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A generalization of n-ary prime
subhypermodule
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Abstract

Let (M, f, g) be an (m,n)-hypermodule over an (m,n)-hyperring
(R, h, k). A proper subhypermodule N of M is called n-ary 2-absorbing
subhypermodule if whenever g(rn−1

1 ,m) ⊆ N for some rn−1
1 ∈ R and

m ∈ M , then either g(rn−1
1 ,M) ⊆ N or g(ri,m, 1

(n−2)
R ) ⊆ N for some

i ∈ {1, . . . , n − 1}. Various properties of n-ary 2-absorbing subhy-
permodules are investigated. In particular, it is shown that if N is
a subhypermodule of an (m,n)-hypermodule (M, f, g) over an (m,n)-
hyperring (R, h, k), then N is n-ary 2-absorbing if and only if whenever

g(I1, I2, 1
(n−3)
R , L) ⊆ N for some hyperideals I1, I2 of R and subhyper-

module L ofM , then either g(I1, I2, 1
(n−3)
R ,M) ⊆ N or g(I1, 1

(n−2)
R , L) ⊆

N or g(I2, 1
(n−2)
R , L) ⊆ N . Also, n-ary 2-absorbing subhypermodules in

multiplication (m,n)-hypermodules are studied.

The body of the article.

1 Introduction

One of the generalizations of groups is the hypergroups was introduced by
Marty, and then the n-ary groups was introduced to be a generalization of
hypergroups [14].
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In 1904, at the annual meeting of the Advancement of Science [18], E.
Krasner introduced the n-ary algebras. After that, Dörente studied the n-
ary groups [16]. Then, Timm and Crombez studied the (m,n)-rings [12, 13].
Afterward, Davvaz et al. introduced the n-ary hypergroup as a generalization
of the hypergroup and an extending of an n-ary group ([14]). Thereupon,
(m,n)-hyperring was introduced by Mirvakili et al., and then, he introduced
(m,n)-rings of the (m,n)-hyperrings (see [23]). After that, he introduced the
subclass of (m,n)-hyperrings containing the class of Krasner hyperrings which
is the Krasner (m,n)-hyperrings. Then, the notion of (m,n)-hypermodules
was introduced by Anvariyeh et al. [8]. Moreover, free and canonical (m,n)-
hypermodules were defined by Belali et al. [7, 11].

Badawi in 2007 introduced the concept of 2-absorbing ideals in commuta-
tive rings R [10]. Let I be a nonzero proper ideal of R. Then I is called to
be 2-absorbing, if for each d, e, f ∈ R and Idef ∈ I, either de ∈ I or df ∈ I
or ef ∈ I. After that, in 2011, Anderson et al. defined the n-absorbing ideals
for an integer n [6], which is an ideal I of R is an n-absorbing ideal if for
a1, a2, . . . , an+1 ∈ R and a1a2 · · · an+1 ∈ I, then n of the ai’s whose product
is in I (see also [9]).

On the other hand, Ulucak [26] studied 2-absorbing δ-primary and δ-
primary hyperideals the generalizations of 2-absorbing and prime hyperideals,
respectively. Ameri et al. defined hyperideals, Jacobson radical, n-ary prime
hyperideals and primary hyperideals of Krasner (m,n)-hyperrings and nilrad-
ical [3]. Moreover, in [4], they introduced the n-ary prime subhypermodules
of (m,n)-hypermodules. The notion of (k, n)-absorbing hyperideals was intro-
duced in [17] by Hila et al. Then, 2-absorbing ideals of commutative rings were
extended to n-ary 2-absorbing hyperideals in Krasner (m,n)-hyperrings in [5].
In this paper, we introduce the concept of n-ary 2-absorbing subhypermod-
ules of (m,n)-hypermodules over Krasner (m,n)-hyperrings as generalization
of n-ary prime subhypermodules ([4]).

Throughout this paper, all hyperrings are commutative Krasner (m,n)-
hyperrings with scalar identity and all hypermodules are canonical unitary
(m,n)-hypermodules. In Section 2, the notion of n-ary 2-absorbing subhy-
permodules of (m,n)-hypermodules over Krasner (m,n)-hyperrings are in-
troduced (see Definition 2.1) and some of their basic properties are given.
For instance, in Examples 2.9 and 2.13 some examples concerning n-ary 2-
absorbing subhypermodules are presented. In Theorem 2.15, it is shown
that if N is a subhypermodule, then N is n-ary 2-absorbing subhypermod-

ule if and only if whenever g(I1, I2, 1
(n−3)
R , L) ⊆ N for hyperideals I1, I2

of R and subhypermodule L of M , then either g(I1, I2, 1
(n−3)
R ,M) ⊆ N or

g(I1, 1
(n−2)
R , L) ⊆ N or g(I2, 1

(n−2)
R , L) ⊆ N . In Section 3, we study n-ary 2-

absorbing subhypermodules in multiplication (m,n)-hypermodules. First we
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give the definition of g-product of two subhypermodules of a multiplication
(m,n)-hypermodule (Definition 3.1). Among other results, it is proved (The-
orem 3.2) that if N is an n-ary 2-absorbing subhypermodule of a cyclic multi-
plication faithful (m,n)-hypermodule (M,f, g), then either rad(m,n)(N) = P

where P is an n-ary prime subhypermodule ofM such that g(P (2), 1
(n−2)
R ) ⊆ N

or rad(m,n)(N) = P1∩P2 where P1, P2 are distinct n-ary prime subhypermod-

ules ofM such that g(P1, P2, 1
(n−2)
R )⊆ N and g((rad(m,n)(N))(2), 1

(n−2)
R ) ⊆ N .

It is shown (Theorem 3.6) that if N is a subhypermodule of a cyclic multi-
plication faithful (m,n)-hypermodule (M,f, g), then N is n-ary 2-absorbing

if and only if whenever g(N1, N2, N3, 1
(n−3)
R ) ⊆ N for some subhypermodules

N1, N2, N3 of M , then either g(N1, N2, 1
(n−2)
R ) ⊆ N or g(N1, N3, 1

(n−2)
R ) ⊆ N

or g(N2, N3, 1
(n−2)
R ) ⊆ N .

In this paper, definitions and examples on (m,n)-hyperrings can be found
in [3, 17, 19, 23, 25], and for any undefined notations on n-ary structures and
hyperstructures, and (m,n)-ary hyperring and hypermodule theory, we refer
the reader to [2, 8, 15, 19, 20, 21, 22] and [27].

2 On n-Ary 2-Absorbing Subhypermodules

In this paper, we suppose that (R, h, k) is a commutative Krasner (m,n)-
hyperring with scalar identity 1R and (M,f, g) is an (m,n)-hypermodule over
(R, h, k) such that (M,f) is a canonical m-ary hypergroup. In this section,
we introduce the notion of n-ary 2-absorbing subhypermodule in the (m,n)-
hypermodule M , and some of basic properties of n-ary 2-absorbing subhyper-
module are studied.

Definition 2.1. LetN be a proper subhypermodule of the (m,n)-hypermodule
(M,f, g) over the (m,n)-hyperring (R, h, k). N is saidn to be n-ary 2-absorbing
subhypermodule if whenever g(rn−1

1 , m) ⊆ N for rn−1
1 ∈ R and m ∈M , then

either g(rn−1
1 ,M) ⊆ N or g(ri,m, 1

(n−2)
R ) ⊆ N for some i ∈ {1, . . . , n− 1}.

In the following, we need the following lemma to prove Theorem 2.3.

Lemma 2.2. Let N,N1 and N2 be subhypermodules of the (m,n)-hypermodule
(M,f, g) over (R, h, k). If N ⊆ N1 ∪N2, then N ⊆ N1 or N ⊆ N2.

