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A note on almost sure exponential
stability of θ-Euler-Maruyama

approximation for neutral stochastic
differential equations with

time-dependent delay when θ ∈ (1
2 , 1)

Maja Obradović and Marija Milošević

Abstract

This paper is motivated by the paper [2]. The main aim of this
paper is to extend the stability result from [16], related to the θ-Euler-
Maruyama method (θ ∈ ( 1

2
, 1)) for a class of neutral stochastic differen-

tial equations with time-dependent delay. The theta method is defined
such that, in general case, it is implicit in both drift coefficient and
neutral term. Sufficient conditions of the a.s. exponential stability of
the θ-Euler-Maruyama method, including the linear growth condition
on the drift coefficient of the equation, are revealed. The stability result
is established for larger class of neutral terms than that considered in
the second cited paper. An example is provided to support the main
results of the paper.

1 Introduction

(Neutral) stochastic differential delay equations and (neutral) stochastic func-
tional differential equations are considered by many authors (see, for example
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[5, 21, 1, 9, 10, 4, 3, 6, 7, 14, 11, 12]), since these equations describe many
real-life phenomena. As known from the existing literature, a very significant
task in numerical analysis of stochastic differential equations is to reveal the
conditions under which the exact and approximate solution share the same
stability properties. For example, in [20, 23, 8], the authors investigated a.s.
exponential stability of the Euler-Maruyama or backward Euler approximate
solutions for stochastic differential equations. Also, in [15, 16], the θ-Euler-
Maruyama method is considered for neutral stochastic differential equations

with time-dependent delay, for θ ∈
[
0, 1

2

]
and θ ∈ ( 1

2 , 1), respectively.

In this paper we will consider the θ-Euler-Maruyama method for a class
of neutral stochastic differential equations with time-dependent delay, under
the linear growth condition on the drift coefficient of the equation, among
other conditions. The main result of this paper is influenced by the paper
[2], where the theta method, for θ ∈ ( 1

2 , 1] is considered for a class of neutral
stochastic differential equations with constant delay and Markovian switch-
ing. It should be noted that in the cited paper certain sufficient conditions,
without the linear growth condition on the drift and diffusion coefficients, are
applied for obtaining the appropriate stability results. Additionally, in [13]
and [17], the backward Euler method is studied for a class of neutral stochas-
tic differential equations with bounded time-dependent delay, as well as for
a class of neutral stochastic differential equations with unbounded delay and
Markovian switching. On the other hand, the a.s. exponential stability of the
θ-Euler-Maruyama method, when θ ∈ ( 1

2 , 1), for neutral stochastic differential
equations with time-dependent delay, which is considered in the present pa-
per, required the application of the technique different than that from [13, 17].
It should be emphasized that in the paper [16], the a.s. exponential stabil-
ity result for the same method and the same type of equations is established
under certain highly nonlinear conditions, including an additional condition
on the drift coefficient, comparing to the conditions from the paper [2]. The
reason for that is the fact that in [16] the approximate equation is defined by
parameterizing not only the drift coefficient by θ, but also the neutral term,
which was not the case in [2]. Comparing to the paper [16], in the present
paper, the linear growth condition on the drift coefficient of the equation is
added, but without the additional condition on the drift coefficient although
the approximate equation is defined by parameterizing the drift coefficient and
the neutral term by θ, since the argument of the neutral term in the approx-
imation could be the present state of the system described by our equation.
On the other hand, in this paper the condition on the neutral term is weaker
than the one in the paper [16].

This paper is organized in following way. After introducing the basic no-
tation and hypotheses which are necessary for proving the main result of this
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paper in Section 2, we will impose the assumptions under which the discrete θ-
Euler-Maruyama approximate solution for neutral stochastic differential equa-
tions with time-dependent delay is a.s. asymptotically exponentially stable,
for θ ∈ ( 1

2 , 1). Moreover, we will present the verification that the assumptions
from the present paper, for the certain extent, allow the extension of the cor-
responding result from the paper [16]. However, these assumptions include
the linear growth condition on the drift coefficient. In Section 3 an example
and numerical simulations will be presented in order to illustrate our theory.

First, we will introduce some standard notation and definitions which are
fundamental for the following consideration. Assume that all random variables
and processes considered here are defined on a complete probability space
(Ω,F, {Ft}t≥0, P ) with filtration {Ft}t≥0 satisfying the usual conditions. Let
w = {w(t), t ≥ 0} be an m-dimensional standard Brownian motion and Ft =
σ{w(s), 0 ≤ s ≤ t}. Additionally, let |x| stand for the Euclidean norm of
x ∈ Rd and, for simplicity, |A|2 = trace(ATA) for matrix A, where AT is the
transpose of a vector or a matrix.

Let τ be a fixed positive number and let C([−τ, 0];Rd) be the family
of continuous functions ϕ : [−τ, 0] → Rd with the supremum norm ‖ϕ‖ =
sup−τ≤t≤0 |ϕ(t)|. Moreover, let CbF0

([−τ, 0];Rd) be the family of F0-measu-

rable, C([−τ, 0];Rd)-valued bounded random variables.
For the delay function δ : R+ → [0, τ ], which is Borel-measurable, we con-

sider the following neutral stochastic differential equation with time-dependent
delay

d[x(t)− u(x(t− δ(t)), t)]
= f(x(t), x(t− δ(t)), t)dt+ g(x(t), x(t− δ(t)), t)dw(t), t ≥ 0 (1)

and with the initial condition

x0 = ϕ = {ϕ(t) : t ∈ [−τ, 0]} ∈ CbF0
([−τ, 0];Rd), (2)

where the functions

f : Rd ×Rd ×R+ → Rd, g : Rd ×Rd ×R+ → Rd×m, u : Rd ×R+ → Rd

are all Borel-measurable and x(t) is a d-dimensional state process.
The next hypotheses are essential for obtaining the main result of this

paper:
A1 (Linear growth condition): There exists a positive constant K such

that, for all x, y ∈ Rd and all t ≥ 0,

|f(x, y, t)|2 ≤ K(|x|2 + |y|2). (3)
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A2 (Contractivity condition): There exists a constant β ∈ (0, 1) such that,
for all x, y ∈ Rd and all t ≥ 0,

|u(x, t)− u(y, t)| ≤ β|x− y|. (4)

