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Remarks on some connections between ideals
and filters in residuated lattices

Dana PICIU, Christina DAN and Florentina BOBOC

Abstract

Ideals and filters are important notions with different meanings in the
study of algebraic structures related to logical systems. In this paper we
establish new connections between these concepts in residuated lattices.
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1 Introduction

To generalize the lattice of ring ideals, in [13], was defined commutative resid-
uated lattices, linked to multiple valued logic and representing semantics for
residuated logics. Thus, the study of algebraic structures (as Boolean, MV or
BL-algebras), linked to particular logics was continued.

The class of residuated lattices forms a variety RL, see [4].
In lattice theory, filters and ideals have an important role. For residuated

lattices, filters were introduced in [6] as an algebraic notion related to logical
provable formulas. Their study is useful to provide completeness with respect
to algebraic semantics.

In MV-algebras, the concept of ideal, introduced in [3] as kernel of mor-
phism, is dual to filter. This notion was defined in residuated lattices (see
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[9]) as a generalization for [7]. Although ideals are useful to study logical sys-
tems, in residuated lattices, their study was delayed, due the lack of algebraic
addition.

Unlike the classical Boolean lattice theory, ideals and filters are not dual
notions in residuated lattices. For this reason, in this paper, we analyse some
connections between these notions.

2 Ideals versus filters

An algebra (A,∨,∧,�,→, 0, 1), such that

(i) (A,∨,∧, 0, 1) is a bounded lattice with the order ≤;

(ii) (A,�, 1) is a commutative monoid;

(iii) x� z ≤ y if and only if x ≤ z → y, for x, y, z ∈ A ,

is a residuated lattice, see [13].
For A ∈ RL and x ∈ A we denote x∗ = x → 0. As usual, B(A) is the

Boolean center of A, see [12].
Using the following conditions:

x ∧ y = x� (x→ y) (div),

1 = (x→ y) ∨ (y → x) (prel),

x = x∗∗ (DN-double negation) and

(x ∧ y)∗ = x∗ ∨ y∗ (DM-De Morgan)

can be obtained particular residuated lattices. For example, (div) + (prel)
generate a BL-algebra and if this satisfies additionally (DN), it is an MV-
algebra, see [3], [5] and [12].

For A ∈ RL, x, y ∈ A, m ≥ 2, we define x� y = x∗ → y∗∗ and we denote
mx = x� ...� x︸ ︷︷ ︸

m times

, xm = x� ...� x︸ ︷︷ ︸
m times

.

Also, for x ∈ A, the minimum m ≥ 1, such that xm = 0 is denoted by
o(x); if there is no such m, then o(x) =∞.

We recall some rules of calculus in RL (see [2] and [12]):

(1) x→ y = 1 if and only if x ≤ y;

(2) x→ (y → z) = (x� y)→ z, (x ∨ y)∗ = x∗ ∧ y∗;
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(3) x� y = (x∗� y∗)∗, [(x∗)m]∗ = mx = (mx)∗∗, for x, y, z ∈ A and m ≥ 2.

An ideal in RL is a generalization of the similar notions from [3], [7].

Definition 1. ([2], [9]) Let A ∈ RL. An ideal is a subset I 6= ∅ of A such
that:

(i) x ≤ i, i ∈ I =⇒ x ∈ I;

(ii) i, j ∈ I =⇒ i� j ∈ I.

The set of ideals of A is denoted by I(A) For I ∈ I(A), i ∈ I ⇐⇒ i∗∗ ∈ I.
In [9], for each I ∈ I(A) is defined a congruence relation and the factor

set A/I = {x/I : x ∈ A} ∈ RL. If A/I is an MV-algebra, then I is called an
MV-ideal and its characterization is:

(x∗∗ → x)∗ ∈ I, for every x ∈ A,

see [14]. Because RL is a variety we can generalize this definition:

Definition 2. Let S be a subvariety of RL. Then I ∈ I(A) is called a S

-ideal if A/I ∈ S.

S I(A) is the set of S-ideals of A.

Theorem 3. Let A ∈ RL and S ⊆ RL be a subvariety. If I, J ∈ S I(A), then
I ∩ J ∈ S I(A).

Proof. Let f : A/(I ∩ J)→ (A/I)Π(A/J),

f(x/(I ∩ J)) = (x/I, x/J), for x ∈ A.

