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Linear Skew Cyclic Codes over FqS

Tulay Yildirim

Abstract

In this study, we focus on skew cyclic codes over the family of rings
FqS where q is a power of a prime number and S = Fq + vFq with
v2 = v. Structural properties of these codes are studied in detail. Ob-
tained results lead us to characterize FqS-linear skew cyclic codes. All
the minimal spanning sets and generators of these codes are presented.
Furthermore, some good Fq-linear codes are obtained as images of the
FqS-linear skew cyclic codes under the Gray mapping.

1 Introduction

Studies on coding theory were inspired by a paper of Shannon [2], then al-
gebraic structure of linear codes has been interested by many researchers. In
the beginning, the problems were based on linear codes over binary fields,
later, as a natural extension of the binary field, codes over finite fields were
also considered. In 1994, Hammons et al. obtained some binary non-linear
codes as images of linear codes over the ring Z4 [1]. This paper brought a
new perspective to mathematical community studying in coding theory. Al-
though, initially many researchers studied on commutative and finite chain
rings, recently it has become more trendy to consider more diverse types of
rings.

One of the important class of linear codes is known as cyclic codes due to
their theoretical and applied properties. A cyclic code viewed as an ideal in a
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particular quotient ring obtained from a polynomial ring. In 2007, Boucher et
al. presented cyclic codes over non-commutative polynomial rings [3]. They
analyzed cyclic codes by using the skew polynomial ring in the set Fq[x; θ],
where θ is an automorphism of finite field Fq with q elements. This new idea of
codes is defined as skew cyclic codes over Fq. They also showed some notable
examples of these codes having larger minimum distance than the well-known
codes. Later on, these codes examined on various finite rings [12], [7]. Abual-
rub et al. generalized the skew cyclic codes to skew quasi-cyclic codes in [12].
They considered skew cyclic codes over F2 +uF2 with u2 = 0, and constructed
some optimal self-dual codes over the this ring in [13].

In the beginning, codes over skew polynomial ring have been studied with cer-
tain restrictions on their length, but Siap et. al examined the skew cyclic codes
for arbitrary length [6]. In the following years, Jitman and his colleagues stud-
ied on skew constacyclic codes over the finite chain ring Fpm+uFpm where u2 =
0 [17]. By the decomposition theorem, Gursoy et al. studied the structural
properties of skew cyclic codes over Fq + vFq with v2 = v [5]. Li et al. studied
linear skew constacyclic codes over FqR where R = Fq + uFq + vFq + uvFq
with u2 = u, v2 = v, uv = vu [9]. Bhaintwal introduced a necessary and suffi-
cient condition for the skew cyclic codes over the Galois rings to be free, and
determined a distance bound for free skew cyclic codes [14]. Skew cyclic code
studies over mixed alphabets have attracted the attention of researchers for
last decade. For instance, Benbelkacem et al. considered skew cyclic codes over
the ring F4R and constructed a relationship between skew cyclic codes over
F4R and DNA codons [16]. In recently, Juan et al. introduced FqR-linear skew
cyclic codes [8]. For more information, we can refer to see [4, 10, 11, 19, 20].

Even if skew cyclic codes are considered over the ring Z4, these codes depend
on a ring automorphism, and Z4 has only a trivial automorphism. Similarly,
the ring F2 + uF2 with u2 = 0 has identity automorphism. Therefore, we can
conclude that there are no skew cyclic codes over the rings Z4 and F2 + uF2

that are different from the cyclic codes. However, we can consider skew cyclic
codes over the ring S = Fq + vFq where q is power of a prime number with
v2 = v since S has a non-trivial ring automorphism. The aim of this paper is
to introduce and study skew cyclic codes over the family of rings FqS where
q is a prime power and S = Fq + vFq with v2 = v. The ring FqS is a finite
semi-local and not a finite chain ring.

The paper is organized as follows. Section 2 starts with some basic properties
of the ring S = Fq + vFq and gives a brief description of linear skew cyclic
codes over S. Then, we introduce the definition and algebraic structure of the
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FqS-linear skew cyclic codes. Moreover, we determine the necessary condition
for the dual codes to be FqS-linear skew cyclic codes. In section 3, linear
skew cyclic codes over the ring FqS are further generalized to skew general-
ized quasi-cyclic codes. Also, we introduce a Gray map from FqS to Fq and
present q-ary images of FqS-linear skew cyclic codes. In section 4, we describe
the generator polynomials of linear skew cyclic codes over the ring FqS and
identify their minimal spanning sets and sizes. Furthermore, we obtain some
optimal q-ary codes.

2 Preliminaries and Definitions

In this study, we give our attention to the skew cyclic codes over combined
alphabets. Especially, we consider the structure of linear codes over the
ring FqS, where Fq is a finite filed with q is a power of prime number and
S = Fq + vFq = {ξ + vµ|ξ, µ ∈ Fq, with v2 = v} is a commutative ring.
Its well known that the ring S is a semi-local ring, with two maximal ideals
< v >= {ξv|ξ ∈ Fq} and < 1 − v >= {µ − vµ|µ ∈ Fq} making S/ < v > and
S/ < 1−v > isomorphic to Fq. The Chinese Remainder Theorem then implies
that S =< v > ⊕ < 1− v > [5]. More concretely, S can be uniquely expressed
as ξ + vµ = (ξ + µ)v + ξ(1− v) for all ξ, µ ∈ Fq.
Let A and B be codes over S, then A⊕B and A⊗B define as {α+β|α ∈ A, β ∈
B} and {(α, β)|α ∈ A, β ∈ B}, respectively. Define C1 = {p + r ∈ Fnq |(p +
r)v+p(1−v) ∈ C, for some p, r ∈ Fnq } and C2 = {p ∈ Fnq |(p+r)v+p(1−v) ∈
C, for some p, r ∈ Fnq }. It is clear that C1 and C2 are linear codes over Fq.
Any linear code C over S can be uniquely expressed as C = vC1⊕(1−v)C2 [18].