Moreover, we will assume that u(0, t) = 0, t ≥ 0, which, together with (4),
implies that

|u(x, t)| ≤ β|x|, x ∈ Rd. (5)

A3: The delay function δ : R+ → [0, τ ] is differentiable and δ′(t) ≤ δ̄ < 1.
A4: There exists a constant η > 0 such that

|δ(t)− δ(s)| ≤ η|t− s|, t, s ≥ 0. (6)

A5 (Khasminskii-type condition): There exist constants α1 and α2 for
which α1 >

α2

1−δ > 0, such that, for all x, y ∈ Rd and all t ≥ 0,

2(x− u(y, t))T f(x, y, t) + |g(x, y, t)|2 ≤ −α1|x|2 + α2|y|2. (7)

For the purpose of guaranteing that the θ-Euler-Maruyama method, which
will be considered in the sequel, is well defined, we introduce an additional
assumption.

C1 (The one-sided Lipschitz conditions): Let f ∈ C(Rd × Rd;Rd) and
suppose that there exist constants µ1, µ2 > 0 such that, for all x, y, z ∈ Rd

and all t ≥ 0,

〈x− y, f(x, z, t)− f(y, z, t)〉 ≤ µ1|x− y|2, (8)

〈x− y, f(z, x, t)− f(z, y, t)〉 ≤ µ2|x− y|2. (9)

The main contribution of the present paper is the extension of the stability
result from [16] partly by extending a class of neutral terms u. Precisely, in
[16], it is assumed that the Lipschitz constant β of the neutral term u satisfies
the condition

β2 ∈
(

0,
4

99([(1− η)−1] + 1)

)
,

while in the present paper, the stability result will be obtained for

β2 ∈
(

0,
1

4
(
9(1− θ)2 + θ2 + 3

)
([(1− η)−1] + 1)

)
, θ ∈

(1

2
, 1
)
.

It is easy to observe that for any θ ∈
(

1
2 , 1
)
, the scope of β in the present paper

is greater than that from [16]. Moreover, it could be observed that assumption
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A5 is slightly weaker then A4 from [16]. Consequently, the technique which
will be used in the sequel differs from the one from the previously cited paper.

The following lemmas are essential for proving the stability result in Section
2. The first one is an elementary inequality which will be applied several times
in the proof of that result.

Lemma 1. For all a, b > 0, p ≥ 1, c > 0, we have that

(a+ b)p ≤ (1 + c)p−1(ap + c1−pbp).

Lemma 2. [[12], Lemma 3] Assume that (6) holds. For an arbitrary but fixed
i ∈ {0, 1, 2, . . .}, let i− [δ(i∆)/∆] = a, where a ∈ {−n∗,−n∗+ 1, ..., 0, 1, ..., i}.
Then,

#{j ∈ {0, 1, 2, . . .} : j − [δ(i∆)/∆] = a} ≤ [(1− η)−1] + 1,

where #S denotes the number of elements of the set S.

In a view of [12], one find that the assumptions A2,A3,A5, as well as the
local Lipschitz condition on f and g and hypotheses f(0, 0, t) = g(0, 0, t) =
0, t ≥ 0 imply the existence and uniqueness of the global solution to Eq. (1),
which is a.s. exponentially stable. Baring in mind these results from [12] we
will determine the conditions under which the θ-Euler-Maruyama solution is
a.s. exponentially stable. As will be shown in the sequel, for that purpose we
will need, among other conditions, the linear growth condition A2 on the drift
coefficient f . However, as mentioned earlier, we will weaken the condition for
the neutral term u comparing to the corresponding condition from [16].

Let us consider the autonomous version of the initial equation (1), that is

x(t) = ϕ(0) + u(x(t− δ(t)))− u(x(−δ(0))) +

∫ t

0

f(x(s), x(s− δ(s)))ds (10)

+

∫ t

0

g(x(s), x(s− δ(s)))dw(s), t ≥ 0,

with the initial condition x(t) = ϕ(t), t ∈ [−τ, 0]. In that sense, instead of the
assumptions A1-A5, let their autonomous versions hold.

The main result in this paper will be obtained for the θ-Euler-Maruyama
solution defined in the paper [16]. Let ∆ ∈ (0, 1) be a step size, such that
∆ = τ/n∗, for some integer n∗ > τ. Recall the discrete θ-Euler-Maruyama
approximate solution q from [16], corresponding to Eq. (10) defined on the
equidistant partition k∆, k = −(n∗ + 1),−n∗, ...,−1, 0, 1, ..... Also, set

δ(−∆) = δ(0), q−(n∗+1) = ϕ(−n∗∆). (11)
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Let [·] be the integer part function. Then, the mentioned θ-Euler-Maruyama
approximate solution is defined as

qk = ϕ(k∆), k = −n∗,−n∗ + 1, ..., 0, (12)

while, for k ∈ {0, 1, 2, ...},

qk+1 = qk + θu(qk+1−[δ((k+1)∆)/∆]) + (1− θ)u(qk−[δ(k∆)/∆])

−θu(qk−[δ(k∆)/∆])− (1− θ)u(qk−1−[δ((k−1)∆)/∆])

+θf(qk+1, qk+1−[δ((k+1)∆)/∆])∆ + (1− θ)f(qk, qk−[δ(k∆)/∆])∆

+g(qk, qk−[δ(k∆)/∆])∆wk, (13)

where ∆wk = w((k+1)∆)−w(k∆). For convenience, we will use the notation

zk = qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])

−θf(qk, qk−[δ(k∆)/∆])∆,

fk = f(qk, qk−[δ(k∆)/∆]), gk = g(qk, qk−[δ(k∆)/∆]).