Proof. Suppose that neither N ⊆ N1 nor N ⊆ N2 and look for a contradiction.
Then there exists x ∈ N \ N1 and y ∈ N \ N2, and hence x ∈ N2 and
y ∈ N1, since N ⊆ N1 ∪ N2. But N is a subhypermodule of M . Then
f(x, y, 0(m−2)) ⊆ N ⊆ N1 ∪ N2. Therefore, for every a ∈ f(x, y, 0(m−2)), we
have either a ∈ N1 or a ∈ N2. If a ∈ N1, then x ∈ f(a,−y, 0(m−2)) ⊆ N1,
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since (M,f) is a canonical m-ary hypergroup, which is a contradiction. The
second possibility leads to a contradiction in a similar way. Thus we must
have either N ⊆ N1 or N ⊆ N2.

In the following result, an equivalent definition for n-ary 2-absorbing sub-
hypermodules is provided.

Theorem 2.3. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k). Then N is an n-ary 2-absorbing subhypermodule of M if and
only if for every elements rn−1

1 of R and every subhypermodule K of M ,

g(rn−1
1 ,K) ⊆ N implies that either g(rn−1

1 ,M) ⊆ N or g(ri,K, 1
(n−2)
R ) ⊆ N

for some i ∈ {1, . . . , n− 1}.

Proof. Let an−1
1 ∈ R andK be a subhypermodule ofM such that g(an−1

1 ,K) ⊆
N . Suppose further that g(an−1

1 ,M) * N . For each i ∈ {1, . . . , n− 1} set

Ai = {m ∈ K : g(ai, 1
(n−2)
R ,m) ⊆ N} and

Bi = {m ∈ K : g(ai, 1
(n−2)
R ,m) * N}.

By [4, Lemma 3.3], it can be easily seen that the sets Ai’s,Bi’s are subhy-
permodules of M and K = Ai ∪ Bi for every i ∈ {1, . . . , n − 1}. Hence
either K ⊆ Ai or K ⊆ Bi for every i ∈ {1, . . . , n − 1}, by Lemma 2.2, and
so either K = Ai or K = Bi for every i ∈ {1, . . . , n − 1}. If K = Ai for
some i ∈ {1, . . . , n}, then we are done. Hence assume that K = Bi for
every i ∈ {1, . . . , n − 1}. But N is an n-ary 2-absorbing subhypermodule
of M . Then g(an−1

1 ,m) ⊆ N for every m ∈ K and g(an−1
1 ,M) * N , we

must have g(ai, 1
(n−2)
R ,m) ⊆ N for some i ∈ {1, . . . , n − 1}, a contradiction,

as m ∈ K = Bi. Hence K = Ai for some i ∈ {1, . . . , n − 1}, and thus

g(ai,K, 1
(n−2)
R ) ⊆ N for some i ∈ {1, . . . , n− 1}.

Corollary 2.4. Let N be an n-ary 2-absorbing subhypermodule of the (m,n)-
hypermodule (M,f, g) over (R, h, k). Then for every elements rn1 of R and

m of M , if g(rn−1
1 , g(rn, 1

(n−2)
R , m)) ⊆ N , then either g(rn−1

1 ,M) ⊆ N or

g(ri, g(rn, 1
(n−2)
R ,m), 1

(n−2)
R ) ⊆ N for some i ∈ {1, . . . , n− 1}.

Proof. Suppose that g(rn−1
1 , g(rn, 1

(n−2)
R ,m)) ⊆ N for some elements rn1 of R

and m of M such that g(rn−1
1 ,M) * N and g(ri, g(rn, 1

(n−2)
R ,m), 1

(n−2)
R ) * N

for every i ∈ {1, . . . , n−1}. Hence g(ri,m, 1
(n−2)
R ) * N for every i ∈ {1, . . . , n}.

But g(k(r1, rn, 1
(n−2)
R ), rn−1

2 ,m) ⊆ N and N is n-ary 2-absorbing. Therefore

g(k(r1, rn, 1
(n−2)
R ), rn−1

2 ,M) = g(rn−1
1 , g(rn, 1

(n−2)
R ,M)) ⊆ N.
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It follows easily from [2, Lemma 3.3] that

g(rn, 1
(n−2)
R ,M) is a subhypermodule ofM and sinceN is an n-ary 2-absorbing,

we conclude by Theorem 2.3 that either

g(rn−1
1 ,M) ⊆ Norg(ri, g(rn, 1

(n−2)
R ,M), 1

(n−2)
R ) ⊆ N

for some i ∈ {1, . . . , n− 1}, a contradiction.

In [4, Theorem 5.13] the authors showed that if (M,f, g) is a canonical
(m,n)-hypermodule over (R, h, k) and N is a primary subhypermodule of M ,

then SN = {r ∈ R | g(r, 1
(n−2)
R ,M) ⊆ N} is a prime hyperideal of R. We give

an example which shows that this theorem is not true.

Example 2.5. Let (Z, f, g) be the (m,n)-hypermodule over (Z, h, k) as in [2,
Example 3.5]. Suppose that p ∈ Z is a prime number. It follows from [2,

Lemma 3.3] that 〈p2〉 = g(Z, 1(n−3)
Z , p(2)) is a subhypermodule of the (m,n)-

hypermodule (Z, f, g). We show thatN = 〈p2〉 is a primary subhypermodule of
(Z, f, g) but SN need not be a prime hyperideal of (Z, h, k). Let g(rn−1

1 ,m) ⊆
〈p2〉 for some rn−1

1 ,m ∈ Z such that m /∈ 〈p2〉. Then by the definition of the
n-ary hyperoperation g, we have

{r1 · · · rn−1 ·m} ⊆ g(Z, 1(n−3)
Z , p(2)) = {t · p · p : t ∈ Z}.

Hence, there exists t ∈ Z such that r1 · · · rn−1·m = t·p·p. But p is a prime num-

ber and m /∈ 〈p2〉, so that r1 · · · rn−1 = s · p = k(p, 1
(n−2)
Z , s) ⊆ k(p, 1

(n−2)
Z ,Z)

for some s ∈ Z. This means that g(rn−1
1 ,Z) ⊆ g(k(p, 1

(n−2)
Z ,Z), 1

(n−2)
Z ,Z), and

so g(k(r
(2)
1 , 1

(n−2)
Z ), . . . , k(r

(2)
n−1, 1

(n−2)
Z ),Z) ⊆ g(k(p(2), 1

(n−3)
Z ,Z), 1

(n−2)
Z ,Z) =

g(p(2), 1
(n−3)
Z , g(Z, 1(n−2)

Z ,Z)) = g(p(2), 1
(n−3)
Z ,Z)) = 〈p2〉, by the definition

of g. Thus N = 〈p2〉 is a primary subhypermodule of (Z, f, g). Now, we
show that SN need not be a prime hyperideal of (Z, h, k). Since p · p ∈
〈p2〉 = g(Z, 1(n−3)

Z , p(2)), we conclude that p · p ∈ SN . But p · p 6 |p. Hence

g(Z, 1(n−2)
Z , p) * N , and so p /∈ SN . Thus SN is not a prime hyperideal of

(Z, h, k).

We give a modification of this theorem as follows.

Theorem 2.6. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k). If N is a primary subhypermodule of M , then SN is a primary
hyperideal of R.

Proof. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g) over

(R, h, k) and let k(rn1 ) ∈ SN for rn1 ∈ R such that k(rn2 , 1R) /∈
√
SN

(m,n)
. Then
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g(k(r
(α)
2 , 1

(n−α)
R ), . . . , k(r

(α)
n , 1

(n−α)
R ),M) * N for every α ∈ N. But k(rn1 ) ∈

SN . Then g(k(rn1 ), 1
(n−2)
R ,M) ⊆ N . Hence g(r1, 1

(n−2)
R , g(rn2 ,M)) ⊆ N , and so

g(rn2 , g(r1,M, 1
(n−2)
R )) ⊆ N . Since g(k(r

(α)
2 , 1

(n−α)
R ), . . . , k(r

(α)
n , 1

(n−α)
R ),M) *

N for every α ∈ N and N is a primary subhypermodule of M , we conclude that

g(r1,M, 1
(n−2)
R ) ⊆ N . Hence r1 ∈ SN , and thus SN is a primary hyperideal of

R.

