
DOI: 10.2478/auom-2024-0029
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Two-dimensional cyclic codes over a finite
chain ring

Disha Garg and Sucheta Dutt

Abstract

In this paper, we have determined the generators and rank of a 2D
cyclic code of length mn over a finite chain ring R with residue field
Fq, where m is arbitrary and q ≡ 1(mod n). Further, we have obtained
a necessary and sufficient condition for a 2D cyclic code over a finite
chain ring R to be MHDR. Some examples of 2D cyclic codes have been
constructed and ranks of these 2D cyclic codes have been calculated by
us. We have also given a few examples of 2D cyclic codes over some
finite chain rings, which are MHDR.

1 Introduction

The class of two-dimensional (2D) cyclic codes is an important class of error-
correcting codes. These codes have been extensively studied over the past
few decades due to their wide applications in various digital communication
systems where reliable transformation of information is critical.

The basic theory of 2D cyclic codes was introduced by H. Imai [8] in 1977.
Later, the relation between 2D cyclic codes and quasi-cyclic codes was es-
tablished by C. Gneri and F. zbudak [7]. In 2016, 2D cyclic codes of length
n = s2k over the finite field Fpm were characterized as ideals of the quotient

ring Fpm [x, y]/〈xs − 1, y2
k − 1〉 for an odd prime p by Z. Sepasdar and K.

Khashyarmanesh [11]. Using a similar approach, the algebraic structure of
repeated root 2D constacyclic codes of length 2ps2k over a finite field Fpm
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was characterized by Z. Rajabai and K. Khashyarmanesh [10]. The generator
matrix of a 2D cyclic code of arbitrary length was determined by Z. Sepasdar
[12] using another approach. Recently, using the concept of central primitive
idempotents, a new form of generator polynomials of two-dimensional (α, β)-
constacyclic codes of arbitrary length sl has been established by S. Bhardwaj
and M. Raka [2].

The class of MHDR (Maximum Hamming distance with respect to rank)
cyclic codes is an important subclass of cyclic codes. These codes have been
studied extensively in literature [1, 4, 5, 6, 13].

This paper is organized as follows: In Section 2, we state some basic defi-
nitions and preliminary results on cyclic codes and 2D cyclic codes over finite
chain rings. In section 3, we obtain the generators and the rank of a 2D
cyclic code of length mn over a finite chain ring, where m is arbitrary and n
is co-prime to the cardinality of the residue field of the finite chain ring. We
also provide some examples of such 2D cyclic codes. In section 4, we give a
condition for a 2D cyclic code to be MHDR over the finite chain ring. We also
provide some examples of 2D cyclic codes over some finite chain rings, which
are MHDR.

2 Preliminaries

Let R be a finite commutative ring. A code C of length t over R is called a
linear code if it is a submodule of Rt over R. A linear code C of length t over
R is known to be cyclic if τ(b) ∈ C for every b ∈ C, where τ is the usual cyclic
shift operator over Rt defined by τ(r0, r1, . . . , rt−1) = (rt−1, r0, r1, . . . , rt−2).
It is well established that a cyclic code C of length t over R can be viewed as
an ideal of R[x]/〈xt−1〉. Let c =

[
rij
]
, 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1, rij ∈ R

be a m × n array over R. Then, the row cyclic shift of c, denoted by τr

is defined by τr


r0
r1
...

rm−1

 =


rm−1
r0
...

rm−2

, where ri denotes the ith row of c for

0 ≤ i ≤ m − 1. Further, the column shift of c, denoted by τc is defined by
τc(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2),where cj denotes the jth column of
c for 0 ≤ j ≤ n− 1. A linear code C of length mn over R is called a 2D cyclic
code if its codewords, viewed as m× n arrays of the form c =

[
rij
]
, 0 ≤ i ≤

m− 1, 0 ≤ j ≤ n− 1, rij ∈ R, are closed under both row and column cyclic
shifts. It is easy to check that a 2D cyclic code C of length mn over R can be
viewed as an ideal of the ring R[x, y]/〈xm − 1, yn − 1〉.

For any two codewords, c =
[
cij
]
, c′ =

[
c
′

ij

]
, 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1
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in a 2D cyclic code C, the Hamming distance between c and c′ is given by

dH(c, c′) =
∑n−1
j=0

∑m−1
i=0 dH(cij , c

′

ij), where dH(cij , c
′

ij) =

{
0 if cij = c

′

ij

1 if cij 6= c
′

ij

.

The minimum Hamming distance of C is given by dH(C) = min
c6=c′

dH(c, c′).

Also, the Hamming weight of a codeword c =
[
cij
]
∈ C, denoted by wH(c), is

number of non zero cij and the minimum Hamming weight of C is given by
wH(C) = min

c∈C
wH(c). Clearly, dH(C) = wH(C). The rank of C is defined to be

the cardinality of the minimal spanning set of C. The code C is called MHDR
if dH(C) = mn−Rank(C) + 1.