In order to conclude that there exists unique θ-Euler-Maruyama approx-
imate solution of Eq. (13), it should be noted that this equation is of the
form

x = d+ θ
(
∆f(x, a)IAc + ∆f(x, x)IA + u(x)IA

)
, x ∈ Rd, (14)

for given a, d ∈ Rd, where IA = 1 if [δ((k + 1)∆)/∆] = 0 and IA = 0,
otherwise. The desired conclusion then follows from the next lemma, which
will be imposed without proof. The proof can be found in [15].

Lemma 3. Assume that the condition (4) and the hypothesis C1 hold. If
θ((µ1 + µ2)∆ + β) < 1, then, there exists unique solution to Eq. (14).

2 Almost sure exponential stability of the θ-Euler
-Maruyama method

In the existing literature one can find results on different aspects of the θ-
Euler-Maruyama approximate method for different types of stochastic differ-
ential equations (see, for example, [24, 19, 22]). In these papers the authors
studied primarily convergence and stability of the approximate solutions under
consideration.

The main result of this section is a.s. asymptotic exponential stability
of the theta method, that is, of the discrete θ-Euler-Maruyama approximate
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solution (13) for θ ∈ ( 1
2 , 1). In the paper [13], the author established the

a.s. exponential stability result for the backward Euler method (that is, for
θ = 1) without requiring the linear growth condition on the drift coefficient
f. In that sense it should be emphasized that the technique which is used
differs than that which will be used in this paper. Also it is important to
observe that the technique mentioned above is successfully employed in [2],
for a class of highly nonlinear neutral stochastic differential equations with
constant delay and Markovian switching. In the cited paper the corresponding
θ-Euler-Maruyama approximate equation is implicit only with respect to one
argument (present state) of the drift coefficient. So, the main difficulty in the
present paper is to treat the implicitness of the method with respect to both
drift coefficient f and neutral term u, which is also parameterized by θ. Thus,
in this section, we will extend to the certain extent the stability result from
[16], applying slightly weaker Khasminskii-type and contractivity conditions
comparing to those from the cited paper. On the other hand, the approach
which will be used in the present paper requires the application of the linear
growth condition on the drift coefficient f. So, in further analysis the following
definition of the a.s. exponential stability of the numerical method plays an
important role.

Definition 1. The solution qk of Eq. (13) is a.s. asymptotically exponentially
stable if there exists a constant ε > 0 such that

lim sup
k→∞

log |qk|
k∆

≤ −ε, a.s.

for any bounded initial condition ϕ.

In what follows, we will prove the a.s. asymptotic exponential stability of
the discrete θ-Euler-Maruyama solution given by (11)-(13).

Theorem 1. Let the assumptions of Lemma 3 hold together with the assump-
tions A1–A5. Additionally, suppose that

β2 ∈
(

0,
1

4
(
9(1− θ)2 + θ2 + 3

)
([(1− η)−1] + 1)

)
, (15)

α1 >
12([(1− η)−1] + 1)

1− 4β2(9(1− θ)2 + θ2 + 3)([(1− η)−1] + 1)

×
(
α2 +K

(
1

[(1− η)−1] + 1
+ 1

)
+ 5(1− θ)2β2

)
, (16)

α1θ − θ2K − (α2θ + θ2K + 4β2(1− θ)2)([(1− η)−1] + 1) > 0. (17)
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If ε̄ is the unique positive root of the equation

α1θ − θ2K − (α2θ + θ2K + 2β2(1− θ)2(eε̄ + 1))([(1− η)−1] + 1)eε̄τ = 0, (18)

then, there exists ∆∗ ∈ (0, 1] such that, for any ∆ ∈ (0,∆∗) and any θ ∈
( 1

2 , 1), the θ-Euler-Maruyama approximate solution (13) is a.s. asymptotically
exponentially stable.

Proof. Taking into account (13), we find that

|zk+1|2 = |zk|2+ [2(qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆]))
T fk

+|gk|2+ (1− 2θ)|fk|2∆]∆ +mk,

= |zk|2 + [2(qk − u(qk−[δ(k∆)/∆]))
T fk + |gk|2 + (1− 2θ)|fk|2∆]∆

+2(1− θ)(u(qk−[δ(k∆)/∆])− u(qk−1−[δ((k−1)∆)/∆]))
T fk∆ +mk, (19)

where

mk = |gk∆wk|2 − |gk|2∆ + 2(zk + fk∆)T gk∆wk. (20)

For c0 > 0, such that 0 < C < α1

2(1+c0) , we have

(2θ − 1)|fk|2∆− C|zk|2

= [(2θ − 1)∆− Cθ2∆2]|fk|2

+2Cθ∆(qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆]))
T fk

−C|qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

= a|fk + b(qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

−(ab2 + C)|qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2,(21)

where a = (2θ − 1)∆− Cθ2∆2 and b = Cθ∆
a .

