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Functional equations on discrete sets

T. Glavosits and Zs. Karácsony

Abstract

Let Y (+) be a group, D ⊆ Z2 where Z(+,6) denotes the ordered
group of all integers, and Z2 := Z×Z. We shall use the notations Dx :=
{u ∈ Z | ∃v ∈ X : (u, v) ∈ D}, Dy := {v ∈ Z | ∃u ∈ Z : (u, v) ∈ D},
Dx+y := {z ∈ Z | ∃(u, v) ∈ D : z = u + v}. The main purpose of the
article is to find sets D ⊆ Z2 that the general solution of the functional
equation f(x+y) = g(x)+h(y) for all (x, y) ∈ D with unknown functions
f : Dx+y → Y , g : Dx → Y , h : Dy → Y is in the form of f(u) =
a(u) + C1 + C2 for all u ∈ Dx+y, g(v) = a(v) + C1 for all v ∈ Dx,
h(z) = a(z)+C2 for all z ∈ Dy where a : Z→ Y is an additive function,
C1, C2 ∈ Y are constants.

1 Introduction

In the sequel we shall use the notations that if D ⊆ X2 := X × X where
X = X(+) is a groupoid then

Dx := {u ∈ X | ∃v ∈ G : (u, v) ∈ D} ,
Dy := {v ∈ Y | ∃u ∈ G : (u, v) ∈ D} ,

Dx+y := {z ∈ X | ∃(u, v) ∈ D : z = u+ v} .

We shall also use the following concepts.
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• If X(+) and Y (+) are structures, a : X → Y is a function such that
a(x+ y) = a(x) + a(y) for all x, y ∈ X then the function a is said to be
additive function [1], [3], [13].

• If X(+) = Y (+) = R(+), and the function a : R → R is an additive
function then it is said to be Cauchy additive function [5], see also [15]
and [9]. It is worth mentioning that A. L. Cauchy was the first who
proved that the continuous additive function a : R → R is in the form
a(x) = cx for all x ∈ R where c ∈ R is a constant. It is well-known that
if a Cauchy additive function a is not continuous then the graph of a is
dense in R2 which can be easily shown using Hamel bases.

• If X(+), and Y (+) are structures, D ⊆ X2, and the unknown functions
f : Dx+y → Y , g : Dx → Y , h : Dy → Y satisfy the functional equation

f(x+ y) = g(x) + h(y) (x, y ∈ D) (PexAdd)

then the equation (PexAdd) is said to be restricted Pexider additive
functional equation [13], [17], [10]. In his paper [17] J. Rimán have shown
that if the functions f : Dx+y → E, g : Dx → E, h : Dy → E satisfy the
functional equation (PexAdd) where D is a nonempty connected open
subset of the set R2, and E = E(+) is an Abelian group then the general
solution of equation (PexAdd) is in the following form

f(u) = a(u) + C1 + C2

g(v) = a(v) + C1

h(z) = a(z) + C2

u ∈ Dx+y,

v ∈ Dx,

z ∈ Dy,

(PexAddSol)

where a : R → E is an additive function, C1, C2 ∈ E are constants. In
this case the additive function a is said to be (additive) quasy-extension
of functions f , g, h.

The main purpose of this article is to find nonempty sets D ⊆ Z2 where
Z(+,6) is the ordered group of all integers, and the general solution of func-
tional equation (PexAdd) with unknown functions f : Dx+y → Y , g : Dx → Y ,
h : Dy → Y , where Y (+) is an Abelian group is in the form of (PexAddSol)
where a : Z→ Y is an additive function, C1, C2 ∈ Y are constants.

Definition 1.1. Preserving the notations above a nonempty set D ⊆ Z2 is
said to be suitable if the general solution of functional equation (PexAdd) is
in the form of (PexAddSol).

The investigation of additive extensions of functions or functional equations
was initiated by P. Erdős [12]. Previous results dealt with additive extensions:
[4], [7], [18], [14], [2].
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The results concerning to the restricted additive (but not Pexider additive)
functional equations where D ⊆ R2N := RN × RN is a nonempty connected
open set, and Y (+) = RN (+) can be found in the book [13]. In the paper [16]
can be also found a similar Pexider additive functional equation with similar
settings.