We can also see that Theorem 2.6 holds if N is an n-ary 2-absorbing sub-
hypermodule of M .

Theorem 2.7. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k). If N is an n-ary 2-absorbing subhypermodule of M , then SN is
an n-ary 2-absorbing hyperideal of R.

Proof. Let an1 ∈ R such that k(an1 ) ∈ SN . It is shown that SN is an n-ary
2-absorbing hyperideal of R. For each i ∈ {1, . . . , n− 1} set

Ain = {m ∈M : g(ai, 1
(n−2)
R , g(an,m, 1

(n−2)
R )) ⊆ N} and

Bin = {m ∈M : g(ai, 1
(n−2)
R , g(an,m, 1

(n−2)
R )) * N}.

By [4, Lemma 3.3], it is easy to see that the sets Ain’s,Bin’s are subhyper-
modules of M and M = Ain ∪ Bin for every i ∈ {1, . . . , n − 1}. Hence, by
Lemma 2.2, either M ⊆ Ain or M ⊆ Bin for every i ∈ {1, . . . , n − 1}, and so
either M = Ain or M = Bin for every i ∈ {1, . . . , n− 1}. If M = Ain for some
i ∈ {1, . . . , n − 1}, the proof is complete. Hence assume that M = Bin for
every i ∈ {1, . . . , n − 1}. Since N is an n-ary 2-absorbing subhypermod-

ule of M and g(an−1
1 , g(an,m, 1

(n−2)
R )) ⊆ N for every m ∈ M , we must

have either g(an−1
1 ,M) ⊆ N or g(ai, 1

(n−2)
R , g(an,m, 1

(n−2)
R )) ⊆ N for some

i ∈ {1, . . . , n − 1}. Since m ∈ Bin, one may assume that g(an−1
1 ,M) ⊆ N .

Now use this argument n − 3 more times to see that g(a21, 1
(n−3)
R ,M) ⊆ N .

Therefore M = A12, which is a contradiction. Hence M = Aij for some
i, j ∈ {1, . . . , n} such that i 6= j, and thus SN is an n-ary 2-absorbing hyper-
ideal of R.

Corollary 2.8. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k). If N is an n-ary 2-absorbing subhypermodule of M , then

Nm = {r ∈ R : g(r,m, 1
(n−2)
R ) ⊆ N} is an n-ary 2-absorbing hyperideal of

R for every m ∈M \N .

Proof. Using [23, Lemma 3.3], it is easily seen that the set Nm is a hyper-
ideal of R. Let an1 ∈ R and k(an1 ) ∈ Nm. It is shown that Nm is an
n-ary 2-absorbing hyperideal of R. Since N is an n-ary 2-absorbing sub-

hypermodule of M and g(an−1
1 , g(an,m, 1

(n−2)
R )) ⊆ N , either g(an−1

1 ,M) ⊆
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N or g(ai, 1
(n−2)
R , g(an,m, 1

(n−2)
R )) ⊆ N for some i ∈ {1, . . . , n − 1}. If

g(ai, 1
(n−2)
R , g(an,m, 1

(n−2)
R )) ⊆ N for some i ∈ {1, . . . , n − 1}, then we are

done. If g(an−1
1 ,M) ⊆ N , then by Theorem 2.7, Nm is an n-ary 2-absorbing

hyperideal of R, as SN is an n-ary 2-absorbing hyperideal of R.

For nontrivial n-ary 2-absorbing subhypermodules see the following exam-
ples.

Example 2.9. Let (R, h, k) be the Krasner (2, 4)-hyperring such that R =
{0, 1, 2, 3}, with the 2-ary hyperoperation h and the 4-ary operation k defined
as follows:

h 0 1 2 3
0 0 1 2 3
1 1 {0, 1} 3 {2, 3}
2 2 3 0 1
3 3 {2, 3} 1 {0, 1}

k(x1, x2, x3, x4) =

{
2 if x41 ∈ {2, 3},
0 otherwise.

Let M = {0, 1, 2, 3, 4} be a set. We define the 2-ary hyperoperation f and the
4-ary external hyperoperation g on M as follows:

f 0 1 2 3 4
0 0 1 2 3 4
1 1 {0, 1} 3 {2, 3} {3, 4}
2 2 3 0 1 2
3 3 {2, 3} 1 {0, 1} 1
4 4 {3, 4} 2 1 0

g(x1, x2, x3, x4) =

{
2 if x31 ∈ {2, 3} and x ∈ {2, 3, 4},
0 otherwise.

It is easy to see that {0} and {0, 2} are 4-ary 2-absorbing subhypermodules of
the (2, 4)-hypermodule (M,f, g) over the Krasner (2, 4)-hyperring (R, h, k).

Example 2.10. Suppose that (R,+, ·) is a Krasner hyperring such that R is
an integral hyperdomain with the ordinary multiplication operation ·. Suppose
also that R endowed with the following m-ary hyperoperation h and n-ary
operation k is a Krasner (m,n)-hyperring:

h(x1, x2, . . . , x
m) =

∑m
i=1 xi and k(x1, x2, . . . , x

n) = x1 · · ·xn.

If we regard (R, h, k) as an (m,n)-hypermodule over itself, the subhypermod-
ule {0} is an n-ary 2-absorbing subhypermodule of R.
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In the following theorem, one may see that that either the hyperideal Nm
defined in Corollary 2.8 is a prime hyperideal of R or there is an element a ∈ R
such that Nam is a prime hyperideal of R whenever N is an n-ary 2-absorbing
subhypermodule of M and m ∈M \N .

Theorem 2.11. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k). If N is an n-ary 2-absorbing subhypermodule of M , then for

every m ∈ M \ N either Nm = {r ∈ R : g(r,m, 1
(n−2)
R ) ⊆ N} is a prime hy-

perideal of R or Nam = {r ∈ R : g(r, a,m, 1
(n−3)
R ) ⊆ N} is a prime hyperideal

of R for some a ∈ R.

Proof. Let N be an n-ary 2-absorbing subhypermodule of M . It follows from
Theorem 2.7 that SN is an n-ary 2-absorbing hyperideal of R, and so either√
SN

(m,n)
= P is an n-ary prime hyperideal of R or

√
SN

(m,n)
= P1∩P2, where

P1, P2 are the only distinct n-ary prime hyperideals of R that are minimal over

SN , by [5, Theorem 3.7]. First assume that
√
SN

(m,n)
= P is an n-ary prime

hyperideal of R. If P ⊆ Nm and k(an1 ) ∈ Nm for some an1 ∈ R and m ∈M \N ,

then g(k(an1 ),m, 1
(n−2)
R ) = g(an−1

1 , g(an,m, 1
(n−2)
R )) ⊆ N . Since N is an n-ary

2-absorbing subhypermodule of M , either g(an−1
1 ,M) ⊆ N or g(ai, 1

(n−2)
R ,

g(an,m, 1
(n−2)
R )) = g(ai, an,m, 1

(n−3)
R ) ⊆ N for some i ∈ {1, . . . , n − 1}. If

g(an−1
1 ,M) ⊆ N , then k(an−1

1 , 1R) ∈ SN ⊆ P , and so ai ∈ Nm for some i ∈
{1, . . . , n−1}, as P ⊆ Nm and P is prime. Let g(ai, 1

(n−2)
R , g(an,m, 1

(n−2)
R )) =

g(ai, an,m, 1
(n−3)
R ) ⊆ N , for some i ∈ {1, . . . , n − 1}. Since N is an n-ary 2-

absorbing subhypermodule of M , either g(a1, an,M, 1
(n−3)
R ) ⊆ N or ai ∈ Nm

or an ∈ Nm. Therefore Nm is a prime hyperideal of R, as SN ⊆ P ⊆ Nm.