For θ ∈ ( 1
2 , 1) we can determine small enough ∆∗ such that, for each

∆ ∈ (0,∆∗) we have that a > 0 and −(ab2 +C) ≥ − α1

2(1+c0) . Precisely, we get

∆∗ =
2θ − 1

Cθ2

(
1− 2C(1 + c0)

α1

)
. (22)

By Lemma 1 and conditions (4) and (5) from A2 we have that, for any ∆ ∈
(0,∆∗),

(2θ − 1)|fk|2∆− C|zk|2

≥ − α1

2(1 + c0)
|qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

= − α1

2(1 + c0)
|qk − u(qk−[δ(k∆)/∆])− (1− θ)u(qk−1−[δ((k−1)∆)/∆])

+(1− θ)u(qk−[δ(k∆)/∆])|2
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≥ − α1

1 + c0
|qk − u(qk−[δ(k∆)/∆])|2

− α1

1 + c0
|(1− θ)(u(qk−[δ(k∆)/∆])− u(qk−1−[δ((k−1)∆)/∆])|2

≥ −α1|qk|2 + α2|qk−[δ(k∆)/∆]|2 −
(
α1

c0
β2 + α2

)
|qk−[δ(k∆)/∆]|2

− α1

1 + c0
(1− θ)2β2|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆])|2. (23)

Applying A4, the estimate (23) becomes

(2θ − 1)|fk|2∆− C|zk|2

≥ 2(qk − u(qk−[δ(k∆)/∆]))
T fk + |gk|2 −

(
α1

c0
β2 + α2

)
|qk−[δ(k∆)/∆]|2

− α1

1 + c0
(1− θ)2β2|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆])|2. (24)

Thus, we get

2(qk − u(qk−[δ(k∆)/∆]))
T fk + |gk|2 + (1− 2θ)|fk|2∆

≤ −C|zk|2 +

(
α1

c0
β2 + α2

)
|qk−[δ(k∆)/∆]|2

+
α1

1 + c0
(1− θ)2β2|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|2. (25)

Substituting (25) into (19) and applying the assumption A1, we have

|zk+1|2

≤ |zk|2 − C∆|zk|2 +

(
α1

c0
β2 + α2

)
|qk−[δ(k∆)/∆]|2∆

+
α1

1 + c0
(1− θ)2β2|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|2∆

+2(1− θ)(u(qk−[δ(k∆)/∆])− u(qk−1−[δ((k−1)∆)/∆]))
T fk∆ +mk

≤ |zk|2 − C∆|zk|2 +

(
α1

c0
β2 + α2

)
|qk−[δ(k∆)/∆]|2∆

+
2α1

1+c0
(1−θ)2β2|qk−[δ(k∆)/∆]|2∆+

2α1

1+c0
(1−θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆

+2(1− θ)β|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]||fk|∆ +mk

≤ |zk|2 − C∆|zk|2 +

(
α1

c0
β2 + α2 +

2α1

1 + c0
(1−θ)2β2

)
|qk−[δ(k∆)/∆]|2∆

+
2α1

1 + c0
(1− θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆
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+(1− θ)2β2|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|2∆ + |fk|2∆ +mk

≤ |zk|2 − C∆|zk|2 +

(
α1

c0
β2 + α2 +

2α1

1 + c0
(1−θ)2β2

)
|qk−[δ(k∆)/∆]|2∆

+
2α1

1+c0
(1−θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆ + 2(1−θ)2β2|qk−[δ(k∆)/∆]|2∆

+2(1−θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆+K|qk|2∆+K|qk−[δ(k∆)/∆]|2∆+mk

= |zk|2−C∆|zk|2+

[
α1

c0
β2+α2+K+

(
2α1

1+c0
+2

)
(1−θ)2β2

]
|qk−[δ(k∆)/∆]|2∆

+

(
2α1

1 + c0
+ 2

)
(1− θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆ +K|qk|2∆ +mk. (26)

Then for any arbitrary constant A > 1,

A(k+1)∆|zk+1|2 −Ak∆|zk|2

≤ A(k+1)∆
[
|zk|2(1− C∆)

+

[
α1

c0
β2 + α2 +K +

(
2α1

1+c0
+ 2

)
(1−θ)2β2

]
|qk−[δ(k∆)/∆]|2∆

+

(
2α1

1+c0
+2

)
(1−θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆+K|qk|2∆+mk

]
−Ak∆|zk|2

= A(k+1)∆|zk|2(1− C∆−A−∆)

+A(k+1)∆

[
α1

c0
β2 + α2 +K +

(
2α1

1+c0
+ 2

)
(1−θ)2β2

]
|qk−[δ(k∆)/∆]|2∆

+A(k+1)∆

(
2α1

1+c0
+ 2

)
(1−θ)2β2|qk−1−[δ((k−1)∆)/∆]|2∆

+A(k+1)∆K|qk|2∆ +A(k+1)∆mk. (27)

For simplicity, denote

R1(∆) = 1− C∆−A−∆,

R2 =
α1

c0
β2 + α2 +K +

(
2α1

1 + c0
+ 2

)
(1− θ)2β2,

R3 =

(
2α1

1 + c0
+ 2

)
(1− θ)2β2.