The article [6] deals with functions interpreted on a discrete set.
Finally we give a short list of concepts concerning ordering, and ordered

structures:

• An X(6) structure is said to be ordered set if the relation 6 is reflexive,
anti-symmetric, transitive, and linear (that is, x 6 y, or y 6 x is fulfilled
for all x, y ∈ X).

• If X(6) is an ordered set, a, b ∈ X such that a < b then the set ]a, b[:=
{x ∈ X | a < x < b} is said to be open interval (in X). Based on
the interpretation we use the nonempty connected open subsets are not
necessarily open intervals, for example the {x ∈ Q|

√
2 < x < 3} is not

an open interval in the ordered group Q(+,6).

• An ordered set X(6) is said to be dense (in itself) if ]a, b[6= ∅ for all
a, b ∈ X with a < b.

• An ordered group G(+,6) is said to be Archimedean ordered if for all
x, y ∈ G+ := {x ∈ G | x > 0} then there exists an n ∈ Z+ such that
y < nx := x+ · · ·+ x.

2 Some algebraic and topological property of the ordered
group of all integers

Theorem 2.1. If X(+,6) is an Archimedean ordered Abelian group which is
not dense then the group X is isomorphic to the ordered group Z(+).

Proof. It is enough to prove that the group X is an infinite order cyclic group
X = 〈x〉 with infinite order, that is, the group X is generated by a single
element x of X and the order of the element x is infinite.

Since the ordered group X is not dense thus there exists elements a, b ∈ X
a < b such that ]a, b[= ∅.
1 First we show that if a, b, c, d ∈ X such that a < b, c < d, moreover, ]a, b[= ∅,
and ]c, d[= ∅ then b−a = d−c. For this it is enough to prove that b−a 6 d−c.
Indirectly assume that d− c < b− a. Thus a < a+ (d− c) < a+ (b− a) = b
which contradicts that ]a, b[= ∅.
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2 Let x = b − a. It is worth mentioning that there is no positive element of
X less than x because if there were an element r ∈ X that 0 < r < x then
a < a+r < a+(b−a) = b thus a+r ∈]a, b[ which is contradicts that ]a, b[= ∅.
3 Finally, we shows that X = 〈x〉, that is, the generator system of the group X
is the singleton {x}. For this let y ∈ X be an arbitrary element. According to
the Euclidean Division Theorem (see [8], and [11]) there exist elements n ∈ Z,
and r ∈ X such that y = nx + r where 0 6 r < x which is only possible if
r = 0 which completes the proof.

Since the topology on Z generated by the open intervals results discrete
topology thus we have to break with the usual terminology according to which
we interpret the Pexider additive functional equation on well-chained open sets
[11]. For this purpose we introduce a new notation

[a, b] := {a, a+ 1, . . . , b}

for all a, b ∈ Z with a 6 b allowing that [a, b] is a singleton whenever a = b.

Proposition 2.2. If a, b, c, d ∈ Z with a 6 b, and c 6 d then

[a, b] + [c, d] = [a+ c, b+ d].

Proof. It is clear.

3 Additive functions on Z, and on Q

If Y (+) is an arbitrary group, c ∈ Y x ∈ Z then the element cx ∈ Y is defined
by

cx :=

 c+ · · ·+ c, if x > 0;
0, if x = 0;
(−c) + · · ·+ (−c) if x < 0

. (1)

If Y (+) is a group then the element c ∈ Y is said to be n-divisible for same
n ∈ Z+ if there exists an y ∈ Y that c = y + · · · + y. If this element y ∈ Y
uniquely exists then the element c is said to be uniquely n-divisible. If the
all elements of the group Y (+) is n-divisible for all n ∈ Z+ then the group
Y is said to be n-divisible for all n ∈ Z+, and can be used similarly the case
when the group Y (+) is uniquely n-divisible for all n ∈ Z+. If p ∈ Z, q ∈ Z+,
the element c ∈ Y is uniquely q-divisible then p

q c := p 1
q c where y := 1

q c is the

uniquely existing element that y + . . . y = c, and py is defined by (1).

Theorem 3.1. Let Y (+) be a group. The function a : Z → Y is additive
if and only if then there exists an element c ∈ Y such that a(x) = cx for all
x ∈ Z.
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Proof. By mathematical induction can be easily seen that a(nx) = na(x) for
all n, x ∈ Z whence we have that a(x) = cx for all x ∈ Z where c := a(1).