Definition 2.1. (1) The Gray image of S is defined as

Ω: S→ F2
q

ξ + vµ 7→ (ξ, ξ + µ),

where ξ, µ ∈ Fq.

(2) The automorphism θ over S is defined as

θ : S→ S

ξ + vµ 7→ ξ + (1− v)µ,

(3) A subset C of Sn is said to be an S-linear skew cyclic code of length n if

(i) C is an S-submodule of Sn,
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(ii) C is closed under the Tθ-cyclic shift, i.e. for c = (c0, c1, · · · , cn−1) ∈
C,

Tθ(c) = (θ(cn−1), θ(c0), · · · , θ(cn−2)) ∈ C.

The following theories can be obtained by corresponding theorems in [5], with
soft modifications on the automorphism θ.

Theorem 2.2. Let C = vC1⊕(1−v)C2 be an S-linear code of length n. Then
C is a skew cyclic code if and only if C1 and C2 are skew cyclic codes over Fq,
with respect to the automorphism θ.

Theorem 2.3. If C = vC1 ⊕ (1 − v)C2 be a skew cyclic code of length n
over S, then C =< vg1(x) + (1 − v)g2(x) > where g1(x), g2(x) are generator
polynomials of C1 and C2, respectively.

Definition 2.4. (1) Define

FqS = {(∂, ξ + vµ)|∂ ∈ Fq, (ξ + vµ) ∈ S}.

Let C be a skew cyclic code over FqS and α (resp. β) be the set of Fq
(resp. S) coordinate positions. Any codeword c ∈ C has the form

c = (∂0, ∂1, · · · , ∂α−1, e0, e1, · · · , eβ−1) ∈ Fαq Sβ ,

where ei = ξi + vµi ∈ Sβ for all i = 0, 1, · · · , n − 1. Throughout the
study, we assume that α and β are odd positive integers.

(2) The ring homomorphism map is defined as

δ : S→ Fq
ξ + vµ 7→ ξ.

For any r ∈ S, define a scalar multiplication ? by r ? (∂, ξ + vµ) =
(δ(r)∂, r(ξ + vµ)) where ∂ ∈ Fq and ξ + vµ ∈ S. It naturally extends to
Fαq Sβ as follows:

r ? x = (δ(r)∂0, δ(r)∂1, · · · , δ(r)∂α−1, re0, re1, · · · reβ−1), (1)

where x = (∂0, ∂1, · · · , ∂α−1, e0, e1, · · · eβ−1) ∈ Fαq Sβ for α, β ∈ N.

A nonempty subset C of Fαq Sβ is called an FqS-linear code if C is an S-

submodule of Fαq Sβ .

Lemma 2.5. The set Fαq Sβ is an S-module with respect to the addition and
scalar multiplication in Equation (1).
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Definition 2.6. [3] Let ψ be an automorphism of the finite field Fq. For any
two elements axm, bxn ∈ Fq[x, ψ], polynomial set Fq[x, ψ] is defined as

(axm)(bxn) = aψm(b)xm+n.

In polynomial representation, a linear code of length n over Fq is a skew cyclic
code if and only if it is a left Fq[x;ψ]-submodule of Fq[x;ψ]/(xn − 1). Also
if C is a left submodule of Fq[x;ψ]/(xn − 1), then C is generated by a monic
polynomial g(x) which is a right divisor of xn − 1 in Fq[x;ψ] [6] .
For the automorphism θ of S and any two elements axm and bxn in S[x; θ],
polynomial set S[x; θ] is defined as

(axm)(bxn) = aθm(b)xm+n.

So, S[x; θ] is a skew polynomial ring, where addition is the usual polynomial
addition and multiplication is defined above.

An element c = (∂0, ∂1, · · · , ∂α−1, e0, e1, · · · , eβ−1) ∈ Fαq Sβ can be identified
with a module element consisting of two polynomials c(x) = (∂(x), e(x)) ∈
Fq[x;ψ]/(xα − 1)× S[x; θ]/(xβ − 1), where ∂(x) = ∂0 + ∂1x+ · · ·+ ∂α−1x

α−1

and e(x) = e0 + e1x + · · · + eβ−1x
β−1. This identification gives a one-to-one

correspondence between elements in Fαq ×Sβ and elements Fq[x;ψ]/(xα−1)×
S[x; θ]/(xβ − 1).

Let f(x) = f0 + f1x + · · · + fsx
s ∈ S[x; θ], (g(x), h(x)) ∈ Fq[x;ψ]/(xα − 1) ×

S[x; θ]/(xβ − 1), multiplication operation on FqS is defined as

f(x) ? (g(x), h(x)) = (δ(f(x)).g(x), f(x) ∗ h(x)),

where δ(f(x)) = δ(f0) + δ(f1)x + · · · + δ(fs)x
s ∈ Fq[x;ψ]/(xα − 1). This

multiplication is well-defined on Fq[x;ψ]/(xα−1)×S[x; θ]/(xβ−1). Moreover,
δ(f(x)).g(x) and f(x)∗h(x) are defined in Fq[x;ψ]/(xα−1) and S[x; θ]/(xβ−1),
respectively. For shortly,

Sα,β := Fq[x;ψ]/(xα − 1)× S[x; θ]/(xβ − 1).

Lemma 2.7. Sα,β is a left S[x; θ]-module under the ? multiplication.