Consequently, we have that



A NOTE ON ALMOST SURE EXPONENTIAL STABILITY OF THE θ-EULER
-MARUYAMA APPROXIMATION FOR NEUTRAL STOCHASTIC DIFFERENTIAL
EQUATIONS WITH TIME-DEPENDENT DELAY WHEN θ ∈ ( 1

2
, 1) 135

Ak∆|zk|2

≤ |z0|2 +R1(∆)

k−1∑
i=0

A(i+1)∆|zi|2 +R2∆

k−1∑
i=0

A(i+1)∆|qi−[δ(i∆)/∆]|2

+R3∆

k−1∑
i=0

A(i+1)∆|qi−1−[δ((i−1)∆)/∆]|2+K∆

k−1∑
i=0

A(i+1)∆|qi|2+Mk, (28)

where

Mk =

k−1∑
i=0

A(i+1)∆mi

is a martingale with M0 = 0.
By the definition of zk, condition (7) and Lemma 1, for any c0 > 0, we get

|zk|2 ≥ |qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

−2θ∆(qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆]))
T fk

= |qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

−2θ∆(qk − u(qk−[δ(k∆)/∆]))
T fk

−2θ(1− θ)∆(u(qk−[δ(k∆)/∆])− u(qk−1−[δ((k−1)∆)/∆]))
T fk

≥ |qk − (1− θ)u(qk−1−[δ((k−1)∆)/∆])− θu(qk−[δ(k∆)/∆])|2

−α2θ∆|qk−[δ(k∆)/∆]|2

−(1− θ)2∆|u(qk−[δ(k∆)/∆])− u(qk−1−[δ((k−1)∆)/∆])|2 − θ2∆|fk|2

≥ 1

1+c0
|qk|2−

1

c0
|(1−θ)u(qk−1−[δ((k−1)∆)/∆])+θu(qk−[δ(k∆)/∆])|2

+α1θ∆|qk|2 − α2θ∆|qk−[δ(k∆)/∆]|2

−(1− θ)2β2∆|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|2

−θ2K∆(|qk|2 + |qk−[δ(k∆)/∆]|2)

≥ 1

1+c0
|qk|2 −

2(1−θ)2β2

c0
|qk−1−[δ((k−1)∆)/∆]|2 −

2θ2β2

c0
|qk−[δ(k∆)/∆]|2

+α1θ∆|qk|2 − α2θ∆|qk−[δ(k∆)/∆]|2 − (1− θ)2β2∆(2|qk−[δ(k∆)/∆]|2

+2|qk−1−[δ((k−1)∆)/∆]|2)− θ2K∆(|qk|2 + |qk−[δ(k∆)/∆]|2)

=

(
1

1+c0
+α1θ∆−θ2K∆

)
|qk|2

+

(
−2θ2β2

c0
−α2θ∆− 2(1−θ)2β2∆−θ2K∆

)
|qk−[δ(k∆)/∆]|2
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+

(
−2(1−θ)2β2

c0
− 2(1−θ)2β2∆

)
|qk−1−[δ((k−1)∆)/∆]|2. (29)

Moreover, one can observe that R1(0) = 0 and R
′

1(∆) = −C +A−∆ logA.
So, we will assume that 1 < A < eC , such that R

′

1(∆) < 0, ∆ ∈ (0,∆∗), which
implies that R1(∆) < 0, ∆ ∈ (0,∆∗). Then, substituting (29) into (28) we get
that, for any ∆ ∈ (0,∆∗),

Ak∆|zk|2 ≤ |z0|2 +K1(∆)

k−1∑
i=0

A(i+1)∆|qi|2 +K2(∆)

k−1∑
i=0

A(i+1)∆|qi−[δ(i∆)/∆]|2

+K3(∆)

k−1∑
i=0

A(i+1)∆|qi−1−[δ((i−1)∆)/∆]|2 +Mk, (30)

where

K1(∆) = R1(∆)

(
1

1 + c0
+ α1θ∆− θ2K∆

)
+K∆,

K2(∆) = R1(∆)

(
−2θ2β2

c0
− α2θ∆− 2(1− θ)2β2∆− θ2K∆

)
+R2∆,

K3(∆) = R1(∆)

(
−2(1− θ)2β2

c0
− 2(1− θ)2β2∆

)
+R3∆.

Observing that K3(∆) > 0, ∆ ∈ (0,∆∗), bearing in mind (11), we find that

K3(∆)

k−1∑
i=0

A(i+1)∆|qi−1−[δ((i−1)∆)/∆]|2

≤ K3(∆)A∆|q−1−[δ(0)/∆]|2 +K3(∆)A∆
k−1∑
i=0

A(i+1)∆|qi−[δ(i∆)/∆]|2. (31)

So, the expression (30) becomes

Ak∆|zk|2 ≤ |z0|2 +K1(∆)

k−1∑
i=0

A(i+1)∆|qi|2

+(K2(∆) +K3(∆)A∆)

k−1∑
i=0

A(i+1)∆|qi−[δ(i∆)/∆]|2

+K3(∆)A∆|q−1−[δ(0)/∆]|2 +Mk. (32)
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On the basis of Lemma 2, the second sum on the right-hand side of (32), can
be estimate as

k−1∑
i=0

A(i+1)∆|qi−[δ(i∆)/∆]|2 ≤ An∗∆
k−1∑
i=0

A(i−[δ(i∆)/∆]+1)∆|qi−[δ(i∆)/∆]|2

≤ ([(1− η)−1] + 1)An∗∆
k−1∑
i=−n∗

A(i+1)∆|qi|2. (33)

Since n∗∆ = τ , the expression can be (32) becomes

Ak∆|zk|2 ≤ X + h(∆)

k−1∑
i=0

A(i+1)∆|qi|2 +Mk, (34)

where

X = |z0|2 +K3(∆)A∆|q−1−[δ(0)/∆]|2

+(K2(∆) +K3(∆)A∆)([(1− η)−1] + 1)Aτ
−1∑

i=−n∗

A(i+1)∆|ϕ(i∆)|2

<∞, (35)

and

h(∆) = K1(∆) + (K2(∆) +K3(∆)A∆)([(1− η)−1] + 1)Aτ . (36)