An element ω ∈ R is called primitive nth root of unity if n is the smallest
positive integer such that ωn = 1. An element x ∈ R is called an idempo-
tent element if x2 = x. Moreover, the idempotents of a commutative ring R
with unity are called primitive idempotents if and only if they are pairwise
orthogonal and their sum is equal to the unity of the ring.

If all ideals of a finite commutative ring R form a chain under inclusion
operation, then R is said to be a finite chain ring. All ideals of a finite chain
ring are principally generated. Moreover, there exists a unique maximal ideal
in a finite chain ring. Let R be a finite chain ring and 〈γ〉 be its maximal ideal.
Let ν be the nilpotency index of γ and R/〈γ〉 = Fq, where q = pr. The set
T = {0, 1, ξ, ξ2, . . . , ξpr−2}, where ξ ∈ R is an element such that ξp

r−1 = 1, is
called the Teichmuller set of R. The map ¯ : R −→ Fq defined as r̄ = r(mod γ)
is an onto-ring homomorphism which can be naturally extended as a map from
the polynomial ring R[x] to Fq[x].
We state below some well-established results which are required for later use.

Theorem 1. [9] Let g(x) ∈ R[x] be a monic polynomial such that ḡ(x) =
f1(x)f2(x) . . . fm(x), where fi(x) ∈ Fq[x] are pairwise coprime monic polyno-
mials for 1 ≤ i ≤ m. Then there exist monic, pairwise coprime polynomials
gi(x) ∈ R[x] such that g(x) = g1(x)g2(x) . . . gm(x).

Theorem 2. [9] Let R be a finite chain ring and g(x) ∈ R[x] be a monic
polynomial. Then g(x) factors uniquely in R[x] if ḡ(x) is square free.

The structure of a cyclic code C over a finite chain ring R has been deter-
mined by Monika et al. [3, 4]. We reproduce below the relevant results from
[3, 4], which we shall require for determining the structure of a 2D cyclic code
over R.

Theorem 3. [3, 4] Let C be a cyclic code of length n over a finite chain ring R.
Then, there exists a positive integer r such that C = 〈p0(x), p1(x), . . . , pr(x)〉,
where pj(x) = γsjqj(x) is the minimal degree polynomial among all the poly-
nomials in C whose leading coefficient is γsj for 0 ≤ j ≤ r. Also, qj(x)
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is a monic polynomial in Rj [x]/〈xn − 1〉, where Rj is the finite chain ring
Fq + γFq + γ2Fq + · · · + γν−sj−1Fq for 0 ≤ j ≤ r, s0 > s1 > · · · > sr
and t0 < t1 < · · · < tr, where tj = deg(pj(x)). Moreover, the polynomi-

als pj(x) can be uniquely expressed as pj(x) = γsj
∑ν−sj−1
k=0 γkhj,k(x), where

hj,k(x) ∈ T (x), hj,0(x) = qj(x) and deg(hj,0(x)) = tj.

Corollary 1. [3] A cyclic code of arbitrary length over R is generated by at
most k = min{ν, tr + 1} elements.

Theorem 4. [4] Let C = 〈p0(x), p1(x), . . . , pr(x)〉 be a cyclic code of length
n over a finite chain ring R where, pj(x) = γsjqj(x) such that ν − 1 ≥
s0 > s1 > · · · > sr and t0 < t1 < · · · < tr, where tj = deg(pj(x)).
Then the rank of C is n − t0 and the minimal spanning set is given by S ={
p0(x), xp0(x), . . . xt1−t0−1p0(x), p1(x), xp1(x), . . . xt2−t1−1p1(x), . . . , pr(x),

xpr(x), . . . xn−tr−1pr(x)
}

.

The generators and the dimension of a 2D (α, β)-constacyclic codes of
arbitrary length s.l over a finite field Fq have been determined by S. Bhardwaj
and M.Raka [2]. We replicate below the appropriate result from [2], which we
shall require for further use.

Lemma 1. [2] Let C be a 2D (α, β)-constacyclic codes of length sl over a
finite field Fq, where s is arbitrary and l ≡ 1(mod q). Then, C is generated by
〈η0(y)p0(x), η1(y)p1(x), . . . , ηl−1(y)pl−1(x)〉, where ηi(y) are primitive central
idempotents in Fq[y]/〈yl − β〉 and deg(pi(x)) = ai. Also, the dimension of C
is sl − a0 − a1 − · · · − al−1.

3 Structure and rank of a 2D cyclic code over a finite
chain ring

In this section, we obtain the generators of a 2D cyclic code of length mn
over a finite chain ring R with residue field Fq, where m is arbitrary and
q ≡ 1(mod n). We also determine the rank of such 2D cyclic codes over R.