If P * Nm, then there exists a ∈ P \ Nm, and so g(a,m, 1
(n−2)
R ) * N . It

follows from [5, Theorem 3.7 (i)] that k(P (2), 1
(n−2)
R ) ⊆ SN ⊆ Nm. Hence

k(P, a, 1
(n−2)
R ) ⊆ Nm, and so P ⊆ Nam = {r ∈ R : g(r, a,m, 1

(n−3)
R ) ⊆ N}. By

a similar argument as above, Nam is a prime hyperideal of R for some a ∈ R.

Now, assume that
√
SN

(m,n)
= P1 ∩ P2, where P1, P2 are the only distinct

n-ary prime hyperideals of R that are minimal over SN . If P1 ⊆ Nm, then by
a similar argument as above, Nm is a prime hyperideal of R. Suppose that

P1 * Nm. Then there exists a ∈ P1 \ Nm, and so g(a,m, 1
(n−2)
R ) * N . It

follows from [5, Theorem 3.7 (ii)] that k(P1, P2, 1
(n−2)
R ) ⊆ SN ⊆ Nm. Hence

k(P2, a, 1
(n−2)
R ) ⊆ Nm, and so P2 ⊆ Nam = {r ∈ R : g(r, a,m, 1

(n−3)
R ) ⊆ N}.

By a similar argument as above, Nam is a prime hyperideal of R for some
a ∈ R.

Theorem 2.12. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
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over (R, h, k). Then N is an n-ary 2-absorbing subhypermodule of M , if N
satisfies one of the following conditions:

(i) N is a prime subhypermodule of M .
(ii) N is the intersection of two prime subhypermodules of M .
(iii) N is a primary subhypermodule of M with the properties that

k
(
k(r

(α)
1 , 1

(n−α)
R ), . . . , k(r

(α)
n−1, 1

(n−α)
R ), 1R

)
/∈ SN

for every rn−1
1 ∈ R and α > 1.

Proof. There is nothing to prove, if N is a prime subhypermodule of M .
Suppose that N = N1 ∩ N2, where N1, N2 are two prime subhypermodules
of M , and suppose that g(rn−1

1 ,m) ⊆ N for rn−1
1 ∈ R and m ∈ M . If

m ∈ N1 ∩ N2 or g(rn−1
1 ,M) ⊆ N1 ∩ N2, then there is nothing to prove. As-

sume that m ∈ N1 and g(rn−1
1 ,M) ⊆ N2. This means that ri ∈ SN2 for some

i ∈ {1, . . . , n − 1}, as SN2 is a prime hyperideal of R, by [2, Theorem 4.3].

Therefore g(ri,m, 1
(n−2)
R ) ⊆ N = N1∩N2, and henceN is an n-ary 2-absorbing

subhypermodule of M . Suppose that N is a primary subhypermodule of M

and g(rn−1
1 ,m) ⊆ N for rn−1

1 ∈ R and m ∈M such that g(ri,m, 1
(n−2)
R ) * N

for every i ∈ {1, . . . , n − 1}. If m ∈ N , then we are done. Assume that m ∈
M \N . Then either g(k(r

(t)
1 , 1

(n−t)
R ), . . . , k(r

(t)
n−1, 1

(n−t)
R ),M) ⊆ N for t ≤ n or

g(k(l)(r
(t)
1 ), . . . , k(l)(r

(t)
n−1),M) ⊆ N for t > n such that t = l(n − 1) + 1. The

first possibility implies that k(k(r
(t)
1 , 1

(n−t)
R ), . . . , k(r

(t)
n−1, 1

(n−t)
R ), 1R) ∈ SN ,

but k(k(r
(α)
1 , 1

(n−α)
R ), . . . , k(r

(α)
n−1, 1

(n−α)
R ), 1R) /∈ SN for every rn−1

1 ∈ R and
α > 1, by hypothesis. Hence t = 1, and so

g
(
k(r1, 1

(n−1)
R ), . . . , k(rn−1, 1

(n−1)
R ),M

)
= g(rn−1

1 ,M) ⊆ N.

The second case is proved similarly. Thus N is an n-ary 2-absorbing subhy-
permodule of M .

Example 2.13. Let (Z, f, g) be the (m,n)-hypermodule over (R, h, k) with
the following hyperoperations and operation

f(xm1 ) =

m⊕
i=1

xi =

= {xm1 , xi1 + xi2 , . . . , xi1 + xi2 + · · ·
+ xim |1 ≤ i1 6= i2 6= · · · 6= im ≤ m}

g(sn−1
1 , x) = (

n−1⊗
i=1

si)� x = {(
n−1∏
i=1

si) · x},
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where x ⊕ y = {x, y, x + y}, z � x = {z · x} and x ⊕ y = x · y, for
xm1 , s

n
1 , x, y, z ∈ Z, as in [2, Example 3.5]. Suppose that p, q ∈ Z are prime

numbers.
(1) It follows from [2, Example 4.2] and Theorem 2.12 that 〈p〉 ∩ 〈q〉 =

g(Z, 1(n−2)
Z , p)∩ g(Z, 1(n−2)

Z , q) is an n-ary 2-absorbing subhypermodule of the
(m,n)-hypermodule (Z, f, g).

(2) 〈pq〉 = g(Z, 1(n−3)
Z , p, q) = {t · p · q : t ∈ Z} is an n-ary 2-absorbing sub-

hypermodule of the (m,n)-hypermodule (Z, f, g). To see this, let g(rn−1
1 ,m) ⊆

〈pq〉 for some rn−1
1 ,m ∈ Z such that m /∈ 〈pq〉. Then there exists r ∈ Z such

that r1 · · · rn−1 ·m = r·p·q. But p is a prime number, then either p | ri for some
i ∈ {1, . . . , n − 1} or p | m. Assume that p | ri for some i ∈ {1, . . . , n − 1}.
Then ri = p · s = k(p, 1

(n−2)
Z , s) ⊆ k(p, 1

(n−2)
Z ,Z) for some s ∈ Z, and so

r1 · · · ri−1 · p · s · ri+1 · · · rn−1 ·m = r · p · q = k(p, q, r, 1
(n−3)
Z ). This means that

either q | rj for some j ∈ {1, . . . , n− 1} \ {i} or q | m or q | s. If q | rj , then

p · q | ri · rj , and so g(rn−1
1 ,Z) ⊆ 〈pq〉. If q | m, then g(ri,m, 1

(n−2)
R ) ⊆ 〈pq〉 for

some i ∈ {1, . . . , n−1}. If q | s, then p ·q | ri, and so g(ri,m, 1
(n−2)
R ) ⊆ 〈pq〉 for

some i ∈ {1, . . . , n − 1}. Thus 〈pq〉 is an n-ary 2-absorbing subhypermodule
of (Z, f, g).

By Theorem 2.11, if N is an n-ary 2-absorbing subhypermodule of M such

that
√
SN

(m,n)
is a prime hyperideal ofR, thenNm = {r ∈ R : g(r,m, 1

(n−2)
R ) ⊆

N} may be a prime hyperideal of R for every m ∈M \N . The following the-

orem shows that
√
Nm

(m,n)
should be a prime hyperideal of R.

Theorem 2.14. Let N be an n-ary 2-absorbing subhypermodule of the (m,n)-

hypermodule (M,f, g) over (R, h, k) such that
√
SN

(m,n)
= P is a prime hy-

perideal of R. If m ∈ M \ N , then
√
Nm

(m,n)
is a prime hyperideal of R

containing P . Moreover, if
√
SN

(m,n)
= P ∩ Q for some prime hyperideals

P,Q such that P ⊆
√
Nm

(m,n)
, then

√
Nm

(m,n)
is a prime hyperideal of R.

Proof. Let k(an1 ) ∈
√
Nm

(m,n)
for some an1 ∈ R and m ∈M \N . Then either

k
(
k(a

(t)
1 , 1

(n−t)
R ), . . . , k(a

(t)
n , 1

(n−t)
R )

)
∈ Nm for t ≤ n or

k
(
k(l)(a

(t)
1 ), . . . , k(l)(a

(t)
n )
)
∈ Nm for t > n such that t = l(n− 1) + 1. The first

possibility implies that

g(k(a
(t)
1 , 1

(n−t)
R ), . . . , k(a

(t)
n−1, 1

(n−t)
R ), g(a(t)n , 1

(n−t−1)
R ,m)) ⊆ N.