Definition 2.8. Let ψ and θ be the automorphisms of Fq and S, respectively.
A code C is an FqS-linear skew cyclic code of length α+ β if

(i) C is an S-submodule of Fαq Sβ ,

(ii) C is closed under the Tψθ-cyclic shift, i.e.,

Tψθ(∂i, ξi + vµi) = (ψ(∂α−1), ψ(∂0), · · · ,ψ(∂α−2), θ(ξβ−1 + vµβ−1),

θ(ξ0 + vµ0), · · · , θ(ξβ−2 + vµβ−2)),
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where (∂i, ξi + vµi) ∈ C with ∂i = (∂0, ∂1, · · · , ∂α−1) ∈ Fαq and (ξi + vµi) =

(ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 + vµβ−1) ∈ Sβ .

Lemma 2.9. The code C is an FqS-linear skew cyclic code of length α+ β if
and only if C is a left S[x; θ]-submodule of Sα,β.

Proof. Let c = (∂0, ∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 + vµβ−1) ∈ C
and c(x) = (g(x), h(x)) be a codeword of FqS-linear skew cyclic code C, where
(g(x), h(x)) ∈ Sα,β . If C is a FqS-linear skew cyclic code, then

(ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2),θ(ξβ−1 + vµβ−1),

θ(ξ0 + vµ0), · · · , θ(ξβ−2 + vµβ−2)) ∈ C,

and its polynomial representation is

x ? c(x) = (ψ(∂α−1)+ψ(∂0)x+ · · ·+ ψ(∂α−2)xα−1, θ(ξβ−1 + vµβ−1)

+ θ(ξ0 + vµ0)x+ · · ·+ θ(ξβ−2 + vµβ−2)xβ−1) ∈ C.

Furthermore, x2 ? c(x) ∈ C, x3 ? c(x) ∈ C, so on. Since C is a linear code,
one gets f(x) ? c(x) ∈ C, for any f(x) ∈ S[x; θ]. Hence, C is a left S[x; θ]-
submodule of Sα,β .
On the other hand, let C be a left S[x; θ]-submodule of the left S[x; θ]-module
of Sα,β . For any c(x) ∈ C, one gets xi ? c(x) ∈ C, for each i ∈ N. Therefore,
C is an FqS-linear skew cyclic code.

The Euclidean inner product on the ring Fαq Sβ is defined as

< x, y >= v

α−1∑
i=0

xiyi +

β−1∑
j=0

x′jy
′
j ,

where
x = (x0, x1, · · · , xα−1, x′0, x′1 · · · , x′β−1), y = (y0, y1, · · · , yα−1, y′0, y′1, · · · , y′β−1)

in Fαq Sβ .

The dual code of C, denoted by C⊥, is also FqS linear code and defined by

C⊥ = {y ∈ Fαq Sβ | < x, y >= 0 for all x ∈ C}.

Theorem 2.10. If C is an FqS-linear skew code of length n = α + β with
β ∈ 2Z, then C⊥ is an FqS-linear skew cyclic code of length n.

Proof. Let x = (∂0, ∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 + vµβ−1) ∈ C
and y = (e0, e1, · · · , eα−1, f0+vg0, f1+vg1, · · · , fβ−1+vgβ−1) ∈ C⊥. Our aim
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is to prove that Tψθ(y) ∈ C⊥, so it is enough to show that < Tψθ(y), x >= 0.
Let γ = lcm(α, β) be an even integer since β ∈ 2Z. By the hypothesis, one
gets T γψθ(x) = x and T γ−1ψθ (x) ∈ C. Thus, < y, T γ−1ψθ (x) >= 0 for T γ−1ψθ (x) =
(ψ(∂1), · · · , ψ(∂α−1), ψ(∂0), θ(ξ1+vµ1), · · · , θ(ξβ−1+vµβ−1), θ(ξ0+vµ0)). Ac-
cording to the definition of the Euclidean inner product,

v

α−1∑
i=0

eiψ(∂i+1) +

β−1∑
j=0

(fj + vgj)θ(ξj+1 + vµj+1) = 0,

where first and second sums are taken module α and β, respectively. So we
have

e0ψ(∂1) + · · ·+ eα−2ψ(∂α−1) + eα−1ψ(∂0) = 0,

(f0 + vg0)θ(ξ1 + vµ1) + · · ·+ (fβ−2 + vgβ−2)θ(ξβ−1 + vµβ−1)

+ (fβ−1 + vgβ−1)θ(ξ0 + vµ0) = 0.

Applying ψ and θ to the above equalities, respectively;

ψ(e0)(∂1) + · · ·+ ψ(eα−2)(∂α−1) + ψ(eα−1)(∂0) = 0,

θ(f0 + vg0)(ξ1 + vµ1) + · · ·+ θ(fβ−2 + vgβ−2)(ξβ−1 + vµβ−1)

+ θ(fβ−1 + vgβ−1)(ξ0 + vµ0) = 0.

This exactly yields that < Tψθ(y), x >= 0 for

Tψθ(y) =(ψ(eα−1), ψ(e0), · · · , ψ(eα−2), θ(fβ−1 + vgβ−1), θ(f0 + vg0),

· · · , θ(fβ−2 + vgβ−2)).

3 The Gray Map

In this chapter, we study on Gray map over the ring FqS. The Gray mapping
on S is defined in Definition 2.1 (1). This map can be extended to Sn in a
natural way, for c = (c0, c1, · · · , cn−1) ∈ Sn where ci = ξi+vµi, i = 0, 1 · · · , n−
1.