Conversely, let c ∈ Y be an arbitrary element, and define the function
a : Z→ Y by a(x) := cx for all (x ∈ Z). If x, y ∈ Z then we easily obtain that
a(x+ y) = c(x+ y) = cx+ cy = a(x) + a(y) whence we have that the function
a is additive.

Remark 3.2. If Y (+) is an arbitrary group, a : Z→ Y is an additive function
then the (additive) group Ra := {a(x)|x ∈ Z} is Abelian.

Now we consider the additive functions a : Q → Y where Q(+,6) is
the ordered group of all rational numbers, which shows a close analogy with
Theorem 3.1.

Proposition 3.3. If Y (+) is a group, a : Q→ Y is an additive function then
the group Ra is n-divisible for all n ∈ Z+, and

a

(
p

q
x

)
=
p

q
a (x) (x ∈ Q, p ∈ Z, q ∈ Z+). (2)

Proof. It is clear that a(nx) = na(x) for all x ∈ Q, and n ∈ Z.
If q ∈ Z+, and x ∈ Q then a(x

q ) ∈ Y is an element such that qa(x
q ) =

f(x) ∈ Y for all x ∈ Q whence we obtain that the group Ra is n-divisible for
all n ∈ Z+, and by this way we also obtain Equation (2).

Proposition 3.4. If Y (+) is a group, a : Q→ Y is an additive function then
the group Ra is torsion free, that is, it is Abelian, and zero is the only element
with finite order.

Proof. Let us assume that x ∈ Q, and n ∈ Z+ such that na(x) = 0. Then by
Proposition 3.3 we obtain that

a(x) =
1

n
a(nx) =

1

n
na(x) = 0.

Proposition 3.5. If Y (+) is a group, a : Q→ Y is an additive function then
Na := {x ∈ Q|a(x) = 0} ∈ {{0},Q}, and the group Ra is uniquely n-divisible
for all n ∈ Z+.

Proof. 1 Assume that there exist p, q ∈ Z+ such that a(p
q ) = 0. Thus by

Proposition 3.3 we have that pa(1) = 0 thus by Proposition 3.4 we have that
a(1) = 0 thus by Proposition 3.3 we obtain that Na = Q.

2 By Proposition 3.3, and Proposition 3.4 we obtain that the group Ra is
uniquely n-divisible for all n ∈ Z+.
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Remark 3.6. It is easy to see that if Y (+) is a group, and a : Q → Y is a
non-identically zero additive function then the group Ra(+) is isomorphic to
the group Q(+).

By Propositions 3.3, 3.4, and 3.5 can be easily obtained the following The-
orem.

Theorem 3.7. Let Y (+) be a group.

1. If a : Q → Y is an additive function then there exists a constant c ∈ Y
such that a(x) = cx for all x ∈ Q.

2. If c ∈ Y is uniquely n-divisible for all n ∈ Z+, and the function a : Q→
Y is defined by a(x) := cx then the function a is additive.

Now we give some Extension and Uniqueness Theorems for additive func-
tions on integers.

Theorem 3.8. If Y (+) is an Abelian group, n ∈ Z+ is a fixed constant,
I := [−n, n], the function f : [−2n, 2n] → Y satisfies the functional equation
f(x + y) = f(x) + f(y) for all x, y ∈ [−n, n] then there exists an additive
function a : Z→ Y such that a(x) = f(x) for all (x ∈ I).

Proof. If n = 0, that is, I = {0}, then we have that f(0) = f(0 + 0) =
f(0) + f(0) whence we obtain that f(0) = 0. Choose the constant c ∈ Y by
arbitrarily, and define the function a : Z → Y by a(x) := cx for all x ∈ Z.
Thus the function a is an additive extension of the function f from the set I2

to the set Z2.
If n = 1, that is, I = {−1, 0, 1} then define c := f(1). Since 0 = f(0) =

f(1+(−1)) = c+f(−1), whence we obtain, that f(−1) = −c thus the function
a : Z→ Y defined by a(x) := cx for all x ∈ Z is an additive extension of the
function a.

If n > 2 then the statement can be easily obtained by mathematical in-
duction.