But N is n-ary 2-absorbing subhypermodule. Then either

g
(
k(a

(t)
1 , 1

(n−t)
R ), . . . , k(a

(t)
n−1, 1

(n−t)
R ),M

)
⊆ N
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or g(k(a
(t)
i , 1

(n−t)
R ), g(a

(t)
n , 1

(n−t−1)
R ,m), 1

(n−2)
R ) ⊆ N for some i ∈ {1, . . . , n −

1}. Hence either ai ∈
√
SN

(m,n) ⊆
√
Nm

(m,n)
for some i ∈ {1, . . . , n − 1},

√
SN

(m,n)
is a prime hyperideal or g(k(a

(t)
i , 1

(n−t)
R ), k(a

(t)
n , 1

(n−t)
R ),M, 1

(n−3)
R ) ⊆

N for some i ∈ {1, . . . , n − 1} or g(a
(t)
i , 1

(n−t−1)
R ),m) ⊆ N for some i ∈

{1, . . . , n}. Thus
√
Nm

(m,n)
is a prime hyperideal of R. The second possibility

is similar.
The “Moreover” statement is clear if P ⊆

√
Nm

(m,n)
. We note that if P

and Q are not contained in
√
Nm

(m,n)
, then

√
Nm

(m,n)
need not be prime, as

by Example 2.13, N = 〈pq〉 = g(Z, 1(n−3)
Z , p, q) is an n-ary 2-absorbing sub-

hypermodule of the (m,n)-hypermodule (Z, f, g) such that p, q ∈ Z are prime

numbers. If we take m = 1Z, then
√
Nm

(m,n)
= 〈p〉 ∩ 〈q〉 = g(Z, 1(n−2)

Z , p) ∩
g(Z, 1(n−2)

Z , q) is not a prime hyperideal of R.

The next theorem shows that if N is an n-ary 2-absorbing subhypermodule

of the (m,n)-hypermodule (M,f, g) over (R, h, k), and g(I1, I2, 1
(n−3)
R , L) ⊆ N

for some hyperideals I1, I2 of R and subhypermodule L of M , then either

g(I1, I2, 1
(n−3)
R ,M) ⊆ N or g(I1, 1

(n−2)
R , L) ⊆ N or g(I2, 1

(n−2)
R , L) ⊆ N .

Theorem 2.15. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)

over (R, h, k). Then N is n-ary 2-absorbing if and only if g(I1, I2, 1
(n−3)
R , L) ⊆

N for some hyperideals I1, I2 of R and subhypermodule L of M , then one of
the following conditions holds:

(i) g(I1, I2, 1
(n−3)
R ,M) ⊆ N .

(ii) g(I1, 1
(n−2)
R , L) ⊆ N .

(iii) g(I2, 1
(n−2)
R , L) ⊆ N .

Proof. Let N be an n-ary 2-absorbing subhypermodule of the (m,n)-hypermo-

dule (M,f, g) over (R, h, k) and let g(I1, I2, 1
(n−3)
R , L) ⊆ N for some hyperide-

als I1, I2 of R and subhypermodule L of M such that non of

g(I1, I2, 1
(n−3)
R ,M) ⊆ N, g(I1, 1

(n−2)
R , L) ⊆ N

and g(I2, 1
(n−2)
R , L) ⊆ N is hold. Then there exist a1 ∈ I1 and a2 ∈ I2 such

that g(a1, 1
(n−2)
R , L) and g(a2, 1

(n−2)
R , L) which are not contained in N . This

means that g(a1, a2, 1
(n−3)
R ,M) ⊆ N , by Theorem 2.3 as N is 2-absorbing.

Thus g(I1, I2, 1
(n−3)
R ,M) * N , and so there exist r1 ∈ I1 and r2 ∈ I2 such

that g(r1, r2, 1
(n−3)
R ,M) * N . But g(r1, r2, 1

(n−3)
R , L) ⊆ N , and hence either

g(r1, 1
(n−2)
R , L) ⊆ N or g(r2, 1

(n−2)
R , L) ⊆ N . Consider three following cases.
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Case one: Suppose that g(r1, 1
(n−2)
R , L) ⊆ N and g(r2, 1

(n−2)
R , L) * N .

Since g(a1, r2, 1
(n−3)
R , L) ⊆ N and g(r2, 1

(n−2)
R , L), g(a1, 1

(n−2)
R , L) are not con-

tained in N , we conclude that g(a1, r2, 1
(n−3)
R ,M) ⊆ N .

Also, g(h(r1, a1, 0
(m−2)), r2, 1

(n−3)
R , L) ⊆ N , g(r1, 1

(n−2)
R , L) ⊆ N and

g(a1, 1
(n−2)
R , L) * N . Therefore g(h(r1, a1, 0(m−2)), 1

(n−2)
R , L) * N .

Hence there exists u1 ∈ h(r1, a1, 0
(m−2)) such that g(u1, 1

(n−2)
R , L) * N .

Again, since g(u1, r2, 1
(n−3)
R , L) ⊆ N, g(r2, 1

(n−2)
R , L) * N and g(u1, 1

(n−2)
R , L) *

N , we conclude that g(u1, r2, 1
(n−3)
R ,M) ⊆ N . It follows that

g(r1, r2, 1
(n−3)
R ,M) ⊆ g(h(u1,−a1, 0(m−2)), r2, 1

(n−3)
R ,M) =

f(g(−a1, r2, 1(n−3)
R ,M), g(u1, r2, 1

(n−3)
R ,M), 0(m−2)) ⊆ N,

a contradiction.
Case two: Suppose that g(r1, 1

(n−2)
R , L) * N and g(r2, 1

(n−2)
R , L) ⊆ N .

By a similar argument as in the previous case, g(r1, r2, 1
(n−3)
R ,M) ⊆ N which

is also a contradiction.
Case three: Suppose that g(r1, 1

(n−2)
R , L) ⊆ N and g(r2, 1

(n−2)
R , L) ⊆

N . Since g(r2, 1
(n−2)
R , L) ⊆ N and g(a2, 1

(n−2)
R , L) * N , we conclude that

g(h(r2, a2, 0
(m−2)), 1

(n−2)
R , L) * N . Hence there exists u2 ∈ h(r2, a2, 0

(m−2))

such that g(u2, 1
(n−2)
R , L) * N . But g(a1, u2, 1

(n−3)
R , L) ⊆ N , g(u2, 1

(n−2)
R , L),

g(a1, 1
(n−2)
R , L) are not contained in N and N is 2-absorbing.

Thus g(a1, u2, 1
(n−3)
R ,M) ⊆ N . It is not hard to see that g(r1, 1

(n−2)
R , L) ⊆

N and g(a1, 1
(n−2)
R , L) * N implies that g(h(r1, a1, 0

(m−2)), 1
(n−2)
R , L) * N .

Hence there exists u1 ∈ h(r1, a1, 0
(m−2)) such that g(u1, 1

(n−2)
R , L) * N ,

and since g(u1, a2, 1
(n−3)
R , L) ⊆ N and g(a2, 1

(n−2)
R , L) * N , g(u1, a2, 1

(n−3)
R ,

M) ⊆ N . But g(u1, u2, 1
(n−3)
R , L) ⊆ N and both of g(u1, 1

(n−2)
R , L) and

g(u2, 1
(n−2)
R , L) are not contained in N . Then g(u1, u2, 1

(n−3)
R ,M) ⊆ N .