Ω: Sn → F2n
q

c 7→ (ξ(c), ξ(c) + µ(c)),

where ξ(c) = (ξ0, ξ1, · · · , ξn−1) and µ(c) = (µ0, µ1, · · · , µn−1) and they are
unique. For ξ+ vµ ∈ S, ξ, µ ∈ Fq, the Lee weight of (ξ+ vµ) can be defined as

wL(ξ + vµ) = wH(ξ) + wH(ξ + µ),
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where wH represents the Hamming weight of a codeword. The Lee weight of
a codeword is the rational sum of the Lee weights of its components.

Definition 3.1. The Gray map over FqS is defined as

Φ: FqS→ F3
q

(∂, ξ + vµ) 7→ (∂,Ω(ξ + vµ)) = (∂, ξ, ξ + µ),

and it can be extended componentwise from Fαq Sβ to Fα+2β
q as

Φ(∂0,∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 + vµβ−1)

= (∂0, ∂1, · · · , ∂α−1,Ω(ξ0 + vµ0),Ω(ξ1 + vµ1), · · · ,Ω(ξβ−1 + vµβ−1)),

for all (∂0, ∂1, · · · , ∂α−1) ∈ Fαq and (ξ0+vµ0, ξ1+vµ1, · · · , ξβ−1+vµβ−1) ∈ Sβ .
If C is an FqS-linear code, then Φ(C) is also Fq-linear. The Lee weight of
(∂, ξ + vµ) ∈ Fαq Sβ is defined as

wL((∂, ξ + vµ)) = wH(∂) + wH(ξ) + wH(ξ + µ).

The Lee distance between two codewords r and s in Fαq Sβ is defined as

dL(r, s) = wL(r − s).

Proposition 3.2. Φ is an Fq linear distance preserving map from Fαq Sβ (Lee

distance) to Fα+2β
q (Hamming distance).

Proof. Let
c1 = (∂0, ∂1, · · · , ∂α−1, e0, e1, · · · , eβ−1) and c2 = (∂′0, ∂

′
1, · · · , ∂′α−1, e0,

′ e′1, · · · , e′β−1)

be two codewords in Fαq Sβ , where ei = ξi + vµi and e′i = ξ′i + vµ′i are in Sβ for
i = 0, 1, · · · , β − 1. So,

Φ(c1 + c2) = (∂0 + ∂′0, ∂1 + ∂′1, · · · , ∂′α−1 + ∂′α−1, ξ0 + ξ′0, ξ1 + ξ′1, · · · , ξβ−1 + ξ′β−1,

ξ0 + ξ′0 + µ0 + µ′0, ξ1 + ξ′1 + µ1 + µ′1, · · · , ξβ−1 + ξ′β−1 + µβ−1 + µ′β−1)

= (∂0, ∂1, · · · , ∂α−1, ξ0, ξ1, · · · , ξβ−1, ξ0 + µ0, ξ1 + µ1, · · · , ξβ−1 + µβ−1)+

(∂′0, ∂
′
1, · · · , ∂′α−1, ξ0,

′ ξ1,
′ · · · , ξ′β−1, ξ

′
0 + µ′0, ξ

′
1 + µ′1, · · · , ξ′β−1 + µ′β−1)

= Φ(c1) + Φ(c2).

Moreover for r ∈ Fq, one gets

Φ(rc1) = Φ(r∂0, r∂1, · · · , r∂α−1, re0, re1, · · · , reβ−1)

= (r∂0, r∂1, · · · , r∂α−1, rξ0, rξ1, · · · rξβ−1, r(ξ0 + µ0), r(ξ1 + µ1), r(ξβ−1 + µβ−1))

= r(∂0, ∂1, · · · , ∂α−1, ξ0, ξ1, · · · ξβ−1, (ξ0 + µ0), (ξ1 + µ1), (ξβ−1 + µβ−1))

= rΦ(c1).
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Thus, the map Φ is an Fq-linear map. Let e = (ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 +
vµβ−1), and e′ = (ξ′0 + vµ′0, ξ

′
1 + vµ′1, · · · , ξ′β−1 + vµ′β−1) be two elements in

Sβ . Then

Ω(e− e′) =(ξ0 − ξ′0, ξ1 − ξ′1, · · · , ξβ−1 − ξ′β−1, ξ0 − ξ′0 + µ0 − µ′0, ξ1 − ξ′1 + µ1 − µ′1,
· · · , ξβ−1 − ξ′β−1 + µβ−1 − µ′β−1) = Ω(e)− Ω(e′).

Thus,

dL(c1, c2) = wL(c1 − c2)

= wH(∂ − ∂′) + wH(Ω(e− e′)
= wH(∂ − ∂′) + wH(Ω(e)− Ω(e′))

= dH(∂, ∂′) + dH(Ω(e),Ω(e′))

= dH((∂,Ω(e)), (∂′,Ω(e′))).

This shows that Φ is a distance preserving map.

Corollary 3.3. If C is an FqS-linear code with parameters (α + β,M, dL),
then Φ(C) is a q-ary linear code with parameters [α + 2β, logqM,dL], where
M denotes the number of codewords in C.

Theorem 3.4. Let C be a linear self-orthogonal code over FqS. Then Φ(C)
is a self-orthogonal code over Fq.

Proof. Let C be a self-orthogonal FqS-linear code of length α + β. Let c1 =
(∂1, ξ1 + vµ1) and c2 = (∂2, ξ2 + vµ2) be codewords of C over FqS, where
∂i ∈ Fαq and ξi, µi ∈ Fβq for i = 1, 2. Then

< c1, c2 >= ξ1ξ2 + v(∂1∂2 + ξ1µ2 + ξ2µ1 + µ1µ2) = 0 + v0 ∈ S.