Note that

h(∆)

= R1(∆)

(
1

1 + c0
−Aτ 2β2((1− θ)2A∆ + θ2)([(1− η)−1] + 1)

c0

)
+
[
K + (R2 +R3A

∆)([(1− η)−1] + 1)Aτ +R1(∆)

×(α1θ−θ2K−(α2θ+θ2K+2β2(1−θ)2(A∆+1))([(1−η)−1]+1)Aτ )
]
∆

= ∆
{R1(∆)

∆

(
1

1 + c0
−Aτ 2β2((1− θ)2A∆ + θ2)([(1− η)−1] + 1)

c0

)
+K + (R2 +R3A

∆)([(1− η)−1] + 1)Aτ +R1(∆)

×
[
α1θ−θ2K−(α2θ+θ2K+2β2(1−θ)2(A∆+1))([(1−η)−1]+1)Aτ

]}
. (37)

Then, for any ∆ ∈ (0,∆∗), we have that

h(∆) ≤ ∆
{R1(∆)

∆

(
1

1 + c0
−Aτ 2β2((1− θ)2A+ θ2)([(1− η)−1] + 1)

c0

)
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+K + (R2 +R3A)([(1− η)−1] + 1)Aτ +R1(∆)h1(A)
}
,

where

h1(A)

= α1θ − θ2K − (α2θ + θ2K + 2β2(1− θ)2(A+ 1))([(1− η)−1] + 1)Aτ . (38)

We find that

h
′

1(A) = [−(α2θ + θ2K + 2β2(1− θ)2(A+ 1))τAτ−1 − 2β2(1− θ)2Aτ ]

×([(1− η)−1] + 1)

< 0.

On the other hand,

h1(1) = α1θ − θ2K − (α2θ + θ2K + 4β2(1− θ)2)([(1− η)−1] + 1).

On the basis of the assumption (17), we have that h1(1) > 0. Bearing in mind
that Eq.(18) has the unique positive root ε̄ = log Ā, we conclude that

h1(eε) = α1θ − θ2K − (α2θ + θ2K + 2β2(1− θ)2(eε + 1))([(1− η)−1] + 1)eετ

> 0,

whenever ε ∈ (0, ε̄) and, thus, whenever A ∈ (1, Ā ∧ eC).

Let us denote a(∆) = R1(∆)
∆ , ∆ ∈ (0,∆∗), such that lim∆→0 a(∆) = logA−

C < 0 for any A ∈ (1, Ā ∧ eC) and a′(∆) = b(∆)
∆2 , where

b(∆) = −1 +A−∆(1 + ∆ logA).

Having in mind that b(0) = 0 and

b′(∆) = −∆A−∆ log2A < 0, ∆ ∈ (0,∆∗), A ∈ (1, Ā ∧ eC),

we find that b(∆) < 0, ∆ ∈ (0,∆∗), A ∈ (1, Ā ∧ eC). Consequently, we have
that a′(∆) < 0, that is, a(∆) is decreasing function on (0,∆∗) for any A ∈
(1, Ā ∧ eC). Obviously, as logA − C > a(∆), ∆ ∈ (0,∆∗), for any A ∈
(1, Ā ∧ eC), if we show that

h2 := (logA− C)

(
1

1 + c0
−Aτ 2β2((1− θ)2A+ θ2)([(1− η)−1] + 1)

c0

)
+K + (R2 +R3A)([(1− η)−1] + 1)Aτ ≤ 0, (39)
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then we have h(∆) < 0, for ∆ ∈ (0,∆∗) and A ∈ (1, Ā ∧ eC). Thus, if

h2 − logA

(
1

1 + c0
−Aτ 2β2((1− θ)2A+ θ2)([(1− η)−1] + 1)

c0

)
−
(
C

2β2((1−θ)2A+θ2)([(1−η)−1]+1)

c0
+(R2+R3A)([(1−η)−1]+1)

)
(Aτ−1)

= K + (R2 +R3A)([(1− η)−1] + 1)

−C
(

1

1 + c0
− 2β2((1− θ)2A+ θ2)([(1− η)−1] + 1)

c0

)
< 0, (40)

for some c0 > 0 and A ∈ (1, Ā∧ eC), then h2 ≤ 0 for the same c0 and some A
close to 1.

So, first observe that

C

(
1

1 + c0
− 2β2((1− θ)2A+ θ2)([(1− η)−1] + 1)

c0

)
> K +

(
α1

c0
β2 + α2 +K +

(
2α1

1 + c0
+ 2

)
(1− θ)2β2(A+ 1)

)
×([(1− η)−1] + 1)

⇔ C

(
1

(1 + c0)([(1− η)−1] + 1)
− 2β2((1− θ)2A+ θ2)

c0

)
>

K

[(1− η)−1] + 1
+
α1

c0
β2 + α2 +K +

(
2α1

1 + c0
+ 2

)
(1− θ)2β2(A+ 1)

⇔ C

(
1

(1 + c0)([(1− η)−1] + 1)
− 2β2((1− θ)2A+ θ2)

c0

)
−α1

c0
β2 − 2α1

1 + c0
(1− θ)2β2(A+ 1)

> α2 +K

(
1

[(1− η)−1] + 1
+ 1

)
+ 2(1− θ)2β2(A+ 1). (41)

We will choose c0 = 1 and C = α1

3(1+c0) = α1

6 . So, on the basis of (41), we

need to show that, for the appropriate choice of A,

α1

(
1

12([(1− η)−1] + 1)
− 2β2((1− θ)2A+ θ2)

6
− β2 − (1− θ)2β2(A+ 1)

)
> α2 +K

(
1

[(1− η)−1] + 1
+ 1

)
+ 2(1− θ)2β2(A+ 1). (42)

In a view of the assumption (15), that is

β2 ∈
(

0,
1

4
(
9(1− θ)2 + θ2 + 3

)
([(1− η)−1] + 1)

)
,
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we conclude that the expression multiplying α1 in (42) is positive for any

A ∈
(

1, 3
2 ∧ Ā ∧ e

C
)

. Moreover, on the basis of the assumption (16) we find

that (42) holds for any A ∈
(

1, 3
2 ∧ Ā ∧ e

C
)

, which yields h2 ≤ 0, as desired.

