 = {(x, y, z) ∈ T ; 6k + 3 ≤
x ≤ 6k + 6, 6l + 3 ≤ y ≤ x + 6l − 6k}. Then T = T1 ∪ T2 ∪ T3. Put
S = {(x, y, z) ∈ T ; z = 6m}, S1 = T1 ∩ T2 and S2 = T2 ∩ T3.
Clearly, every point of T1 can be joined by an R3-walk (consisting of at most
two R3-initial segments) with a point of S, namely with the orthogonal pro-
jection of the point on S. Since S is R3-connected (it is isomorphic to an
R2-triangle), every pair of points of S can be joined by an R3-walk in S.
Therefore, every pair of points of T1 can be joined by an R3-walk in T . Fur-
ther, every point of T2 can be joined by an R3-walk (an R3-initial segment)
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with a point of S1, namely with the orthogonal projection of the point on S1.
Since S1 ⊆ T1, every pair of points of S1 can be joined by an R3-walk in T .
Therefore, every pair of points of T2 can be joined by an R3-walk in T and this
is true also if one of the points belongs to T1 and the other one belongs to T2.
Finally, every point of T3 may be joined by an R3-walk (an R3-initial segment)
with a point of S2, namely with the orthogonal projection of the point on S2.
Since S2 ⊆ T2, every pair of points of S2 can be joined by an R3-walk in T .
Therefore, every pair of points of T3 can be joined by an R3-walk in T and
this is true also if one of the points belongs to T2 and the other one belongs
to T3. Consequently, every pair of points of T can be joined by an R3-walk in
T . Therefore, T is R3-connected.
If T is the set obtained from the R3-tetrahedron by removing some of its faces,
then the proof of R3-connectedness of T is much the same (note that, in this
case, S is obtained from an R3-triangle by removing some of its sides, hence
still connected). And for the other 23 R3-tetrahedra the proof is analogous
because they are congruent to T .

Since every R3-prism may be tiled with R3-tetrahedra, Proposition 3.8 is
valid also for R3-prisms (as well as for R3-cubes). The whole digital space Z3

may evidently be tiled with R3-cubes, hence also with R3-tetrahedra.

Theorem 3.9. (Digital 3D Jordan-Brouwer separation theorem) Let S be the
boundary surface of a polyhedron that may be tiled with R3-tetrahedra. Then
S separates Z3 into exactly two R3-components and the union of S with each
of them is R3-connected.

Proof. Let S satisfy the conditions of the statement so that S is the union of
all faces of a polyhedron TF ⊆ Z3 that can be tiled with R3-tetrahedra. Then
the set TI = (Z3 − TF ) ∪ S may also be tiled with R3-tetrahedra. Since all
R3-tetrahedra are R3-connected and so are all subsets of Z3 obtained from
the tetrahedra by removing some of their faces, TF , TF − S, TI , and TI − S
are R3-connected, too. It is obvious that every R3-walk C = (zi | i ≤ k),
k > 0 an integer, joining a point of TF − S with a point of TI − S meets
S (i.e., meets a face of an R3-tetrahedron contained in S). Thus, the set
Z3−S = (TF −S)∪ (TI −S) is not R3-connected. Hence, TF −S and TI −S
are R3-components of Z3 − S, TF − S finite and TI − S infinite, with TF and
TI R3-connected. The proof is complete.

Remark 3.10. If we define R to be a binary or ternary relation on Z, i.e., to
be obtained by replacing i < 4 with i < 2 or i < 3 in the definition of R at
the beginning of this section, then Theorem 3.9 is not valid. More precisely, if
R is binary, then the R3-connectedness coincide with the connectedness with
respect to the Khalimsky topology on Z3. And, if R is ternary, then the
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sets obtained from an R3-tetrahedra by deleting its faces is not R3-connected.
The cases of the relation R with arities greater than 4 will be studied in a
forthcoming paper.

4 Conclusion

We have found a connectedness structure for the digital space Z3, namely
the quaternary relation R3, which can be used to obtain a digital 3D Jordan-
Brouwer separation theorem (Theorem 3.9). An advantage of the R3-Jordan
surfaces provided by Theorem 3.9 over the Jordan surfaces with respect to
the Khalimsky topology on Z3 (proposed in [7]) is that the former may bend
at an acute dihedral angle π

4 while the latter may never bend in a dihedral
angle less than π

2 . And, since every R3-prism may be tiled with three R3-
tetrahedra, Theorem 3.9 implies the digital 3D Jordan-Brouwer separation
theorem proved in [15]. In other words, the variety of digital Jordan surfaces
provided by Theorem 3 is richer and containing finer surfaces than the one
provided in [15].
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[14] J. Šlapal, Relation-induced connectedness in the digital plane, Aequat.
Math. 92 (2018), 75–90.
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