Therefore

g(r1, r2, 1
(n−3)
R ,M) ⊆ g(h(u1,−a1, 0(m−2)), h(u2,−a2, 0(m−2)), 1

(n−3)
R ,M)

= f(g(−a1, u2, 1(n−3)
R ,M), g(a1, a2, 1

(n−3)
R ,M),

g(u1, u2, 1
(n−3)
R ,M), g(u1,−a2, 1(n−3)

R ,M), 0(m−4))

⊆ N.

Hence g(r1, r2, 1
(n−3)
R , M) ⊆ N , which is a contradiction. Thus

g(I1, I2, 1
(n−3)
R ,M) ⊆ N .
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Conversely, let N be a subhypermodule of M and let g(rn−1
1 ,m) ⊆ N for

some rn−1
1 ∈ R and m ∈M . Then

g
(
k(R, rn−2

1 , 1R), k(R, rn−1, 1
(n−2)
R ), g(R, 1

(n−2)
R ,m), 1

(n−3)
R

)
⊆ N.

By given hypothesis, we have either

g
(
k(R, rn−2

1 , 1R), k(R, rn−1, 1
(n−2)
R ), 1

(n−3)
R ,M

)
⊆ N

or
g
(
k(R, rn−2

1 , 1R), g(R, 1
(n−2)
R ,m), 1

(n−2)
R

)
⊆ N.

The first possibility implies g(rn−1
1 ,M) ⊆ N and the second possibility implies

g(rn−1, 1
(n−2)
R ,m) ⊆ N , and so assume that g(k(R, rn−2

1 , 1R), g(R, 1
(n−2)
R ,m),

1
(n−2)
R ) ⊆ N , which means that

g
(
k(R, rn−3

1 , 1R), k(R, rn−2, 1
(n−2)
R ), g(R, 1

(n−2)
R ,m), 1

(n−3)
R

)
⊆ N.

By a similar argument, g(rn−1
1 ,M) ⊆ N or

g(ri, 1
(n−2)
R ,m) ⊆ N for some i ∈ {1, . . . , n − 2}. Continue in this way:

after n−2 steps, we get either g(rn−1
1 ,M) ⊆ N or g(r1, 1

(n−2)
R ,m) ⊆ N . Thus

N is an n-ary 2-absorbing subhypermodule of M .

We end this section with the following corollary.

Corollary 2.16. Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g)
over (R, h, k) and I a hyperideal of R. If N is n-ary 2-absorbing, then NI =

{m ∈M : g(I,m, 1
(n−2)
R ) ⊆ N} is an n-ary 2-absorbing subhypermodule of M .

Moreover, {m ∈ M : g(I(n−1),m) ⊆ N} = {m ∈ M : g(I(n−2),m, 1R) ⊆ N}
for every n ≥ 4.

Proof. Let g(an−1
1 ,m) ⊆ NI for some an−1

1 ∈ R and m ∈ M . Then we

have g(I, k(an−1
1 , 1R),m, 1

(n−3)
R ) ⊆ N . Since N is n-ary 2-absorbing, Theorem

2.15 implies that g(I,m, 1
(n−2)
R ) ⊆ N or g(k(an−1

1 , 1R),m, 1
(n−2)
R ) ⊆ N or

g(I, k(an−1
1 , 1R),M, 1

(n−3)
R ) ⊆ N . If g(I,m, 1

(n−2)
R ) ⊆ N , then m ∈ NI and

so we are done. If g(I, k(an−1
1 , 1R),M, 1

(n−3)
R ) = g(I, g(an−1

1 ,M), 1
(n−2)
R ) ⊆

N , then g(an−1
1 ,M) ⊆ NI , which means that NI is n-ary 2-absorbing. If

g(k(an−1
1 , 1R),m, 1

(n−2)
R ) ⊆ N , then g(an−1

1 ,m) ⊆ N . Since N is n-ary 2-

absorbing, either g(ai,m, 1
(n−2)
R ) ⊆ N ⊆ NI for some i ∈ {1, . . . , n − 1} or

g(an−1
1 ,M) ⊆ N ⊆ NI . Thus NI is an n-ary 2-absorbing subhypermodule of

M .
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For the “Moreover” statement, we show that

NI2 = {m ∈M : g(I(2),m, 1
(n−3)
R ) ⊆ N}

= {m ∈M : g(I(3),m, 1
(n−4)
R ) ⊆ N} = NI3 .

Let m ∈ NI3 . Then g(I(2), g(I,m, 1
(n−2)
R ), 1

(n−3)
R ) ⊆ N . But N is n-

ary 2-absorbing. Then, by Theorem 2.15, either g(I(2),m, 1
(n−3)
R ) ⊆ N or

g(I(2),M, 1
(n−3)
R ) ⊆ N , and so m ∈ NI2 . Therefore NI3 = NI2 , and hence

{m ∈ M : g(I(n−1),m) ⊆ N} = {m ∈ M : g(I(n−2),m, 1R) ⊆ N} for every
n ≥ 2.

3 n-Ary 2-Absorbing Subhypermodules in Multiplication
(m,n)-Hypermodules

In this section n-ary 2-absorbing subhypermodules in multiplication (m,n)-
hypermodules over Krasner (m,n)-hyperrings are studied. Recall from [11,
page 111] that if X is an (m,n)-ary subhypermodule of a canonical (m,n)-ary
hypermodule M , then 〈X〉 is the (m,n)-ary subhypermodule generated by
elements of X. If M is generated by a single element x, then M is called a

cyclic (m,n)-hypermodule and we write M = 〈x〉 = g(R, x, 1
(n−2)
R ).

First, the following definition is given.

Definition 3.1. Let N = g(I,M, 1
(n−2)
R ) and K = g(J,M, 1

(n−2)
R ) be subhy-

permodules of the (m,n)-hypermodule (M,f, g) over (R, h, k) for some hyper-

ideals I and J of R. The g-product of N and K denoted by g(N,K, 1
(n−2)
R ),

is defined by g(I, J, 1
(n−2)
R ,M).

It is clear from [23, Lemma 3.4] and from the definition of subhypermodules

of multiplication (m,n)-hypermodules introduced in [2] that g(N,K, 1
(n−2)
R ) =

g(I, J, 1
(n−2)
R ,M) is a subhypermodule of M contained in N ∩K.

Let N be a subhypermodule of the (m,n)-hypermodule (M,f, g) over
(R, h, k). The radical of subhypermodule N of M was defined in [2, page 170]
as the intersection of all n-ary prime subhypermodules of M containing N and
denoted by rad(m,n)(N). It is shown in [2, Theorem 4.6] that if M is a multi-

plication (m,n)-hypermodule, then rad(m,n)(N) = g(
√
SN

(m,n)
, 1

(n−2)
R ,M).

Theorem 3.2. Let N be an n-ary 2-absorbing subhypermodule of the cyclic
multiplication faithful (m,n)-hypermodule (M,f, g) over (R, h, k). Then ei-
ther rad(m,n)(N) = P where P is an n-ary prime subhypermodule of M such
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that g(P (2), 1
(n−2)
R ) ⊆ N or rad(m,n)(N) = P1 ∩ P2 where P1, P2 are dis-

tinct n-ary prime subhypermodules of M such that g(P1, P2, 1
(n−2)
R ) ⊆ N and

g((rad(m,n)(N))(2), 1
(n−2)
R ) ⊆ N .