Taking into account (34), one can observe that, for any ∆ ∈ (0,∆∗), we
have that

Ak∆|zk|2 ≤ X +Mk. (43)

Applying the discrete semimartingale convergence theorem (see [18]), we find
that

lim sup
k→∞

Ak∆|zk|2 ≤ lim sup
k→∞

(X +Mk) <∞ a.s.

Substituting (43) into (29), we obtain(
1

1 + c0
+ α1θ∆− θ2K∆

)
Ak∆|qk|2

≤
(

2θ2β2

c0
+ α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
Ak∆|qk−[δ(k∆)/∆]|2

+

(
2(1− θ)2β2

c0
+ 2(1− θ)2β2∆

)
Ak∆|qk−1−[δ((k−1)∆)/∆]|2

+X +Mk, (44)

where c0 = 1. Because of that, for any γ ∈
(

0, log
(

3
2 ∧ Ā

)
∧ C

)
, there exists

an integer k1, such that for any integer k2 > k1,(
1

1 + c0
+ α1θ∆− θ2K∆

)
sup

k1≤k≤k2
eγk∆|qk|2

≤
(

2θ2β2

c0
+ α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
sup

k1≤k≤k2
eγk∆|qk−[δ(k∆)/∆]|2

≤
(

2θ2β2

c0
+α2θ∆+2(1−θ)2β2∆+θ2K∆

)
eγτ sup

k1≤k≤k2
eγ(k−[δ(k∆)/∆])∆

×|qk−[δ(k∆)/∆]|2 +

(
2(1− θ)2β2

c0
+ 2(1− θ)2β2∆

)
eγ(τ+1)

× sup
k1≤k≤k2

eγ(k−1−[δ((k−1)∆)/∆])∆|qk−1−[δ((k−1)∆)/∆]|2 +X+Mk

≤
(

2θ2β2

c0
+ α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
×
(
eγτ sup

k1−n∗≤k≤k1
eγk∆|qk|2 + eγτ sup

k1≤k≤k2
eγk∆|qk|2

)
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+

(
2(1− θ)2β2

c0
+ 2(1− θ)2β2∆

)
×
(
eγ(τ+1) sup

k1−n∗−1≤k≤k1
eγk∆|qk|2 + eγ(τ+1) sup

k1≤k≤k2
eγk∆|qk|2

)
+X+Mk.

Then, substituting c0 = 1, we get

H sup
k1≤k≤k2

eγk∆|qk|2

≤
(
2θ2β2 + α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
eγτ sup

k1−n∗≤k≤k1
eγk∆|qk|2

+
(
2(1− θ)2β2 + 2(1− θ)2β2∆

)
eγ(τ+1) sup

k1−n∗−1≤k≤k1
eγk∆|qk|2+X+Mk,(45)

where

H =
1

2
+ α1θ∆− θ2K∆−

(
2θ2β2 + α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
eγτ

−
(
2(1− θ)2β2 + 2(1− θ)2β2∆

)
eγ(τ+1)

>
1

2
− 2β2

(
θ2 + (1− θ)2

)
eγ(τ+1)

+∆
[
α1θ − θ2K −

(
α2θ + 4(1− θ)2β2 + θ2K

)
eγ(τ+1)

]
. (46)

Then, for any γ ∈
(

0, 1
τ+1 log

(
[(1 − η)−1] + 1

)
∧ log( 3

2 ∧ Ā) ∧ C
)

and any

∆ ∈ (0,∆∗), from (46) follows that

H >
1

2
− 2β2

(
θ2 + (1− θ)2

)(
[(1− η)−1] + 1

)
+∆

[
α1θ − θ2K −

(
α2θ + 4(1− θ)2β2 + θ2K

) (
[(1− η)−1] + 1

)]
.

Bearing in mind the previous inequality, on the basis of conditions (15)
and (17), we conclude that H > 0, such that (45) yields

sup
k1≤k≤k2

eγk∆|qk|2

≤ 1

H

[(
2θ2β2 + α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
eγτ sup

k1−n∗≤k≤k1
eγk∆|qk|2

+
(
2(1−θ)2β2 + 2(1−θ)2β2∆

)
eγ(τ+1) sup

k1−n∗−1≤k≤k1
eγk∆|qk|2+X+Mk

]
. (47)

Letting k2 → +∞ in (47), we obtain
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sup
k1≤k≤∞

eγk∆|qk|2

≤ 1

H

[(
2θ2β2 + α2θ∆ + 2(1− θ)2β2∆ + θ2K∆

)
eγτ sup

k1−n∗≤k≤k1
eγk∆|qk|2

+
(
2(1−θ)2β2+2(1−θ)2β2∆

)
eγ(τ+1) sup

k1−n∗−1≤k≤k1
eγk∆|qk|2+X+Mk

]
<∞,

which yields

lim sup
k→∞

eγk∆|qk|2 <∞,

whenever

γ ∈
(

0,
1

τ + 1
log
(
[(1− η)−1] + 1

)
∧ log(

3

2
∧ Ā) ∧ C

)
, ∆ ∈ (0,∆∗).