Lemma 2. Let R be a finite chain ring. Then,

(1) There exists an element ζ ∈ R which is a primitive nth root of unity.

(2) The elements θi(y) = 1
n (1+ζn−iy+(ζn−iy)2 + · · ·+(ζn−iy)n−1) for 0 ≤

i ≤ n−1 are primitive idempotents of R[y]/〈yn−1〉. Moreover, θi(y)yj =
(ζi)jθi(y) for 0 ≤ i, j ≤ n− 1.
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Proof. Consider the ring Fq[y]/〈yn−1〉; where Fq is the residue field of R and
q ≡ 1(modn). Let ω ∈ Fq be a primitive nth root of unity. Then

yn − 1 = (y − 1)(y − ω)(y − ω2) . . . (y − ωn−1) in Fq(y)

Let ζ̄ = ω for some ζ ∈ R. By Theorem 1 and Theorem 2, it is easy to see
that yn − 1 = (y − 1)(y − ζ)(y − ζ2) . . . (y − ζn−1) in Rq(y), so that ζ is a
primitive nth root of unity in R. This proves (1).
It can be easily proved that θi(y) = 1

n (1+ζn−iy+(ζn−iy)2+· · ·+(ζn−iy)n−1) =∏
j 6=i

(y−ζj)
(ζi−ζj) for 0 ≤ i ≤ n− 1 and θi(y)θj(y) = 0 in R[y]/〈yn − 1〉 for i 6=

j. Further,
∏
j 6=i(y − ζj) divides θi(y) and θi(ζ

i) = 1 which implies that

y − ζi divides θi(y)− 1. It follows that θi(y)(θi(y)− 1) = 0 in R[y]/〈yn − 1〉,

so that θ2i (y) = θi(y). Also, θi(ζ
j) =

{
0 if i 6= j

1 if i = j
implies that θ0(ζi) +

θ1(ζi) + · · · + θn−1(ζi) = 1 for 0 ≤ i ≤ n − 1, which further implies that
(y − ζi) | θ0(y) + θ1(y) + · · · + θn−1(y) − 1 for 0 ≤ i ≤ n − 1. Hence θ0(y) +
θ1(y) + · · · + θn−1(y) = 1 in R[y]/〈yn − 1〉. Therefore, θi(y), 0 ≤ i ≤ n− 1,
are primitive idempotents in R[y]/〈yn − 1〉. Also, θi(y)y = 1

n (y + ζn−iy2 +

ζ2(n−i)y3 + · · ·+ ζ(n−1)(n−i)yn) = 1
n (ζi+y+ ζn−iy2 + · · ·+ ζ(n−2)(n−i)yn−1) =

ζi

n (1+ζn−iy+(ζn−iy)2+ · · ·+(ζn−iy)n−1) = ζiθi(y). It follows that θi(y)yj =
(θi(y)y)yj−1 = (ζiθi(y))yj−1 = · · · = (ζi)jθi(y) for 0 ≤ i, j ≤ n − 1. This
proves (2).

Remark 1. In the proof of the Lemma 2 above, we have used Theorem 1 and
Theorem 2 to establish the existence of a primitive nth root of unity ζ in R.
However, it can be easily checked that if ω is primitive nth root of unity in the
residue field Fq of R, then ζ = ωγ

ν−1

is primitive nth root of unity in R.

Let θj(y) = 1
n (1+ζn−jy+(ζn−jy)2+· · ·+(ζn−jy)n−1), 0 ≤ j ≤ n−1 be the

primitive idempotents in the ring R[y]/〈yn−1〉. Define the sets Cj = {gj(x) ∈
R[x]/〈xm − 1〉 | gj(x)θj(y) ∈ C}; 0 ≤ j ≤ n− 1. It can be easily verified that
each Cj is an ideal of the ring R[x]/〈xm − 1〉 for 0 ≤ j ≤ n− 1 and therefore
a cyclic code of length m over R. By Theorem 3, there exist polynomials

p
(j)
i (x) = γs

(j)

i q
(j)
i (x) = γs

(j)

i

∑ν−s
(j)

i
−1

k=0 γkh
(j)
i,k(x) ∈ R[x]/〈xm − 1〉, where

p
(j)
i (x) is the minimal degree polynomial among all the polynomials in Cj

whose leading coefficient is γs
(j)
i for 0 ≤ i ≤ rj and ν − 1 ≥ s(j)0 > s

(j)
1 > · · · >

s
(j)
rj such that Cj = 〈p(j)0 (x), p

(j)
1 (x) . . . , p

(j)
rj (x)〉; 0 ≤ j ≤ n− 1.