Proof. Let N be an n-ary 2-absorbing subhypermodule of the cyclic multi-
plication faithful (m,n)-hypermodule (M,f, g) over (R, h, k). It follows from
Theorem 2.7 that SN is an n-ary 2-absorbing hyperideal of R, and so, either√
SN

(m,n)
= p is an n-ary prime hyperideal of R such that k(p(2), 1

(n−2)
R ) ⊆ SN

or
√
SN

(m,n)
= p1 ∩ p2, k(p1, p2, 1

(n−2)
R ) ⊆ SN and k((

√
SN

(m,n)
)(2), 1

(n−2)
R ) ⊆

SN where p1, p2 are the only distinct n-ary prime hyperideals of R that are

minimal over SN , by [5, Theorem 3.7]. First assume that
√
SN

(m,n)
= p is an

n-ary prime hyperideal of R. But M is multiplication. Hence, we conclude by

[2, Theorem 4.6] that rad(m,n)(N) = g(p, 1
(n−2)
R ,M), and so, by [2, Corollary

4.5], P = rad(m,n)(N) is an n-ary prime subhypermodule of M and

g(P (2), 1
(n−2)
R )g(g(p, 1

(n−2)
R ,M), g(p, 1

(n−2)
R ,M), 1

(n−2)
R )

= g(k(p(2), 1
(n−2)
R ),M, 1

(n−2)
R ) ⊆ g(SN ,M, 1

(n−2)
R ) = N

by [2, Remark 3.2]. Now assume that
√
SN

(m,n)
= p1 ∩ p2, k(p1, p2, 1

(n−2)
R ) ⊆

SN and k((
√
SN

(m,n)
)(2), 1

(n−2)
R ) ⊆ SN , where p1, p2 are the only distinct

n-ary prime hyperideals of R that are minimal over SN . Then, by [2, Corol-

lary 4.5], g(p1, 1
(n−2)
R ,M) and g(p2, 1

(n−2)
R ,M) are prime subhypermodules

of N and rad(m,n)(N) = g(
√
SN

(m,n)
,M, 1

(n−2)
R ) = g(p1 ∩ p2,M, 1

(n−2)
R ) ⊆

g(p1, 1
(n−2)
R ,M) ∩ g(p2, 1

(n−2)
R ,M).

Now let x ∈ g(p1, 1
(n−2)
R ,M)∩g(p2, 1

(n−2)
R ,M). Then x = g(x1, 1

(n−2)
R ,m) =

g(x2, 1
(n−2)
R ,m) for some x1 ∈ p1, x2 ∈ p2 and m ∈M .

Hence 0 ∈ g(h(x1,−x2, 0(m−2)), 1
(n−2)
R ,m), which means that h(x1,−x2,

0(m−2)) ⊆ Fm = {0}. Therefore 0 ∈ h(x1,−x2, 0(m−2)), and so x2 ∈ h(x1,

0(m−1)) ⊆ p1. Thus x = g(x2, 1
(n−2)
R ,m) ⊆ g(p1 ∩ p2,M, 1

(n−2)
R ).

Hence

rad(m,n)(N) = g(
√
SN

(m,n)
,M, 1

(n−2)
R )

= g
(
p1 ∩ p2,M, 1

(n−2)
R

)
= g
(
p1, 1

(n−2)
R ,M

)
∩ g
(
p2, 1

(n−2)
R ,M

)
is the intersection of two n-ary prime subhypermodules of M by [2, Corollary
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4.5]. Moreover,

g
(
g(p1,1

(n−2)
R ,M), g(p2, 1

(n−2)
R ,M), 1

(n−2)
R

)
= g
(
k(p1, p2, 1

(n−2)
R ),M, 1

(n−2)
R

)
⊆ g
(
SN ,M, 1

(n−2)
R

)
= N,

by [2, Remark 3.2], and thus

g
(

(rad(m,n)(N))(2), 1
(n−2)
R

)
= g
(

(g(
√
SN

(m,n)
,M, 1

(n−2)
R ))(2), 1

(n−2)
R

)
= g
(
k
(
(
√
SN

(m,n))(2)
, 1

(n−2)
R ),M, 1

(n−2)
R

)
⊆ g
(
SN ,M, 1

(n−2)
R

)
= N.

Corollary 3.3. Let N be an n-ary 2-absorbing subhypermodule of the cyclic
multiplication faithful (m,n)-hypermodule (M,f, g) over (R, h, k).

Then rad(m,n)(N) is an n-ary 2-absorbing subhypermodule of M .

Proof. Let N be an n-ary 2-absorbing subhypermodule of M . It follows from
Theorem 3.2 that either rad(m,n)(N) = P where P is an n-ary prime subhy-
permodule of M or rad(m,n)(N) = P1 ∩ P2 where P1, P2 are distinct n-ary
prime subhypermodules of M . Hence rad(m,n)(N) is an n-ary 2-absorbing
subhypermodule of M , by Theorem 2.12.

Corollary 3.4. Let N be an n-ary primary subhypermodule of the cyclic
multiplication faithful (m,n)-hypermodule (M,f, g) over (R, h, k) such that
√
SN

(m,n)
= P is an n-ary prime hyperideal of R. Then N is n-ary 2-

absorbing if and only if g(P (2),M, 1
(n−3)
R ) ⊆ N .

Proof. First, assume that N is an n-ary 2-absorbing subhypermodule of M .

Since
√
SN

(m,n)
= P is an n-ary prime hyperideal of R, it follows from [2,

Theorem 4.6] that rad(m,n)(N) = g(P, 1
(n−2)
R ,M), and so rad(m,n)(N) is an

n-ary prime subhypermodule of M , by [2, Corollary 4.5]. But N is an n-ary

2-absorbing subhypermodule of M . By Theorem 3.2, g(P (2),M, 1
(n−3)
R ) ⊆ N .

Now, assume that g(P (2),M, 1
(n−3)
R ) ⊆ N and let g(an−1

1 ,m) ⊆ N for some

an−1
1 ∈ R and m ∈ M . S uppose further that g(ai,m, 1

(n−2)
R ) * N for ev-

ery i ∈ {1, . . . , n − 1}. Then k(ai−1
1 , an−1

i−1 , 1
(2)
R ) ∈

√
SN

(m,n)
= P , for every

i ∈ {1, . . . , n − 1}, which is prime, and so there exists j ∈ {1, . . . , n − 1}
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such that j 6= i and aj ∈ P . But g(aj ,m, 1
(n−2)
R ) * N and N is primary.

Then there exists l ∈ {1, . . . , n − 1} such that l 6= j and al ∈ P . The in-

clusion g(P (2),M, 1
(n−3)
R ) ⊆ N implies that g(aj , al,M, 1

(n−3)
R ) ⊆ N . Hence

g(an−1
1 ,M) ⊆ g(aj , al,M, 1

(n−3)
R ) ⊆ N , and thus N is an n-ary 2-absorbing

subhypermodule of M .

In [24, Example 3.6], the polynomial Krasner (m,n)-hyperring was intro-
duced. Let x be an indeterminate and R a Krasner (m,n)-hyperring. Then
R[x] is called the Krasner (m,n)-hyperring of polynomials of x over R.

Suppose that

(a0, a1, . . . , ak, . . .) = f
(
g(ak, x

(k)), g(ak−1, x
(k−1)), . . . , g(a1, x, 1

(n−2)
R ), a0

)
is a sequence with coefficients in R, and a sequence of elements of R[x] such
as (a01, a11, . . . , at1, . . .), . . . , (a0m, a1m, . . . , atm, . . .) is denoted, for all m ∈ N,
by (a0, a1, . . . , at, . . .)

m
1 . By [24, Example 3.6], one may see that (R[x], F,G)

with the m-ary hyperoperation F and the n-ary hyperoperation G defined as
follows:

F
(
(a0, a1, . . . , at, . . .)

m
1

)
= {(c0, c1, . . . , ct, . . .) : ck ∈ f(ak1, ak2, . . . , akm)}

G
(
(a0, a1, . . . , at, . . .)

n
1

)
= {(d0, d1, . . . , dt, . . .) : dk ∈ f(k)(g(ai11, . . . , ainn)(z))}

is a Krasner (m,n)-hyperring where i1 + · · ·+ in = k and z = k(m− 1) + 1.