So, one gets ξ1ξ2 = 0 and ∂1∂2 + ξ1µ2 + ξ2µ1 + µ1µ2 = 0. By the Φ(c1) =
(∂1, ξ1, ξ1 + µ1) and Φ(c2) = (∂2, ξ2, ξ2 + µ2), we have Φ(c1)Φ(c2) = 0. Thus,
Φ(C) is self-orthogonal.

Theorem 3.5. Let C be an FqS-linear skew cyclic code of length α+β. Then
Φ(C) = C1⊗C2⊗C3, where C1 is a skew cyclic code of length α in Fq[x]/(xα−
1) and C2, C3 are skew cyclic codes of length β in S[x; θ]/(xβ − 1).

Proof. Let c = (∂0, ∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1, · · · , ξβ−1 + vµβ−1) be a
codeword in C and

C1 = (∂0, ∂1, · · · , ∂α−1),

C2 = (ξ0, ξ1, · · · , ξβ−1),

C3 = (ξ0 + µ0, ξ1 + µ1, · · · , ξβ−1 + µβ−1).
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A codeword of C1 corresponds to a codeword of C. By the hypothesis, one
gets

Tψθ(c) = (ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), θ(ξβ−1 + vµβ−1), θ(ξ0 + vµ0),

· · · , θ(ξβ−2 + vµβ−2)) ∈ C.

Thus we have (ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2)) ∈ C1. So, C1 is a cyclic code of
length α in Fq[x]/(xα − 1). The proof follows by the same argument to show
that C2 and C3 are skew cyclic codes of length β in S[x; θ]/(xβ − 1).

Let C be a linear code over S of length n and σ a map from Sn to Sn given
by σ(c0, c1, · · · , cn−1) = (cn−1, c0, · · · , cn−2). If σ(C) = C, then C is called a
cyclic code.
In [8], the authors studied the structural properties of skew generalized quasi-
cyclic codes (GQC) over finite fields. In the following definition, we present
skew GQC over Fq.

Definition 3.6. [7] Let C be a linear code over Fq of length n =
∑l
i=1mi

with mi ∈ N. Denote Fi = Fq[x, ψ]/(xmi − 1) for i = 1, 2, · · · , l. If C is an

Fq[x;ψ]-submodule of Fq[x;ψ]-module F =
∏l
i=1 Fi, then C is called a skew

generalized quasi-cyclic code over Fq of length n.
Let λ be a skew generalized quasi-cyclic shift defined as

λ : Fα+2β
q → Fα+2β

q

(p, r, s) 7→ (σ(ψ(p)), σ(θ(s)), σ(θ(r))),

where σ is a cyclic shift, p = (p0, p1, · · · , pα−1) ∈ Fαq as well as

r = (r0, r1, · · · , rβ−1) and s = (s0, s1, · · · , sβ−1) are in Fβq .

Proposition 3.7. Let Φ be the Gray map over FqS. Then ΦTψθ = λΦ.

Proof. Let c = (∂0, ∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1 · · · , ξβ−1 + vµβ−1). Then

ΦTψθ(c) = Φ(ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), θ(ξβ−1 + vµβ−1), θ(ξ0 + vµ0),

· · · , θ(ξβ−2 + vµβ−2))

= Φ(ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), ξβ−1 + (1− v)µβ−1, ξ0 + (1− v)µ0,

· · · , ξβ−2 + (1− v)µβ−2)

= ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), ξβ−1 + µβ−1, ξ0 + µ0, · · · , ξβ−2 + µβ−2,

ξβ−1, ξ0 · · · , ξβ−2.
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On the other hand,

λΦ(c) = (∂0, ∂1, · · · , ∂α−1, ξ0 + vµ0, ξ1 + vµ1 · · · , ξβ−1 + vµβ−1)

= λ(∂0, ∂1, · · · , ∂α−1, ξ0, ξ1, · · · , ξβ−1, ξ0 + µ0, ξ1 + µ1, ξβ−1 + µβ−1)

= (ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), θ(ξβ−1 + µβ−1), θ(ξ0 + µ0),

· · · , θ(ξβ−2 + µβ−2), θ(ξβ−1), θ(ξ0), · · · , θ(ξβ−2),

= ψ(∂α−1), ψ(∂0), · · · , ψ(∂α−2), ξβ−1 + µβ−1, ξ0 + µ0, · · · , ξβ−2 + µβ−2,

ξβ−1, ξ0 · · · , ξβ−2.

Therefore, ΦTψθ = λΦ.

Theorem 3.8. Let C be a linear code of length α+β over FqS. C is an FqS-
linear skew cyclic code if and only if Φ(C) is a generalized skew quasi-cyclic
code over Fq of length α+ 2β.

Proof. Let C be an FqS-linear skew cyclic code, then we have Φ(Tψθ(C)) =
Φ(C). By Proposition 3.7, λ(Φ(C)) = ΦTψθ(C) = Φ(C). Thus, Φ(C) is a
generalized skew quasi-cyclic code over Fq.
On the other hand, according to Proposition 3.7, one gets Φ(Tψθ(C)) =
λ(Φ(C)) = Φ(C). Therefore, C is an FqS-linear skew cyclic code.

4 Generator Polynomials

In this section, we study the generator polynomials of FqS-linear skew cyclic
codes in Sα,β . Then, we introduce the minimal spanning sets of these codes and
construct some optimal q-ary linear codes with good parameters. Through-
out the section, we denote the zero vectors or zero polynomials by 0 and
f(x)|r(xα−1)(f(x)|l(xα−1)) indicates that f(x) is a right(left) divisor of xα−
1, respectively. We first introduce ideals of Fq[x;ψ]/(xα−1) and S[x; θ]/(xβ−1)
with their useful identities in the followings:

Proposition 4.1. Let I1 := {g(x) ∈ Fq[x;ψ]/(xα − 1)|(g(x), 0) ∈ C} be an
ideal of Fq[x;ψ]/(xα − 1). Then I1 is generated by a divisor of xα − 1.