Thus, (44) gives

lim sup
k→∞

eγk∆|qk|2 ≤
X +Mk

H
.

Consequently,

lim sup
k→∞

log(eγk∆|qk|2)

k∆
= 0,

which gives

lim sup
k→∞

log |qk|
k∆

≤ −γ
2
,

for any γ ∈
(

0, 1
τ+1 log

(
[(1 − η)−1] + 1

)
∧ log( 3

2 ∧ Ā) ∧ C
)

and any ∆ ∈
(0,∆∗).

Remark 1. In the proof of the previous theorem, the conditions of Lemma 3
are not used explicitly. Their role was to guarantee the existence and unique-
ness of the solution under consideration.
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3 Numerical example and simulations

In this section, in order to illustrate the previous theoretical results, we present
an example which will be completed by the appropriate numerical simulations.

Example 1. We will consider the following scalar neutral stochastic differen-
tial equation with time-dependent delay

d
[
x(t)− 1

50
sinx(t− δ(t))

]
= − 1

48
x(t)dt+

1

20
√

6

x(t− δ(t))
1 + x2(t− δ(t))

cosx(t)dw(t), t ∈ [0, 50], (48)

satisfying the initial condition ϕ(t) = 1, t ∈ [−τ, 0], where τ = 0.5 and
ϕ ∈ CbF0

([−τ, 0];R). Obviously, the drift coefficient f(x, y) = − 1
48x satis-

fies the linear growth condition A1 for K = 1
482 , while the neutral term

u(x) = 1
50 sinx, x ∈ R satisfies the assumption A2 for β = 1

50 . Assume that
the delay function is of the form δ(t) = 1

4 −
1
4 sin t, t ∈ [0, 50]. Then,

δ′(t) = −1

4
cos t ≤ 1

4
= δ̄, |δ(t)− δ(s)| ≤ 1

4
|t− s|, t, s ∈ [0, 50],

and we find that A3 and A4 hold with η = 1
4 . In order to verify A5, note that

2(x− u(y))f(x, y) + |g(x, y)|2

= − 1

24
x2 +

1

1 200
x sin y +

1

2 400

y2

(1 + y2)2
cos2 x

≤ − 1

24
x2 +

1

2 400
x2 +

1

2 400
y2 +

1

2 400
y2

≤ − 33

800
x2 +

1

1 200
y2,

that is, α1 = 33
800 and α2 = 1

1 200 . Moreover, we have that

α2

1− δ̄
=

1

900
<

33

800
= α1.

Since C1 trivially holds for any positive µ1 and µ2, we will choose µ1 = µ2 = 1
5 ,

such that θ((µ1 + µ2)∆ + β) < 1 for any ∆ ∈ (0, 1). Thus, on the basis of
Lemma 3, we conclude that the corresponding θ-Euler-Maruyama approximate
equations have unique solutions. Bearing in mind (13), for θ = 3

4 , we have
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that qk = ϕ(k∆), k = −n∗,−n∗ + 1, ..., 0, while, for k = 0, 1, 2, ...,

qk+1 = qk +
3

200
sin qk+1−[δ((k+1)∆)/∆] −

1

100
sin qk−[δ(k∆)/∆] (49)

− 1

200
sin qk−1−[δ((k−1)∆)/∆] −

1

64
qk+1∆− 1

192
qk∆

+
1

20
√

6

qk−[δ(k∆)/∆]

1 + q2
k−[δ(k∆)/∆]

cos qk∆wk.

Following the proof of Theorem 1 we first observe from (22) that, since C = α1

6 ,
we have that ∆∗ = 1. So, we will proceed the verification of the stability result
for Eq.(49) for any ∆ ∈ (0,∆∗).

In Figure 1 several trajectories corresponding to (49) are plotted with step-
size ∆ = 0.01.

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: Trajectories of the θ–Euler–Maruyama solution with ∆ = 0.01

Noting that

1

4
(
9(1− θ)2 + θ2 + 3

)
([(1− η)−1] + 1)

=
1

33
,

we find that (15) holds. Moreover,

33

800
= α1

>
12([(1− η)−1] + 1)

1− 4β2(9(1− θ)2 + θ2 + 3)([(1− η)−1] + 1)

×
(
α2 +K

(
1

[(1− η)−1] + 1
+ 1

)
+ 5(1− θ)2β2

)
= 0.03914,
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that is, the condition (16) is fulfilled. Finally, since

α1θ − θ2K − (α2θ + θ2K + 4β2(1− θ)2)([(1− η)−1] + 1) = 0.0287,

the assumption (17) is satisfied. Thus, on the basis of Theorem 1, for

γ ∈
(

0,
1

τ + 1
log
(
[(1− η)−1] + 1

)
∧ log(

3

2
∧ Ā) ∧ C

)
,

we have that

lim sup
k→∞

log |qk|
k∆

≤ −γ
2
a.s,

where Ā = log ε̄, while ε̄ is the unique positive root of Eq.(18). Direct compu-
tation gives

1

τ + 1
log
(
[(1− η)−1] + 1

)
= 0.4621, C =

α1

6
=

11

1 600
, Ā = 34.1444,

such that Theorem 1 holds for γ ∈
(

0, 11
1 600

)
. In order to illustrate the almost

sure exponential stability of the θ-Euler-Maruyama solution, we plotted a tra-

jectory of the ratio log |qk|
k∆ against the line z = − 11

1 600 , which can be seen in
Figure 2.

50
t

-

11

1600

z

Figure 2: log |qk|
k∆ against the line z = − 11

1 600
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Email: marija.milosevic@pmf.edu.rs