In the sequel we shall use the well-known concept of neighbourhood.

The numbers x, y ∈ Z is said to be neighbour if |x− y| = 1.

Every integers have two neighbour integers.
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Similarly, two points (a1, a2), and (b1, b2) is said to be

neighbour if |b1 − a1|+ |b2 − a2| = 1.

Every points of Z2 have four neighbour points.

Theorem 3.9. If Y (+) is an Abelian group, a, b ∈ Z such that a < b,
I := [a, b] ⊆ Z, ci, Ci ∈ Y (i = 1, 2), and f : I → Y is a function such that

f(x) = c1x+ C1 (x ∈ I),

f(x) = c2x+ C2 (x ∈ I)

then c1 = c2, and C1 = C2.

Proof. Since the interval I contains two neighbour elements x, x+ 1 ∈ I thus
we obtain that f(x+1)−f(x) = c1, and we also obtain that f(x+1)−f(x) = c2,
that is, c1 = c2 whence we obtain that C1 = C2.

The above Theorem 3.8, and the Theorem 3.9 shows a close analogy to the
adequate Theorems in [11] concerning Archimedean ordered dense Abelian
groups.

4 Some examples for suitable subsets of Z2

We introduce some new notations. Let x0, y0 ∈ Z, and n, m ∈ Z+ ∪ {0}.

• B(x0, n) := [x0 − n, xn + n],

• B((x0, y0), n,m) := B(x0, n)×B(y0,m),

• B((x0, y0), n) := B((x0, y0), n, n).

• A subset R ⊆ Z2 is said to be m × n type rectangular if there exists
(x0, y0) ∈ Z2 such that R := [x0, x0 + n] × [y0, x0 + m]. (Imagine the
points of the rectangular arranged in rows and columns, similarly to
matrices.)

If D := B((x0, y0),m, n) ⊆ Z2, then Dx = B(x0,m), Dy = B(y0, n), and
by Proposition 2.2 Dx+y = Dx +Dy = B(x0 + y0,m+ n).

Theorem 4.1. Let Y (+) be an Abelian group, n > 1, and D := B((x0, y0), n).
If the functions f : Dx+y → Y , g : Dx → Y , h : Dy → Y satisfy the functional
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equation (PexAdd) then it is in the form of (PexAddSol), that is, there exist
constants c, C1, C2 ∈ Y such that

f(u) = cu+ C1 + C2

g(v) = cv + C1

h(z) = cz + C2

(u ∈ Dx+y),

(v ∈ Dx),

(z ∈ Dy),

(3)

in other words, the 3× 3 type rectangles are suitable sets for all n > 3.

Proof. Define the functions F : B(0, 2n)→ Y ; G, H : B(0, n)→ Y by

F (u) := f(u+ x0 + y0),

G(v) := g(v + x0),

H(z) := h(z + y0)

(u ∈ B(0, 2n)),

(v ∈ B(0, n)),

(z ∈ B(0, n)).

(4)

Thus the functions F , G, H satisfy the equation

F (x+ y) = G(x) +H(y) (x, y ∈ B(0, n)) (5)

From equation (5) we have that

F (x) = G(x) +H(0) (x ∈ B(0, n)),

F (y) = G(0) +H(y) (y ∈ B(0, n)),

F (0) = G(0) +H(0).

(6)

From equations (5), and (6) we obtain that

F (x+ y)− F (0) = (F (x)− F (0)) + (F (y)− F (0)) (x, y ∈ B(0, n)) (7)

whence by Theorem 3.1, and Theorem 3.8 we obtain that there exists an
additive function ϕ : Z→ Y such that

F (u) = ϕ(u) + F (0) (u ∈ B(0, n)) (8)

thus by equations (4), (6), and (8) we obtain that

f(u) = ϕ(u)− ϕ(x0)− ϕ(y0) + F (0)

g(v) = ϕ(v)− ϕ(x0) +H(0)

h(z) = ϕ(z)− ϕ(y0)

(u ∈ B(x0 + y0, 2n),

(v ∈ B(x0, n)),

(z ∈ B(y0, n)).