Let f(x, y) ∈ C, where C is a 2D cyclic code of length mn over a finite

chain ring R. Clearly, f(x, y) can be written as
∑n−1
i=0 fi(x)yi, where fi(x) ∈
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R[x]/〈xm − 1〉 for 0 ≤ i ≤ n− 1. Now, θj(y)f(x, y) = θj(y)
∑n−1
i=0 fi(x)yi =∑n−1

i=0 fi(x)yiθj(y) =
∑n−1
i=0 fi(x)(ζj)iθj(y) = θj(y)f(x, ζj) (by Lemma 2).

It follows by definition of Cj that f(x, ζj) ∈ Cj , 0 ≤ j ≤ n − 1. There-

fore, f(x, ζj) = p
(j)
0 (x)t

(j)
0 (x) + p

(j)
1 (x)t

(j)
1 (x) + · · · + p

(j)
rj (x)t

(j)
rj (x) for some

t
(j)
i (x) ∈ R[x]/〈xm − 1〉. Also, we have f(x, y) = f(x, y)

∑n−1
j=0 θj(y) =∑n−1

j=0 θj(y)f(x, ζj) =
∑n−1
j=0 θj(y)[p

(j)
0 (x)t

(j)
0 (x) + p

(j)
1 (x)t

(j)
1 (x) + · · ·+

p
(j)
rj (x)t

(j)
rj (x)]. Thus, the set {θj(y)p

(j)
i (x) | 0 ≤ i ≤ rj , 0 ≤ j ≤ n− 1}

generates C.
We record these observations below in the form of a theorem.

Theorem 5. Let C be a 2D cyclic code of length mn over a finite chain ring
R with residue field Fq, where m is arbitrary and q ≡ 1(mod n). Then the

set {θj(y)p
(j)
i (x) | 0 ≤ i ≤ rj , 0 ≤ j ≤ n− 1} generates C where, θj(y)

are primitive idempotents of R[y]/〈yn − 1〉 and p
(j)
i (x), 0 ≤ i ≤ rj are the

generators of the cyclic code Cj = {gj(x) ∈ R[x]/〈xm − 1〉 | gj(x)θj(y) ∈
C}, 0 ≤ j ≤ n− 1.

The following result is an immediate consequence of Theorem 5 and Corol-
lary 1.

Corollary 2. The number of generators of a 2D cyclic code C over R is at
most kn where k =

∑n−1
j=0 (rj + 1), where rj + 1 ≤ min(ν, trj ) for each j,

0 ≤ j ≤ n− 1 and t
(j)
rj = deg(p

(j)
rj (x)).

Theorem 6. Let C be a 2D cyclic code of length mn over a finite chain ring

R generated by the set {θj(y)p
(j)
i (x) | 0 ≤ i ≤ rj , 0 ≤ j ≤ n− 1} as given in

Theorem 5. Then, the minimal spanning set of C is given by A =
n−1⋃
j=0

rj⋃
i=0

Ai,j,

where Ai,j =
{
p
(j)
i (x)θj(y), xp

(j)
i (x)θj(y), . . . xt

(j)
i+1−t

(j)
i −1p

(j)
i (x)θj(y)

}
. Fur-

ther, Rank(C) = mn−
∑n−1
j=0 t

(j)
0 , where t

(j)
i = deg(p

(j)
i (x)) and trj+1 = m.

Proof. Let f(x, y) ∈ C be any element. Proceeding as in the proof of Theorem

5, we have f(x, y) =
∑n−1
j=0 f(x, ζj)θj(y), where f(x, ζj) ∈ Cj . By Theorem 4,

the set, Sj =
{
p
(j)
0 (x), xp

(j)
0 (x), . . . , xt

(j)
1 −t

(j)
0 −1p

(j)
0 (x), p

(j)
1 (x), xp

(j)
1 (x), . . . ,

xt
(j)
2 −t

(j)
1 −1p

(j)
1 (x), . . . , p

(j)
rj (x), xp

(j)
rj (x), . . . xm−t

(j)
r −1p

(j)
rj (x)

}
is the minimal

spanning set of Cj . Therefore f(x, ζj) ∈ Span(Sj) and hence f(x, y) ∈
Span(A). Now, we will prove that no element of the set A can be written
as a linear combination of other elements of A . If possible, let there exists

c
(j)
i,k ∈ R such that x

m−t(j)rj −1p
(j)
rj (x)θj(y) =

∑n−1
j=0

(∑rj−1
i=0 (c

(j)
i,0p

(j)
i (x)θj(y) +
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c
(j)
i,1xp

(j)
i (x)θj(y)+· · ·+c(j)

i,t
(j)
i+1−ti−1

xt
(j)
i+1−t

(j)
i −1p

(j)
i (x)θj(y))+c

(j)
rj ,0

p
(j)
rj (x)θj(y)+

c
(j)
rj ,1

xp
(j)
rj (x)θj(y) + · · ·+ c

(j)

rj ,m−t(j)rj −2
x
m−t(j)rj −2p

(j)
rj (x)θj(y)