Proof. Let g1(x) and g2(x) be polynomials in I1, then (g1(x),0) and (g2(x),0)
are in C. Thus,

(g1(x),0) + (g2(x),0) = (g1(x) + g2(x),0) ∈ C,

which implies that g1(x) + g2(x) ∈ I1. Moreover, let f(x) ∈ Fq[x;ψ]/(xα − 1)
and g(x) ∈ I1, and so (g(x),0) ∈ C. Since C is a left S[x; θ]-module,

f(x) ? (g(x),0) = (f(x)g(x),0) ∈ C.

Hence (f(x)g(x)(mod(xα − 1))) ∈ I1.
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Proposition 4.2. Let I2 := {h(x) ∈ S[x; θ]/(xβ−1) | (j(x), h(x)) ∈ C,∃j(x) ∈
Fq[x;ψ]/(xα − 1))} be an ideal of S[x; θ]/(xβ − 1). Then I2 is principally gen-
erated by S[x; θ]-submodule of S[x; θ]/(xβ − 1).

Proof. Let h1(x) and h2(x) be polynomials in I2, then there exists j1(x) and
j2(x) in Fq[x;ψ]/(xα − 1) such that (j1(x), h1(x)) and (j2(x), h2(x)) are in C.
Thus,

(j1(x), h1(x)) + (j2(x), h2(x)) = (j1(x) + j2(x), h1(x) + h2(x)) ∈ C,

this ensures that h1(x) + h2(x) ∈ I2. Now, let r(x) ∈ S[x; θ]/(xβ − 1) and
(j(x), h(x)) ∈ C. Since C is a left S[x; θ]-module of Sα,β ,

r(x)?(j(x), h(x)) = ((δ(r(x)).j(x) mod(xα−1)), (r(x)∗h(x)) mod(xβ−1))) ∈ C.

Thus, (r(x) ∗ h(x) mod(xβ − 1)) ∈ I2. Moreover, by Theorem 2.3, I2 =<
h(x) >=< vh1(x) + (1− v)h2(x) >.

Theorem 4.3. Let C be an FqS-linear skew cyclic code of length α+β. Then

C =< (g(x), 0), (j(x), h(x)) >,

where j(x) ∈ Fq[x;ψ]/(xα−1), g(x)|r(xα−1) and h(x) = vh1(x)+(1−v)h2(x).
Moreover, deg(j(x)) < deg(g(x)).

Proof. Let (c1(x), c2(x)) ∈ C with c2(x) ∈ I2. By Proposition 4.2, we have
c2(x) = p(x)h(x) for some p(x) ∈ S[x; θ]/(xβ − 1). Also, there exists j(x) ∈
Fq[x;ψ]/(xα − 1) such that (j(x), h(x)) ∈ C. So,

(c1(x), c2(x)) = (c1(x), 0) + (0, c2(x))

= (c1(x), 0) + (0, p(x)h(x))

= (c1(x), 0) + (q(δ(p(x)).j(x)), p(x)h(x))

= (c1(x), 0) + (δ(p(x))j(x), p(x)h(x))

+ (δ(p(x))j(x), 0) + · · ·+ (δ(p(x))j(x), 0)

= (c1(x), 0) + p(x) ? [(j(x), h(x)) + (j(x), 0) + · · ·+ (j(x), 0)].

Thus δ(p(x))j(x) + c1(x) ∈ I1. By Proposition 4.1, there exists r(x) ∈ I1 such
that δ(p(x))j(x) + c1(x) = r(x)g(x). Hence (c1(x), c2(x)) = (r(x)g(x), 0) +
p(x) ? (j(x), h(x)).
Now, we need to show that deg(j(x)) < deg(g(x)). Assume that deg(j(x)) ≥
deg(g(x)) and deg(j(x)− g(x)) = m ∈ N. Let

D =< (g(x), 0), (j(x)− xmg(x), h(x)) > .
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Then, one gets D ⊆ C. Furthermore, we have

(j(x), h(x)) = (j(x)− xmg(x), h(x)) + xm ? (g(x), 0).

Thus, C ⊆ D and so C = D. This yields a contradiction. Hence deg(j(x)) <
deg(g(x)).

In the following Corollary, we deduce the properties and generators of several
classes of FqS-linear skew cyclic codes.

Corollary 4.4. Let C be an FqS-linear skew cyclic codes of length α+ β and
polynomials g(x), j(x), h1(x) and h2(x) are in Fq[x;ψ]/(xα − 1). Then

(i) C =< (g(x), 0) >, where g(x)|r(xα − 1) in Fq[x;ψ].

(ii) C =< (j(x), h(x)) >=< (j(x), vh1(x)+(1−v)h2(x)) > where h(x)|r(xβ−
1) in S[x; θ].

(iii) C =< (g(x), 0), (j(x), h(x)) > where deg(j(x)) < deg(g(x)) and g(x)|r(xα−
1) in Fq[x;ψ], h(x)|r(xβ − 1) in S[x; θ].

Corollary 4.5. Let C be an FqS-linear skew cyclic codes of length α+ β and
generated by < (g(x), 0), (0, h(x)) >. Then C = C1 ⊗ C2, where C1 is a skew
cyclic code over Fq and C2 is a skew cyclic code over S.