(9)

By Theorem 3.1 we obtain that there exists a constant c ∈ Y such that ϕ(x) =
cx for all x ∈ Z. Define the constants C1, C2 ∈ Y by

C1 := −ϕ(x0) + F (0), C2 := −ϕ(y0) +H(0). (10)

From equations (6), (9), and (10) we obtain that the functions f , g, h are in
the form of (3).
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Theorem 4.2. 1. If the set D ⊆ Z2 is suitable, then the sets

D + (x, y) := {(u+ x, v + y) | (u, v) ∈ D} (11)

are also suitable for all x, y ∈ Z.

2. If the sets D1, D2 ⊆ Z2 are suitable, moreover, the set D1
x+y∩D2

x+y contain
two neighbour elements, D1

x ∩ D2
x 6= ∅, and D1

y ∩ D2
y 6= ∅, then the set

D1 ∪D2 is also suitable.

Proof. 1. is clear.
2. Sine the sets D1, and D2 are suitable thus there exist constants c1, c2,

Ci
1, Ci

2 ∈ Y (i = 1, 2) such that

f(u) =

{
c1u+ C1

1 + C1
2

(
u ∈ D1

x+y

)
,

c2u+ C2
1 + C2

2

(
u ∈ D2

x+y

)
,

g(v) =

{
c1v + C1

1

(
v ∈ D1

x

)
,

c2v + C2
1

(
v ∈ D2

x

)
,

h(z) =

{
c1z + C1

2

(
z ∈ D1

y

)
,

c2z + C2
2

(
z ∈ D2

y

)
.

Since there exist neighbour elements u, u+ 1 ∈ D1
x+y ∩D2

x+y thus f(u+ 1)−
f(u) = c1, and f(u+ 1)− f(u) = c2 thus c1 = c2.

Since D1
x ∩ D2

x 6= ∅ thus C1
1 = C2

1 . Similarly, since D1
y ∩ D2

y 6= ∅ thus
C1

2 = C2
2 which was to be proved.

Theorem 4.3. Let Y = Y (+) be an Abelian group, and the set D := [a, b]×
[c, d] ⊆ Z2 be an m×n type rectangular such that m > 1, and n > 2. Consider
the functional equation (PexAdd) with unknown functions f : Dx+y → Y ,
g : Dx → Y , h : Dy → Y .

1. If m = 1 then the general solution of equation (PexAdd) is in the form

f(xk + y1) = αk + βk

g(xk) = αk

h(y1) = βk;

(k =1, 2, . . . ,m), (12)

where (αk), and (βk) are arbitrary sequences, thus the set D is not suit-
able.

2. If m > 2 then the general solution of equation (PexAdd) is in the form
of (PexAddSol) where c, C1, C2 ∈ Y are constants, that is, D is also
suitable.
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The case n 6 m can be discussed in an analogous way.

Proof. 1. Let m = 1.

The proof is evident

2. Let m = 2, and let us assume that the functions f , g, h satisfy equation
(PexAdd).

Use the notation [a, b] := {x1, x2, . . . xn},
and [c, d] := {y1, y2}.

It is easy to see that

xk+1 = xk + 1, for all (k = 1, 2, . . . , n− 1) and y2 = y1 + 1.

By equitation (PexAdd) we have that

f(xk + y1) = g(xk) + h(y1)

f(xk + y2) = g(xk) + h(y2)
(k = 1, 2, . . . , n). (13)

Since f(xk+1 + y1) = f(xk + y2) thus by equation (13) we obtain that

g(xk+1)− g(xk) = h(y2)− h(y1) (k = 1, 2, . . . , n− 1),

that is, the sequence g(xk) (k = 1, 2, . . . ,m) is an arithmetic sequence with
difference d = h(y2)− h(y1) whence we obtain that

g(xk) = g(x1) + (k − 1) (h(y2)− h(y1))

h(yl) = h(y1) + (l − 1) (h(y2)− h(y1))

k ∈ {1, 2, . . . , n};
l ∈ {1, 2}.