)
=
∑n−1
j=0

∑rj
i=0 c

(j)
i (x)p

(j)
i (x)θj(y), where c

(j)
i (x) = ci,0 + ci,1x+ · · ·+

c
i,t

(j)
i+1−t

(j)
i −1

xt
(j)
i+1−t

(j)
i −1, 0 ≤ i ≤ rj − 1 and c

(j)
rj (x) = crj ,0 + crj ,1x + · · · +

c
rj ,m−t(j)rj −2

x
m−t(j)rj −2. Substituting y = ζj , 0 ≤ j ≤ n− 1 and using θj(ζ

j) =

1, θj(ζ
k) = 0 for k 6= j, we get x

m−t(j)rj −1p
(j)
rj (x) =

∑rj
i=0 c

(j)
i (x)p

(j)
i (x). Multi-

plying by γ
ν−s(j)rj−1 , we get x

m−t(j)rj −1γ
ν−s(j)rj−1p

(j)
rj (x) = c

(j)
rj (x)γ

ν−s(j)rj−1p
(j)
rj (x).

Which is not possible, as the degree of L.H.S of the last equation is m − 1

whereas the degree of R.H.S is at most m−2. Therefore, x
m−t(j)rj −1p

(j)
rj (x) can

not be written as a linear combination of other elements of A. Using the simi-

lar arguments xt
(j)
i+1−t

(j)
i −1p

(j)
i (x), 0 ≤ i ≤ rj−1 can not be written as a linear

combination of other elements of A. Therefore, set A is minimal spanning set

of C and hence Rank(C) = mn−
∑n−1
j=0 t

(j)
0 .

Following are some examples of 2D cyclic codes over some finite chain rings.

Example 1. Consider the finite chain ring R = Z25 with residue field F5 and
nilpotency index 2. Let C be 2D cyclic code of length mn over R, where m =
5 and n = 4. Then C can be viewed as an ideal of R = R[x, y]/〈x5−1, y4−1〉.
It can be easily seen that 7 is primitive 4th root of unity in Z25. Therefore, by
Lemma 2, θ0(y) = 19(1 + y+ y2 + y3), θ1(y) = 19(1 + 18y− y2 + 7y3), θ2(y) =
19(1− y + y2 − y3), θ3(y) = 19(1 + 7y − y2 + 18y3) are primitive idempotents
of R[y]/〈y4 − 1〉. Consider the following cyclic codes of length 5 over R

C0 = C2 = 〈p(0)0 (x), p
(0)
1 (x)〉 = 〈5, x4 + x3 + x2 + x+ 1〉

C1 = C3 = 〈p(1)0 (x)〉 = 〈x− 1〉

By Theorem 5, the set {θ0(y)p
(0)
0 (x), θ0(y)p

(0)
1 (x), θ1(y)p

(1)
0 (x), θ2(y)p

(0)
0 (x),

θ2(y)p
(0)
1 (x), θ3(y)p

(1)
0 (x)} generates a 2D cyclic code of length mn over R,

where m = 5 and n = 4 and by Theorem 6, Rank(C) = 18.

Example 2. Consider the finite chain ring R = Z169 with residue field F13

and nilpotency index 2. Let C be 2D cyclic code of length mn over R, where
m = 169 and n = 12. Then C can be viewed as an ideal of R = R[x, y]/〈x169−
1, y12−1〉. It can be easily seen that 213 ≡ 80(mod 169) is primitive 12th root
of unity in R. Therefore, by Lemma 2, θj(y) = 1

12 (1+80(12−j)y+(80(12−j)y)2+

· · · + (80(12−j)y)11) are primitive idempotents of R[y]/〈y12 − 1〉; 0 ≤ j ≤ 11.
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Consider the following cyclic codes of length 169 over R

C0 = C1 = 〈p(0)0 (x)〉 = 〈x− 1〉

C2 = 〈p(2)0 (x)〉 = 〈x13 − 1〉

C3 = 〈p(3)0 (x)〉
= 〈x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1〉

C4 = 〈p(4)0 (x)〉 = 〈13(x− 1)〉

C5 = C6 = 〈p(5)0 (x), p
(5)
1 (x)〉 = 〈13(x− 1), x13 − 1〉

C7 = C8 = 〈p(7)0 (x)〉 = 〈x13 + 1〉

C9 = C10 = 〈p(9)0 (x)〉 = 〈13(x13 − 1)〉

C11 = 〈p(11)0 (x), p
(11)
1 (x)〉 = 〈13, (x− 1)〉

By Theorem 5, the set {θ0(y)p
(0)
0 (x), θ1(y)p

(0)
0 (x), θ2(y)p

(2)
0 (x), θ3(y)

p
(3)
0 (x), θ4(y)p

(4)
0 (x), θ5(y)p

(5)
0 (x), θ5(y)p

(5)
1 (x), θ6(y)p

(5)
0 (x), θ6(y)p

(5)
1 (x),

θ7(y)p
(7)
0 (x)), θ8(y)p

(7)
0 (x), θ9(y)p

(9)
0 (x), θ10(y)p

(9)
0 (x), θ11(y)p

(11)
0 (x),

θ11(y)p
(11)
1 (x)} generates a 2D cyclic code of length mn over R, where m =

169 and n = 12 and by Theorem 6, Rank(C) = 1946.