Obviously, f is correctly defined and one to one. Since I, J ∈ S I(A) we
obtain that A/I, A/J ∈ S. Because S is a variety, (A/I)Π(A/J) ∈ S .

Since f is an one to one morphism in RL, A/(I ∩ J) is isomorphic with
f(A/(I ∩ J)) which is a subalgebra of (A/I)Π(A/J).

Finally, f(A/(I ∩ J)) ∈ S, thus A/(I ∩ J) ∈ S, so I ∩ J ∈ S I(A).

In particular, if S = MV, the subvariety of MV-algebras, we obtain a result
from [14].

For A ∈ RL, let IP(A) = {I ∈ I(A)\{A} : i∗∗ ∧ j∗∗ ∈ I =⇒ i ∈ I or
j ∈ I} and IM(A) = {I ∈ I(A)\{A} : x /∈ I ⇐⇒ (mx)∗ ∈ I, for some
m ≥ 1}.

We say that I ∈ IP(A) is prime and I ∈ IM(A) is maximal, see [2], [11].
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Definition 4. A ∈ RL with the property that for any x ∈ A there is m ≥ 1
such that mx ∈ B(A) is called i-Hyperarchimedean.

Moreover, a residuated lattice A verifying (DM) is i-Hyperarchimedean
iff IP(A) = IM(A), see [11].

In residuated lattices, ideals and the dual of filters (deductive systems) are
differently.

Definition 5. ([6], [12]) Let A ∈ RL. A filter is a subset F 6= ∅ of A such
that :

(i) f ≤ x, f ∈ F =⇒ x ∈ F ;

(ii) f, g ∈ F =⇒ f � g ∈ F.

We denote by F(A) the set of filters of A. For each F ∈ F(A) is defined a
congruence relation and the factor set A/F ∈ RL , see [12].

Also, let FP(A) = {F ∈ F(A)\{A} : f ∨ g ∈ F =⇒ f ∈ F or g ∈ F } and
FM(A) = {F ∈ F(A)\{A} : F is maximal in (F(A),⊆)}.

Thus, we say that F ∈ FP(A) is prime and F ∈ FM(A) is maximal, see
[10], [12].

If FP(A) = FM(A), then the residuated lattice A is called Hyperar-
chimedean. Moreover, A ∈ RL is Hyperarchimedean iff for every x ∈ A
there exists a natural number m ≥ 1 such that xm ∈ B(A), see [10].

3 Connections between filters and ideals

As we mentioned, ideals and filters are not dual notions in residuated lattices.
The purpose of this section is to prove that these concepts, as algebraic

structures, have different meanings and generate various constructions.
We recall that, in an MV-algebra, F is a filter iff the set of its complement

elements F ∗ = {f∗ : f ∈ F} is an ideal and conversely, I is an ideal iff
I∗ = {i∗ : i ∈ I} is a filter.

Based on the following examples, we remark that, in residuated lattices,
this statement does not hold. Hence, the notions of ideals and filters are not
dual under complementation.

Example 6. For A ∈ RL from [7], Example 3.5, we remark that

I = {0, x, y, z} ∈ I(A) but I∗ = {1, t} /∈ F(A).

Also,
F = {1, t, u, v} ∈ F(A) but F ∗ = {0, z} /∈ I(A).



IDEALS VERSUS FILTERS 149

Example 7. Moreover, if we consider A ∈ RL from [10], Example 1.6, we
have

I(A) = {{0}, {0, x}, {0, y}, A},

IP(A) = IM(A) = {{0, x}, {0, y}},

F(A) = {{1}, {1, z}, {1, x, z}, {1, y, z}, A},

FP(A) = F(A)\{A} and FM(A) = FP(A)\{{1}}.

Then
IP(A) = IM(A) but FP(A) 6= FM(A),

F = {1} ∈ FP(A) but F ∗ = {0} /∈ IP(A),

P = {0, x} ∈ IP(A) but P ∗ = {1, y} /∈ F(A),

M = {0, y} ∈ IM(A) but M∗ = {1, x} /∈ F(A).

In a residuated lattice A, for x ∈ A, we denote by (x] and < x > the
principal ideal, respectively filter, of A generated by x, see [2] and [10].

In fact, < x >6= A ⇐⇒ o(x) = ∞ and (x] 6= A ⇐⇒ o(x∗) = ∞, see [10]
and [11].