(14)

Let u ∈ [a, b]. Then there exists a number k ∈ {1, . . . , n} such that

u = xk. (15)

Since x1 = a thus xk = a+ k − 1 whence we obtain that

k − xk = k − (a+ k − 1) = −a+ 1. (16)
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Thus by equations (14), (15), and (16) we obtain that

g(u)
(15)
= g(xk)

(14)
= g(x1) + (k − 1) (h(y2)− h(y1))

= g(x1) + (k − 1− u+ u) (h(y2)− h(y1))

= (h(y2)− h(y1))u+ (g(x1) + (k − 1− u)(h(y2)− h(y1)))

(15)
= (h(y2)− h(y1))u+ (g(x1) + (k − 1− xk)(h(y2)− h(y1)))

(16)
= (h(y2)− h(y1))u+ (g(x1)− a(h(y2)− h(y1))) := cu+ C1,

where c := (h(y2)− h(y1)), and C1 := g(x1)− a(h(y2)− h(y1)).
Let v ∈ [c, d]. Then there exists a number l ∈ {1, 2} such that

v = yl. (17)

Since y1 = b thus yl = b+ l − 1 whence we obtain that

l − yl = l − (b+ l − 1) = −b+ 1. (18)

Thus by Equations (14), (17), and (18) we obtain that

h(v)
(17)
= h(yl)

(14)
= h(y1) + (l − 1) (h(y2)− h(y1))

= h(y1) + (l − 1− v + v) (h(y2)− h(y1))

= (h(y2)− h(y1)) v + (h(y1) + (l − 1− v)(h(y2)− h(y1)))

(17)
= (h(y2)− h(y1)) v + (h(y1) + (l − 1− yl)(h(y2)− h(y1)))

(18)
= (h(y2)− h(y1)) v + (h(y1)− b(h(y2)− h(y1))) := cv + C2,

where C2 := h(y1)− b(h(y2)− h(y1)).
The case n > 3 can be easily obtained by statement 2 of Theorem 4.2.

5 Additional Examples, Results and Problems

Example 5.1. Let D1 := {0, 1, 2}2, D2 := {−2,−1, 0}2, D := D1 ∪D2.

D1
x = D1

y = {0, 1, 2},
D1

x+y = {0, 1, 2, 3, 4},
D2

x = D2
y = {−2,−1, 0},

D2
x+y = {−4,−3,−2,−1, 0}.
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Let us assume that the functions f , g, h satisfy the equation (PexAdd). By
Theorem 4.3 the sets D1, and D2 are suitable.

Since 0 ∈ D1
x∩D2

x thus C1
1 = C2

1 ; similarly, since 0 ∈ D1
y∩D2

y thus C1
2 = C2

2

whence we obtain that the general solution of functional equation (PexAdd)
is

f(u) =

{
c1u+ C1 + C2, if u ∈ D1

x+y;
c2u+ C1 + C2, if u ∈ D2

x+y;

g(v) =

{
c1v + C1, if v ∈ D1

x;
c2v + C1, if v ∈ D2

y;

h(z) =

{
c1z + C2, if z ∈ D1

x;
c2z + C2, if z ∈ D2

y;
,

where c, C1, C2 ∈ Y are constants which shows that the set D is not suitable,
and the concept of well-chainedness described in [10] is not appropriate for the
suitable sets.

Example 5.2. Let D1 := {−2,−1, 0} × {0, 1, 2}, D2 := {0, 1, 2} × {−2,−1, 0},
and D := D1 ∪D2.

D1
x = D2

y = {0, 1, 2},
D1

y = D2
x = {−2,−1, 0},

D1
x+y = D2

x+y = {−2,−1, 0, 1, 2}.

Let us assume that the functions f , g, h satisfy the equation (PexAdd). By
Theorem 4.3 the sets D1, and D2 are suitable. Since D1

x+y ∩ D2
x+y contains

two neighbour elements, D1
x ∩D2

x 6= ∅, and D1
y ∩D2

y 6= ∅ thus by Theorem 4.2
the set D is suitable.

Definition 5.3. Define the family D ⊆ Z2 by

1 The 2× 2 type rectangles are elements of the family D;

2 If D ∈ D, and (x, y) ∈ Z2 then D + (x, y) ∈ D where the set D + (x, y) is
defined by (11).

3 If D1, D2 ∈ D, D1
x+y∩D2

x+y contains two neighbour elements, D1
x∩D2

x 6= ∅,
and D1

y ∩D2
y 6= ∅ then the set D1 ∪D2 is also element of the family D.
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By Theorem 4.3, and Theorem 4.2 the all elements of the family D are
suitable, although the authors of this paper think there are some suitable sets
that do not belong to the family D.
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