4 MHDR 2D cyclic codes over a finite chain ring

In this section, we obtain a necessary and sufficient condition for a 2D cyclic
code to be MHDR over a finite chain ring R. We also provide some examples
of 2D cyclic codes which are MHDR over R.

Theorem 7. Let C be a 2D cyclic code of length mn over a finite chain ring

R generated by the set {θj(y)p
(j)
i (x) | 0 ≤ i ≤ rj , 0 ≤ j ≤ n− 1} as given in

Theorem 5. Then, the set Cν−1 = {f(x, y) ∈ Fq[x, y]/〈xm−1, yn−1〉 such that
γν−1f(x, y) ∈ C} is a 2D cyclic code of length mn over Fq generated by the

set {q(j)0 (x)θj(y) | 0 ≤ j ≤ n− 1}.

Proof. Clearly, Cν−1 is an ideal of the ring Fq[x, y]/〈xm−1, yn−1〉 and hence a
2D cyclic code of length mn over Fq. Let f(x, y) ∈ Cν−1 be any element. Then,

f(x, y)θj(y) =
∑n−1
i=0 fi(x)(ζj)iθj(y) = f(x, ζj)θj(y) ∈ Cν−1, 0 ≤ j ≤ n − 1.

By definition of Cν−1, γν−1f(x, ζj)θj(y) = γν−1f(x, ζj)θj(y) ∈ C. Therefore,

γν−1f(x, ζj) ∈ Cj which implies that deg(f(x, ζj)) ≥ t
(j)
0 for 0 ≤ j ≤ n − 1,

since γkq
(j)
0 (x) is the minimal degree polynomial in Cj , where k ≥ s(j)0 . Now,
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deg(q
(j)
0 (x)) = deg(q

(j)
0 (x)) as q

(j)
0 (x) is a monic polynomial. By division algo-

rithm, there exists unique polynomials m
(j)
0 (x), r

(j)
0 (x) ∈ Fq[x]/〈xm− 1〉 such

that r
(j)
0 (x) = f(x, ζj) − q(j)0 (x)m

(j)
0 (x), where r

(j)
0 (x) = 0 or deg(r

(j)
0 (x)) <

deg(q
(j)
0 (x)). As γν−1r

(j)
0 (x) ∈ Cj and deg(γν−1q

(j)
0 (x)) = deg(γν−1q

(j)
0 (x))

is minimal in Cj , r
(j)
0 (x) = 0. Therefore, f(x, y) = f(x, y)

∑n−1
j=0 θj(y) =∑n−1

j=0 f(x, ζj)θj(y) =
∑n−1
j=0 q

(j)
0 (x)m

(j)
0 (x)θj(y). Hence the set {q(j)0 (x)θj(y) |

0 ≤ j ≤ n− 1} generates Cν−1.

Theorem 8. Let C be a 2D cyclic code of length mn over R. Then wH(C) =
wH(Cν−1).

Proof. Let f(x, y) ∈ Cν−1 be such that wH(Cν−1) = wH(f(x, y)). Now,
wH(f(x, y)) = wH(γν−1f(x, y)) since f(x, y) ∈ Fq[x, y]. As γν−1f(x, y) ∈ C,
we have wH(Cν−1) = wH(f(x, y)) = wH(γν−1f(x, y)) ≥ wH(C). Conversely,
let c(x, y) = c0(x, y) + γc1(x, y) + · · · + γν−1cν−1 ∈ C be such that wH(C) =
wH(c(x, y)). Since γν−1c(x, y) ∈ C, then c0(x, y) ∈ Cν−1. Therefore, wH(C) =
wH(c(x, y)) ≥ wH(c0(x, y)) ≥ wH(Cν−1). Hence, wH(C) = wH(Cν−1).

Corollary 3. The 2D cyclic code C over R is MHDR if and only if the 2D
cyclic code Cν−1 over Fq is MHDR.

Proof. Since the set {q(j)0 (x)θj(y) | 0 ≤ j ≤ n − 1} generates Cν−1, By

Lemma 1, Dim(Cν−1) = mn−
∑n−1
j=0 t

(j)
0 and by Theorem 6 Rank(C) = mn−∑n−1

j=0 t
(j)
0 . Therefore, Dim(Cν−1) = Rank(C). Also, by Theorem 8, dH(C) =

dH(Cν−1). Therefore, C is MHDR if and only if Cν−1 is MHDR.