Using this result we deduce that:

Proposition 8. Let A ∈ RL and x ∈ A. Then

(i) (x] is proper iff < x∗ > is proper;

(ii) If |FM(A)| = 1 and (x] is proper then < x > is not proper.

Proof. (i). (x] is proper iff o(x∗) =∞ iff < x∗ > is proper.
(ii). From (x] proper, we deduce that o(x∗) = ∞. Since A has an unique

maximal filter, using [10], o(x) < ∞ or o(x∗) < ∞. Then, by hypothesis,
o(x) <∞, so, < x > is not proper.

The characterization of residuated lattices in which prime and maximal
spectrum coincide (for filters, respectively ideals) are known and in the follow-
ing, we show that the notions of Hyperarchimedean and i-Hyperarchimedean
do not coincide in RL (as it happens in MV, for example):

Corollary 9. Let A ∈ RL. Then

Hyperarchimedean ⇒ i-Hyperarchimedean

i-Hyperarchimedean ; Hyperarchimedean.
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Proof. Suppose that A is Hyperarchimedean and let x ∈ A. Then x∗ ∈ A,
so there is a natural number m ≥ 1 such that (x∗)m ∈ B(A). Hence mx =
[(x∗)m]∗ ∈ B(A), so A is i-Hyperarchimedean.

To show that the converse implication is not true, we consider A ∈ RL

from [5], Example 2, p.271, which satisfies (DM). We remark that kx = 1, if
x 6= 0 and kx = 0, if x = 0, for every k ≥ 2. Since 0, 1 ∈ B(A) we deduce that
A is i-Hyperarchimedean. But pk = p for every k ≥ 1 and p /∈ B(A) since
p ∨ p∗ = p ∨ 0 = p 6= 1. We conclude that A is not Hyperarchimedean.

Let A ∈ RL and S ⊆ A. The set of complement elements (with respect to
S) is denoted by

C(S) = {x ∈ A : x∗ ∈ S}.

We recall the following result:

Proposition 10. ([2], [7], [14]) Let A ∈ RL, F ∈ F(A) and I ∈ I(A). Then:

(i) C(F ) ∈ I(A), C(I) ∈ F(A), F ⊆ C(C(F )), I = C(C(I));

(ii) A/I and A/C(I) coincide;

(iii) If I ∈ IP(A) then C(I) ∈ FP(A); Also, if A satisfies (DM) and F ∈
FP(A) then C(F ) ∈ IP(A);

(iv) If I ∈ IM(A) then C(I) ∈ FM(A); Also, if F ∈ FM(A) then C(F ) ∈
IM(A).

The previous result proves that complement elements can establish con-
nections between ideals and filters in residuated lattices.

Also, we can characterize proper ideals ı̂n residuated lattices verifying (div):

Proposition 11. Let A ∈ RL satisfying (div) and I ∈ I(A). Then (x∗∗ →
x)∗ ∈ I, for every x ∈ L.

Proof. Using Proposition 10 and [2], Corollary 3.1, I ∈ MV I(A), so C(I) ∈
F(A) and A/I = A/C(I) is an MV-algebra. Thus, C(I) is a fantastic filter
of A, see [1]. We deduce that x∗∗ → x ∈ C(I), so (x∗∗ → x)∗ ∈ I, for every
x ∈ A.

As for ideals, if S ⊆ RL is a subvariety, F ∈ F(A) is called a S -filter if
A/F ∈ S. Also, if F,G ∈ F(A) and F is a S-filter such that F ⊆ G, then G is
a S-filter, see [1]. In particular, the set of MV-filters is denoted by MV F(A).

For MV-ideals we have similar results:

Proposition 12. Let A ∈ RL and I, J ∈ I(A) proper ideals such that I ⊆ J.
Then I ∈MV I(A) =⇒ J ∈MV I(A).
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Proof. Since I ∈ MV I(A) we deduce that A/I is an MV-algebra. Thus,
using Proposition 10, (ii), A/C(I) is also MV-algebra, so C(I) ∈MV F(A).
Obviously, I ⊆ J implies C(I) ⊆ C(J). We obtain that C(J) ∈MV F(A), so
A/C(J) = A/J is an MV-algebra. Thus, J ∈MV I(A).

Using this result we deduce that:

Theorem 13. In a residuated lattice A,

{0} ∈MV I(A) iff any proper ideal is an MV-ideal.