Example 4.6. Let C be an F4S-linear skew cyclic code of length α+β, where
F4 = F2[w] = {0, 1, w, w2}, and S = {ξ + vµ|ξ, µ ∈ F4} is a commutative ring
with 16 elements with v2 = v, and also α = β = 6. Suppose that ψ is an
identity automorhism of F4 and θ be an automorphism of S, then

C =< (x4 + w2x2 + w, 0), (x3 + wx2 + (1 + w), x3 + (w2 + v)) >,

where h1(x) = x3 + w, h2(x) = x3 + (w2 + v), and satisfying

x6 − 1 = (x2 + w2)(x4 + w2x2 + w),

x6 − 1 = (x3 + (v + w))(x3 + (w2 + v)).

Example 4.7. Let C be an F4S-linear skew cyclic code of length α+β, where
F4 = F2[w] = {0, 1, w, w2}, and S = {ξ + vµ|ξ, µ ∈ F4} is a commutative ring
with 16 elements with v2 = v, and also α = 4 and β = 6. Suppose that
ψ(∂) = ∂2 and θ be an automorphism of S, then

C =< (x3 + w2x2 + x+ w2, 0), (x2 + w, x4 + (w2 + v)x2 + (w + v)) >,

where h1(x) = x4 + wx2 + w2, h2(x) = x4 + w2x2 + w, and satisfying

x4 − 1 = (x+ w)(x3 + w2x2 + x+ w2),

x6 − 1 = (x2 + w2 + v)(x4 + (w2 + v)x2 + (w + v)).
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Theorem 4.8. Let C be an FqS-linear skew cyclic code of length α+ β and

C =< (g(x), 0), (j(x), h(x)) >,

where j(x) ∈ Fq[x;ψ]/(xα−1), g′(x)g(x) = (xα−1) and h′(x)h(x) = (xβ−1).
Suppose that

Sg =

deg(g′(x))−1⋃
i=0

{xi ? (g(x), 0)},

and

Sh =

deg(h′(x))−1⋃
i=0

{xi ? (j(x), h(x))}.

Then the set S = Sg ∪ Sh forms a minimal spanning set for C and |C| =

qdeg(g
′(x))+2deg(h′(x)).

Proof. Let

δ(a1(x)) ? (g(x), 0) + a2(x) ? (j(x), h(x)) ∈ C,

where the polynomials a1(x) and a2(x) are in S[x; θ]/(xβ − 1).
First of all, we claim that δ(a1(x)) ? (g(x), 0) ∈ Span(Sg). If deg(δ(a1(x))) <
deg(g′(x)), then we are done. On the other hand, let q1(x) and r1(x) be two
polynomials in S[x; θ]/(xβ − 1) so that δ(a1(x)) = δ(q1(x)).g′(x) + δ(r1(x))
where δ(r1(x)) = 0 or deg(δ(r1(x))) < deg(g′(x)). So,

δ(a1(x)) ? (g(x), 0) = (δ(q1(x)).g′(x) + δ(r1(x))) ? (g(x), 0)

= δ(q1(x)) ? (g′(x).g(x), 0) + δ(r1(x)) ? (g(x), 0)

= δ(r1(x)) ? (g(x), 0).

Thus, δ(a1(x)) ? (g(x), 0) belongs to Span(Sg).
Now, we prove that a2(x)?(j(x), h(x)) ∈ Span(S). If deg(a2(x)) < deg(h′(x)),
then a2(x) ? (j(x), h(x)) ∈ Span(Sh). On the other hand, let q2(x) and r2(x)
be two polynomials in S[x; θ]/(xβ − 1) so that a2(x) = q2(x) ∗ h′(x) + r2(x),
where r2(x) = 0 or deg(r2(x))) < deg(h′(x)). So,

a2(x) ? (j(x), h(x)) = (q2(x) ∗ h′(x) + r2(x)) ? (j(x), h(x))

= q2(x) ? (δ(h′(x)).j(x), h′(x)h(x)) + r2(x) ? (j(x), h(x)).

Clearly, r2(x)?(j(x), h(x)) ∈ Span(Sh). Therefore, we have a2(x)?(j(x), h(x)) ∈
Span(Sg ∪ Sh).
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Corollary 4.9. (i) Let C be an FqS-linear skew cyclic code generated by (i)
in Corollary 4.4 and

S =

deg(g′(x))−1⋃
i=0

{xi ? (g(x), 0)},

then the set S forms a minimal spanning set for C.
(ii) Let C be an FqS-linear skew cyclic code generated by (ii) in Corollary 4.4
and

S =

deg(h′(x))−1⋃
i=0

{xi ? (j(x), h(x))},

then the set S forms a minimal spanning set for C.
(iii) Let C be an FqS-linear skew cyclic code generated by (iii) in Corollary
4.4 and

Sg =

deg(g′(x))−1⋃
i=0

{xi ? (g(x), 0)}

and

Sh =

deg(h′(x))−1⋃
i=0

{xi ? (j(x), h(x))},

then the set Sg ∪ Sh forms a minimal spanning set for C and

|C| = qdeg(g
′(x)+2deg(h′(x)).

Example 4.10. Let C be an F4S-linear skew cyclic codes of length 12 given
in Example 4.6. Then we have

g′(x).g(x) = x6 − 1⇒ g′(x) = x2 + w2,

h′(x) ∗ h(x) = x6 − 1⇒ h′(x) = x3 + (v + w).