We give below some examples of 2D cyclic codes, which are MHDR over
R, where the minimum hamming distance of the codes is calculated with the
help of the MAGMA software.

Example 3. Consider the finite chain ring R = Z27 with residue field F3

and nilpotency index 3. Let C be 2D cyclic code of length mn = 18 over
R, where m = 9 and n = 2. Then C can be viewed as an ideal of R =
R[x, y]/〈x9−1, y2−1〉. It can be easily seen that 29 ≡ 26(mod 27) is primitive
2nd root of unity in Z27. Therefore, θ0(y) = 14 + 14y, θ1(y) = 14 + 13y are
primitive idempotents of R[y]/〈y2 − 1〉. Consider the following cyclic codes of
length 9 over R

C0 = 〈3, (x− 1)2〉
C1 = 〈3(x− 1)〉
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By Theorem 5, the set {3(14 + 14y), (x − 1)2(14 + 14y), 3(x − 1)(14 + 13y)}
generates C. Therefore, Rank(C) = 17. Also, by Theorem 7 , the set {(2 +
2y), (x−1)(2+y)} generates a 2D cyclic code over F3 whose generator matrix
is given by,

G =



2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1


The minimum hamming distance of this code is 2. Therefore, C is a 2D cyclic
code of length 18, which is MHDR over Z27.

Example 4. Consider the finite chain ring R = Z49 with residue field F7 and
nilpotency index 2. Let C be 2D cyclic code of length mn = 6 over R, where
m = 2 and n = 3. Then C can be viewed as an ideal of R = R[x, y]/〈x2−1, y3−
1〉. It can be easily seen that 27 ≡ 30(mod 49) is primitive 3rd root of unity in
Z49. Therefore, θ0(y) = 33 + 33y+ 33y2, θ1(y) = 33 + 6y+ 10y2, θ2(y) = 33 +
10y + 6y2 are primitive idempotents of R[y]/〈y3 − 1〉. Consider the following
cyclic codes of length 2 over R

C0 = 〈7(x+ 1)〉
C1 = 〈x− 1〉
C2 = 〈7(x− 1)〉

By Theorem 5, the set {7(x+1)(33+33y+33y2), (x−1)(33+6y+10y2), 7(x−
1)(33 + 10y + 6y2)} generates C. Therefore, Rank(C) = 3. Also, by Theorem
7 , the set {(x+ 1)(5 + 5y+ 5y2), (x− 1)(5 + 6y+ 3y2), (x− 1)(35 + 3y+ 6y2)}
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generates a 2D cyclic code over F7 whose generator matrix is given by,

G =

5 5 5 5 5 5
2 1 4 5 6 3
2 4 1 5 3 6


The minimum hamming distance of this code is 4. Therefore, C is a 2D cyclic
code of length 6, which is MHDR over Z49.

Example 5. Consider the finite chain ring R = Z121 with residue field F11

and nilpotency index 2. Let C be 2D cyclic code of length mn = 10 over
R, where m = 5 and n = 2. Then C can be viewed as an ideal of R =
R[x, y]/〈x5 − 1, y2 − 1〉. It can be easily seen that 1011 ≡ 120(mod 121) is
primitive 2nd root of unity in R. Therefore, θ0(y) = 61+61y, θ1(y) = 61+60y
are primitive idempotents of R[y]/〈y2−1〉. Consider the following cyclic codes
of length 5 over R

C0 = 〈11, (x+ 1)〉
C1 = 〈x− 1〉

By Theorem 5, the set {11(61 + 61y), (x + 1)(61 + 61y), (x − 1)(61 + 60y)}
generates C. Therefore, Rank(C) = 9. Also, by Theorem 7 , the set {(6 +
6y), (x − 1)(6 + 5y)} generates a 2D cyclic code over F11 whose generator
matrix is given by,

G =



6 6 0 0 0 0 0 0 0 0
0 0 6 6 0 0 0 0 0 0
0 0 0 0 6 6 0 0 0 0
0 0 0 0 0 0 6 6 0 0
0 0 0 0 0 0 0 0 6 6
5 6 6 5 0 0 0 0 0 0
0 0 5 6 6 5 0 0 0 0
0 0 0 0 5 6 6 5 0 0
0 0 0 0 0 0 5 6 6 5


The minimum hamming distance of this code is 2. Therefore, C is a 2D cyclic
code of length 10, which is MHDR over R.