Proposition 14. Let A ∈ RL and I ∈ I(A). Then

I ∈MV I(A) iff C(I) ∈MV F(A).

Proof. Using Proposition 10, I ∈MV I(A) iff A/I is an MV-algebra iff A/C(I)
is an MV-algebra iff C(I) ∈MV F(A).

As for lattices, in A ∈ RL, a particular set involving complement elements
is D(A) = {d ∈ A : d∗ = 0}.

Remark 15. d ∈ D(A) iff d→ r = r, for every r ∈ A with r = r∗∗.

Next, we establish new characterizations for MV-ideals in residuated lat-
tices:

Proposition 16. Let A ∈ RL. Then

D(A) ∈MV F(A) iff any proper ideal is an MV-ideal.

Proof. Since D(A) ∈ F(A), the equivalences follow by Theorem 13 and Propo-
sition 14 using the fact that {0} ∈MV I(A) iff C({0}) = {x ∈ A : x∗ = 0} =
D(A) ∈MV F(A).

Remark 17. In particular, if A ∈ RL is an MV-algebra, then every ideal is
an MV-ideal.

Finally, we study the transport of ideals and filters through morphisms of
residuated lattices.

Let A1, A2 ∈ RL and f : A1 → A2 be a morphism of residuated lattices,
see [12]. Then, Ker(f) = f−1(1) ∈ F(A1)\{A1} and i −Ker(f) = f−1(0) ∈
I(A1)\{A1}, see [10] and [11].

Proposition 18. If f : A1 → A2 is a morphism in RL, then:
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(i) If F2 is a proper (prime, maximal) filter in A2 then f−1(F2) is a proper
(prime, maximal) filter in A1;

(ii) If f is surjective and F1 ∈ F(A1) then f(F1) ∈ F(A2);

(iii) If f is surjective and F1 ∈ FM(A1) such that f(F1) is proper, then
f(F1) ∈ FM(A2).

Proof. As in the case of BL-algebras, see [8].

Proposition 19. Let A1, A2 ∈ RL and f : A1 → A2 be a morphism of
residuated lattices. Then:

(i) If I2 ∈ I(A2)\{A2} then f−1(I2) ∈ I(A1)\{A1};

(ii) I2 ∈MV I(A2) =⇒ f−1(I2) ∈MV I(A1);

(iii) If f is surjective, I1 ∈ I(A1) =⇒ f(I1) ∈ I(A2);

(iv) If f is surjective and I1 ∈MV I(A1) =⇒ f(I1) ∈MV I(A2).

Proof. (i). Clearly, f−1(I2) ∈ I(A1). Moreover, if I2 is proper and f−1(I2)
= A1, then 1 ∈ f−1(I2) and 1 = f(1) ∈ I2. Obviously, I2 = A2, a contradiction.
We conclude that f−1(I2) is proper.

(ii). If x ∈ A1, then f(x) ∈ A2, so (x∗∗ → x)∗ ∈ f−1(I2). Thus, f−1(I2) ∈
MV I(A1).

(iii). As for MV-algebras, see [3].
(iv). Let y ∈ A2. Then y = f(x) with x ∈ A1 and (y∗∗ → y)∗ = f((x∗∗ →

x)∗) ∈ f(I1.).

Proposition 20. Let f : A1 → A2 be a morphism in RL. Then:

(i) Ker(f) ⊆ C(i − Ker(f)); If A2 verifies (DN), then Ker(f) = C(i −
Ker(f));

(ii) C(Ker(f)) = i−Ker(f).

Proof. (i). x ∈ Ker(f)⇒ x∗ ∈ i−Ker(f)⇒ x ∈ C(i−Ker(f)). If A2 verifies
(DN) then x ∈ C(i−Ker(f))⇒ x∗ ∈ i−Ker(f)⇒ x ∈ Ker(f).

(ii). x ∈ C(Ker(f)) iff x∗ ∈ Ker(f) iff x ∈ i−Ker(f).