Example 3.5. Let (Z, f, g) be the (m,n)-hypermodule over (R, h, k) as in [2,
Example 3.5]. Suppose also that R = Z[x, y] where x, y are indeterminates and
(R[x, y], F,G) with m-ary hyperoperation F and the n-ary hyperoperation G
defined above is a Krasner (m,n)-hyperring. Assume that

P1 = G
(
(2, x, 0 . . . , 0, . . .), R, (1, . . . , 1, . . .)n3

)
,

P2 = G
(
(2, y, 0 . . . , 0, . . .), R, (1, . . . , 1, . . .)n3

)
are n-ary prime hyperideals of R, and let I = G(P1, P2, (1, . . . , 1, . . .)

n
3 ) =

G
(
J,R, (1, . . . , 1, . . .)n3

)
such that

J =
(
G((2, 0 . . . , 0, . . .), G((2, x, 0 . . . , 0, . . .),

G((2, y, 0 . . . , 0, . . .), G((x, y, 0, . . . , 0, . . .)
)
. If we regard (R[x, y], F,G) as an

(m,n)-hypermodule over itself, the subhypermodule I is an n-ary 2-absorbing
subhypermodule of R and

rad(m,n)(N) = P1 ∩ P2 = G
(
(2, x, y, 0 . . . , 0, . . .), R, (1, . . . , 1, . . .)n3

)
.

We end this paper with the following Theorem.
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Theorem 3.6. Let N be a subhypermodule of the cyclic multiplication faithful
(m,n)-hypermodule
(M,f, g) over (R, h, k). Then N is n-ary 2-absorbing if and only if when-

ever g(N1, N2, N3, 1
(n−3)
R ) ⊆ N for some subhypermodules N1, N2, N3 of M ,

then one of the following conditions holds:

(i) g(N1, N2, 1
(n−2)
R ) ⊆ N .

(ii) g(N1, N3, 1
(n−2)
R ) ⊆ N .

(iii) g(N2, N3, 1
(n−2)
R ) ⊆ N .

Proof. Let N be an n-ary 2-absorbing subhypermodule of the (m,n)-hypermo-

dule M and let g(N1, N2, N3, 1
(n−3)
R ) ⊆ N for some subhypermodules N1, N2

, N3 of M . Since M is multiplication (m,n)-hypermodule, there exist hyper-

ideals I1, I2 and I3 of R such that N1 = g(I1,M, 1
(n−2)
R ), N2 = g(I2,M, 1

(n−2)
R )

and N3 = g(I3,M, 1
(n−2)
R ). Hence

g(N1, N2, N3, 1
(n−3)
R ) = g

(
g(I1,M, 1

(n−2)
R ),

g
(
g(I2,M, 1

(n−2)
R ), I3,M, 1

(n−2)
R

)
, 1

(n−3)
R

)
⊆ N,

and so g(I1, I2, 1
(n−3)
R , g(I3, 1

(n−2)
R ,M)) ⊆ N . But N is an n-ary 2-absorbing

subhypermodule of M . By Theorem 2.15, either g(I1, I2, 1
(n−3)
R ,M) ⊆ N or

g(I1, 1
(n−2)
R , g(I3, 1

(n−2)
R , M)) ⊆ N or g(I2, 1

(n−2)
R ,g(I3, 1

(n−2)
R ,M))⊆ N . Thus

either g(N1, N2, 1
(n−2)
R ) ⊆ N or g(N1, N3, 1

(n−2)
R ) ⊆ N or g(N2, N3, 1

(n−2)
R ) ⊆

N . Conversely, suppose that g(I1, I2, 1
(n−3)
R , L) ⊆ N for some hyperideals

I1, I2 of R and subhypermodule L of M . But M is multiplication (m,n)-
hypermodule. Then there exists a hyperideal I3 of R such that

L = g(I3,M, 1
(n−2)
R ), and so, by Definition 3.1, g(g(I1,M, 1

(n−2)
R ), g(I2,M,

1
(n−2)
R ), g(I3,M, 1

(n−2)
R ), 1

(n−3)
R ) ⊆ N .

Hence, by hypothesis, either g(I1, I2, 1
(n−2)
R ,M) ⊆ N or g(I1, I3, 1

(n−2)
R ,M) =

g(I1, 1
(n−2)
R , L) ⊆ N or g(I2, I3, 1

(n−2)
R ,M) = g(I2, 1

(n−2)
R , L) ⊆ N . Thus N is

an n-ary 2-absorbing subhypermodule of M , by Theorem 2.15.

4 Conclusion

This research contributes to the idea of n-ary 2-absorbing subhypermodule of
an (m,n)-hypermodule M , and gives a description of these subhypermodules.
Also, we studied n-ary 2-absorbing subhypermodules in multiplication (m,n)-
hypermodules over Krasner (m,n)-hyperrings. In the future, this work will
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be expanded to explore the concept of (k, n)-absorbing subhypermodule of
an (m,n)-hypermodule M , with the following definition: a (k, n)-absorbing
subhypermodule is a proper subhypermodule N of M having the property

that if whenever g(r
k(n−1)
1 ,m) ⊆ N for r

k(n−1)
1 ∈ R and m ∈ M , then either

g(r
k(n−1)
1 ,M) ⊆ N or there are (k−1)(n−1) of the ri’s whose g-product with

m is in N . We intend to study properties of this notion, as a future work.
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[16] Dörente W. Untersuchungen über einen verallgemeinerten Gruppenbe-
griff, Math. Z., 29 (1928), 1–19.

[17] Hila K., Naka K., Davvaz B. On (k, n)-absorbing hyperideals in Krasner
(m,n)-hyperrings, Q. J. Math., 69 (2018), 1035–1046.

[18] Krasner E. An extension of the group concept (reported by L.G. Weld),
Bull. Amer. Math. Soc., 10 (1904), 290–291.

[19] Leoreanu V. Canonical n-ary hypergroups, Ital. J. Pure Appl. Math., 24
(2008).

[20] Leoreanu-Fotea V., Davvaz B. n-hypergroups and binary relations, Euro-
pean J. Combin., 29 (2008), 1027–1218.

[21] Leoreanu-Fotea V., Davvaz B. Roughness in n-ary hypergroups, Inform.
Sci., 178 (2008), 4114–4124.

[22] Mirvakili S., Davvaz B. Constructions of (m,n)-hyperrings, Matematicki
Vesnik, 67 (2015), 1–16.

[23] Mirvakili S., Davvaz B. Relations on Krasner (m,n)-hyperrings, European
J. Combin., 31 (2010), 790–802.



A GENERALIZATION OF n-ARY PRIME SUBHYPERMODULE 123

[24] Norouzi, M., Cristea, I. A note on composition (m,n)-hyperrings, An.
oStiinot. Univ. Ovidius Constanota Ser. Mat., 25 (2), (2017), 101–122.

[25] Ostadhadi-Dehkordi S., Davvaz B. A Note on Isomorphism Theorems of
Krasner (m,n)-hyperrings, Arab. J. Math., 5 (2016), 103–115.

[26] Ulucak G. On expansions of prime and 2-absorbing hyperideals in mul-
tiplicative hyperrings, Turkish Journal of Mathematics, 43 (3), (2019),
1504–1517.

[27] Yassine, A., Nikmehr,M. J., Nikandish, R. n-Ary k-absorbing hyperideals
in Krasner (m, n)-hyperrings, Afr. Mat., 33(19), (2022).

M. NIKMEHR,
Faculty of Mathematics, K.N. Toosi
University of Technology, Tehran, Iran,
Email:nikmehr@kntu.ac.ir

R.. NIKANDISH,
Department of Mathematics, Jundi-Shapur University of Technology
P.O. BOX 64615-334, Dezful, Iran,
Email:r.nikandish@ipm.ir

Ali YASSINE,
Faculty of Mathematics, K.N. Toosi
University of Technology, Tehran, Iran,
Email:ali@email.kntu.ac.ir

Kostaq HILA,
Department of Mathematical Engineering,
Polytechnic University of Tirana, Tirana 1001, Albania,
Email:kostaq hila@yahoo.com

Sarka HOSKOVA-MAYEROVA,
Department of Mathematics and Physics,
Univeristy of Defence,
Kounicova 65, 662 10 Brno, Czech Republic
Email: sarka.mayerova@unob.cz



A GENERALIZATION OF n-ARY PRIME SUBHYPERMODULE 124