Therefore, the minimal generating set of C has the form

Sg = {(x4 + w2x2 + w, 0), (x5 + w2x3 + wx, 0)},

Sh = {(x3 + wx2 + (1 + w), x3 + (w2 + v)), (x4 + wx3 + (1 + w)x, x4 + (w + v)x),

(x5 + wx4 + (1 + w)x2, x5 + (1 + w + v)x2)}.
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Hence, by Corollary 4.9 (iii), the generator matrix of C can be obtained as
follows:

w 0 w2 0 1 0 0 0 0 0 0 0
0 w 0 w2 0 1 0 0 0 0 0 0

(1 + w) 0 w 1 0 0 (w2 + v) 0 0 1 0 0
0 (1 + w) 0 w 1 0 0 (w + v) 0 0 1 0
0 0 (1 + w) 0 w 1 0 0 (w2 + v) 0 0 1

 .
Example 4.11. Let C be an F4S-linear skew cyclic code of length 10 given
in Example 4.7. Then we have

g′(x).g(x) = x4 − 1⇒ g′(x) = x+ w,

h′(x) ∗ h(x) = x6 − 1⇒ h′(x) = x2 + w2 + v.

Therefore, the minimal generating set of C has the form

Sg = {(x3 + w2x2 + x+ w2, 0)},

Sh = {(x2 + w, x4 + (w2 + v)x2 + (w + v)), (x3 + w2x, x5 + (w + v)x3 + (w2 + v)x)}.

Hence, by Corollary 4.9 (iii), the generator matrix of C can be obtained as
follows: w2 1 w2 1 0 0 0 0 0 0

w 0 1 0 (w + v) 0 (w2 + v) 0 1 0
0 w2 0 1 0 (w2 + v) 0 (w + v) 0 1

 .
In the following examples, we introduce some optimal linear codes with good
parameters which are some of the comparable well-known linear codes in [15].

Example 4.12. Let C =< (x3−1, 0), (x2+x+1, x−1) > be a F4F4[v]- linear
skew cyclic code in F4[x;ψ]/(x3 − 1)× F4[x; θ]/(x2 − 1), where h′(x) = x+ 1
and j(x) = x2 + x + 1. By Corollary 4.9 (iii), the generator matrix of C can
be written as [

1 1 1 1 1
]
.

Moreover, by Corollary 3.3, Φ(C) is a quasi-cyclic code with parameters
[7, 2, 5].

Example 4.13. Let C =< (x8−1, 0), (x7+x6+x5+x4+x3+x2+x+1, x+2) >
be a F9F9[v]-linear skew cyclic code in F9[x;ψ]/(x8 − 1) × F9[x; θ]/(x2 − 1),
where h′(x) = x+ 1. By Corollary 4.9 (iii), the generator matrix of C can be
written as [

1 1 1 1 1 1 1 1 2 1
]
.

Moreover, by Corollary 3.3, Φ(C) is a quasi-cyclic code with parameters
[12, 2, 10].
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Example 4.14. Let C =< (x10 − 1, 0), (x9 + x8 + x7 + x6 + x5 + x4 + x3 +
x2 + x+ 1, x− 1) be a F9F9[v]-linear skew cyclic code in F9[x;ψ]/(x10 − 1)×
F9[x; θ]/(x2 − 1), where h′(x) = x − 2. By Corollary 4.9 (iii), the generator
matrix of C can be written as[

1 1 1 1 1 1 1 1 1 1 1 1
]
.

Moreover, by Corollary 3.3, Φ(C) is a quasi-cyclic code with parameters
[14, 2, 12].

5 Conclusion

In this paper, we studied skew cyclic codes over the ring FqS with power of
prime number p and S = Fq + vFq, v2 = v. We constructed algebraic struc-
ture of these codes as a left submodule of a skew polynomial ring. Then, we
introduced all generators and also minimal spanning sets of these codes. Fi-
nally, we obtained some Fq-linear codes with good parameters which are some
of the comparable well-known linear codes in [15]. Moreover, some optimal
F4F4[v]-linear skew cyclic codes are given in Table 1 with automorphisms of
F4 and F4[v] are defined as ψ(∂) = ∂ and θ, respectively.
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Table 1: Optimal F4F4[v]-linear skew cyclic codes

(α, β) Generators [n, k, d]4

(4, 2) C1 =< (x4−1, 0), (x3+x2+x+1, x+
(w + v)) >

[8, 2, 6]

(6, 2) C2 =< (x6 − 1, 0), (x5 + x4 + x3 +
x2 + x+ 1, x+ (w2 + v)) >

[10, 2, 8]

(3, 4) C3 =< (x3− 1, 0), (x2 +x+ 1, w2x+
w2) >

[11, 6, 5]

(4, 4) C4 =< (x3 + x2 + x + 1, 0), (x2 −
1, w2x+ w2) >

[12, 7, 4]

(5, 6) C5 =< (x4 +x3 +x2 +x+1, 0), (x2 +
w2x+ 1, x+ 1) >

[17, 11, 5]

(6, 5) C6 =< (x5 + x4 + x3 + x2 + x +
1, 0), (x3 +w2x2 +w2x+ 1, x+ 1) >

[16, 9, 6]

(9, 5) C7 =< (x8 + x7 + x6 + x3 + x2 + x+
1, 0), (x5 +wx4 +w2x3 +w2x2 + x+
w, x+ 1) >

[19, 9, 8]

(10, 4) C8 =< (x10 − 1, 0), (x9 + x8 + x7 +
x6 +x5 +x4 +x3 +x2 +x+ 1, wx3 +
wx2 + wx+ w) >

[18, 2, 14]

(14, 4) C9 =< (x7 + x6 + x3 + x2 + x +
1, 0), (x6 + x5 + x4 + x3 + x2 + x +
1, (w + 1)x+ (1 + w)) >

[22, 13, 6]

(18, 6) C10 =< (x18−1, 0), (x17+x16+x15+
x14+x13+x12+x11+x10+x9+x8+
x7+x6+x5+x4+x3+x2+x+1, x5+
(w2+wv)x4+w2x3+(w+v)x2+wx+
(1 + w2v) >

[30, 2, 24]
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