Proposition 21. Let A1, A2 ∈ RL, S1 ⊆ A1, S2 ⊆ A2 and f : A1 → A2 be a
morphism of residuated lattices. Then:

(i) C(f−1(S2)) = f−1(C(S2));
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(ii) If F2 ∈ F(A2), I2 ∈ I(A2) then

C(f−1(F2)) = f−1(C(F2)) and C(f−1(I2)) = f−1(C(I2));

(iii) f(C(S1)) ⊆ C(f(S1));

(iv) If f is surjective then

f(C(F1)) = C(f(F1)) and f(I1) = C(f(C(I1))), for F1 ∈ F(A1), I1 ∈ I(A1).

Proof. (i). x ∈ f−1(C(S2)) iff f(x)∗ = f(x∗) ∈ S2 iff x∗ ∈ f−1(S2) iff x ∈
C(f−1(S2)).

(ii). Using (i).
(iii). Let y ∈ f(C(S1)). Then there exists x ∈ C(S1) such that y = f(x).

Thus, y∗ = f(x∗), with x∗ ∈ S1. We deduce that y∗ ∈ f(S1), so y ∈ C(f(S1)).
(iv). Using (iii), f(C(F1)) ⊆ C(f(F1)). Let y ∈ C(f(F1)). Then y∗ ∈

f(F1), so there exists x ∈ F1 such that y∗ = f(x).
Using Proposition 10, F1 ⊆ C(C(F1)), so x ∈ C(C(F1)). Thus, y∗∗ =

f(x∗), with x∗ ∈ C(F1), so y∗∗ ∈ f(C(F1)). Since by Proposition 10, C(F1 ) ∈
I(A1) using Proposition 19, (iii), we have that f(C(F1 )) ∈ I(A2). Thus, y ∈
f(C(F1)), so C(f(F1)) ⊆ f(C(F1 )). We conclude that, f(C(F1)) = C(f(F1)).

Also, using Proposition 10, C(I1) ∈ F(A1), so, f(I1) = f(C(C(I1))) =
C(f(C(I1))).

Theorem 22. Let f : A1 → A2 be a morphism in RL. Then:

(i) If I2 ∈ IM(A2) then f−1(I2) ∈ IM(A1) ;

(ii) If A1 satisfies (DM) and I2 ∈ IP(A2) then f−1(I2) ∈ IP(A1);

(iii) If f is surjective and I1 ∈ IM(A1) such that f(C(I1)) 6= A2 then f(I1)
∈ IM(A2) .

Proof. (i). Using Proposition 19, (i), f−1(I2) ∈ I(A1)\{A1}. From Proposi-
tion 10, (iv), I2 ∈ IM(A2) implies that C(I2) ∈ FM(A2). Using Proposition
18, (i), we have f−1( C(I2)) ∈ FM(A1). From Proposition 21, (ii), we ob-
tain C(f−1(I2)) = f−1(C(I2)), so we deduce that C(f−1(I2)) ∈ FM(A1).
From Proposition 10, (iv), we obtain that C(C(f−1(I2))) ∈ IM(A1). But
C(C(f−1(I2))) = f−1(I2), since f−1(I2) ∈ I(A1), see Proposition 10. We
conclude that f−1(I2) ∈ IM(A1) .

(ii). Obviously, by Proposition 19, (i), f−1(I2) is a proper ideal in A1. Using
Proposition 10, (iii), I2 ∈ IP(A2) implies that C(I2) ∈ FP(A2). From Propo-
sition 18, (i), we deduce that f−1( C(I2)) ∈ FP(A1). Since from Proposition
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21, (ii), C(f−1(I2)) = f−1(C(I2)), we have that C(f−1(I2)) ∈ FP(A1). Using
Proposition 10, (iii), since A1 satisfies (DM) , we obtain that C(C(f−1(I2))) ∈
IP(A1). But C(C(f−1(I2))) = f−1(I2), so f−1(I2) ∈ IP(A1) .

(iii). From Proposition 10, (iv), I1 ∈ IM(A1) implies that C(I1) ∈ FM(A1).
From Proposition 18, (iii), we deduce that f( C(I1)) ∈ FM(A2). Using
Proposition 10, (iv), we have that C(f(C(I1))) ∈ IM(A2). But, f(I1) =
C(f(C(I1))), see Proposition 21, (iv), thus f(I1) ∈ IM(A2) .

4 Conclusions

In this paper we develop an algebraic analysis between filters and ideals in
residuated lattices.

In a future work, we intend to use the operation � to translate some
results from MV-algebras for this more general case and we will search for
new properties of the operator C which will help us establish other connections
between filters and ideals.
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