Example 6. Consider the finite chain ring R = Z25 with residue field F5 and
nilpotency index 2. Let C be 2D cyclic code of length mn = 6 over R, where
m = 3 and n = 2. Then C can be viewed as an ideal of R = R[x, y]/〈x3 −
1, y2 − 1〉. It can be easily seen that 24 is primitive 2nd root of unity in Z25.
Therefore, θ0(y) = 13 + 13y, θ1(y) = 13 + 12y are primitive idempotents of
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R[y]/〈y2 − 1〉. Consider the following cyclic codes of length 3 over R

C0 = 〈5(x2 + x+ 1)〉
C1 = 〈(x− 1)〉

By Theorem 5, the set {5(x2 + x+ 1)(13 + 13y), (x− 1)(13 + 12y)} generates
C. Therefore, Rank(C) = 3. Also, by Theorem 7 , the set {(x2 + x + 1)(3 +
3y), (x−1)(3+2y)} generates a 2D cyclic code over F5 whose generator matrix
is given by,

G =

3 3 3 3 3 3
2 3 3 2 0 0
0 0 2 3 3 2


The minimum hamming distance of this code is 4. Therefore, C is a 2D cyclic
code of length 6, which is MHDR over Z25.

5 Conclusion

In this paper, the generators and rank of a 2D cyclic code of length mn over
a finite chain ring R with residue field Fq have been determined, where m is
arbitrary and q ≡ 1(mod n). Further, a condition for a 2D cyclic code to be
MHDR has been obtained, and a few examples of 2D cyclic codes over some
finite chain rings which are MHDR, have been provided.

References

[1] Abualrub, T., Ghrayeb, A. and Oehmke, R.H.: A mass formula and rank
of Z4 cyclic codes of length 2e, IEEE Trans. Inf. Theory, 50(12), (2004),
3306-3312.

[2] Bhardwaj, S. and Raka, M.: Two dimensional constacyclic codes of arbi-
trary length over finite fields, Indian J. Pure Appl. Math., 53(1), (2022),
49-61.

[3] Monika, Dutt, S. and Sehmi, R.: On cyclic codes over finite chain rings,
J. Phys. Conf. Ser., (2021).

[4] Dalal, M., Dutt, S. and Sehmi, R.: MDS and MHDR cyclic codes over
finite chain rings, arXiv preprint arXiv:2303.15819.

[5] Garg, A. and Dutt, S.: On Rank and MDR Cyclic Codes of Length 2k

Over Z8, In Algorithms and Discrete Applied Mathematics: Third In-
ternational Conference, CALDAM 2017, Sancoale, Goa, India, February



TWO-DIMENSIONAL CYCLIC CODES OVER A FINITE CHAIN RING 87

16-18, (2017), Proceedings (pp. 177-186). Cham: Springer International
Publishing.

[6] Garg, A. and Dutt, S.: On rank and MDR cyclic and negacyclic codes of
length pk over Zpm , Discrete Applied Mathematics, 285, (2020), 581-590.

[7] Gneri, C. and zbudak, F.: A relation between quasi-cyclic codes
and 2D cyclic codes, Finite Fields their Appl., 18, (2012), 123132.
https://doi.org/10.1016/j.ffa.2011.07.004.

[8] Imai, H.: A theory of two-dimensional cyclic codes, Inf. Control, 34,
(1977), 121. https://doi.org/10.1016/S0019-9958(77)90232-7.

[9] Norton, G.H. and Slgean A.: On the structure of linear and cyclic codes
over a finite chain ring, Appl. Algebr. Eng. Commun. Comput., 10, (2000),
489506. https://doi.org/10.1007/PL00012382

[10] Rajabi, Z. and Khashyarmanesh, K.: Repeated-root two-dimensional con-
stacyclic codes of length 2ps.2k, Finite Fields their Appl., 50, (2018),
122137. https://doi.org/10.1016/j.ffa.2017.11.008.

[11] Sepasdar, Z. and Khashyarmanesh, K.: Characterizations of some two-

dimensional cyclic codes correspond to the ideals of F [x, y]/ < xs−1, y2
k−

1 >, Finite Fields their Appl., 41, (2016), 97112.

[12] Sepasdar, Z.: Generator matrix for two-dimensional cyclic codes of arbi-
trary length, (2017), 16. http://arxiv.org/abs/1704.08070.

[13] Shiromoto, K.: A basic exact sequence for the Lee and Euclidean weights
of linear codes over Zl, Linear Algebra Appl., 295, (1999), 191200.
https://doi.org/10.1016/S0024-3795(99)00125-1.

Disha Garg,
Department of Mathematics,
Punjab Engineering College (Deemed to be University),
Sector 12, Chandigarh, 160012, India.
Email: disha.phd21appsc@pec.edu.in

Sucheta Dutt,
Department of Mathematics,
Punjab Engineering College (Deemed to be University),
Sector 12, Chandigarh, 160012, India.
Email: sucheta@pec.edu.in



TWO-DIMENSIONAL CYCLIC CODES OVER A FINITE CHAIN RING 88


