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On Boyd-Wong type multivalued contractions
and solvability of (k − χ)-Hilfer fractional

differential inclusions

Marija Paunovic, Babak Mohammadi and Vahid Parvaneh

Abstract

In this article, we introduce the Boyd-Wong type multivalued con-
tractions and demonstrate that such mappings have a fixed point. Ad-
ditionally, we look at the solvability of a few (k − χ)-Hilfer initial value
fractional differential inclusions of order n − 1 < α < n (n ≥ 2). To
demonstrate the usability of our result, an example is provided.

1 Introduction

Numerous technological sectors have used fractional integro-differential oper-
ators to investigate the mathematical description of physical processes. The
reader is directed to [13], [14], [15], [23], [24], [25] and [30] to view a num-
ber of published articles in this respect. The most useful fractional operators
among these efforts are the Riemann-Liouville and Caputo integro-differential
operators. The χ-Caputo fractional derivative (c.f.d.), which is the fractional
derivative with regard to another strictly rising differentiable function, was
recently introduced in [10] and used in [12] and [16].

Then, various scholars applied this operator to a variety of topics (see,
for instance, the citations for [10], [18], [19], [20], [21], and [22]).There is no
doubt that the Riemann-Liouville, Caputo, Hadamarad, and Erdélyi-Kober
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integro-differential operators are particular instances of the χ-c.f.d.. On the
other hand, Hilfer introduced the Hilfer type fractional derivative in reference
[9]. Many of the well-known fractional derivative operators are generalized by
the (k − χ)-Hilfer operator, which was presented in [3]. Recently, Tariboon
et al. employed this operator for multi-point initial value (k − χ)-Hilfer frac-
tional differential equations and inclusions utilizing the Nadler’s contraction
and Banach contraction principle.

Distinctly, they study the following multi-point initial value fractional dif-
ferential inclusion of order 1 < ρ < 2:{

kDρ,%;χ
a+ ς(t) ∈ F(t, ς(t)), t ∈ [a, b],

ς(a) = 0, ς(b) = Σmi=1λiς(εi),
(1)

where kDρ,%;χ
a+ is the (k−χ)-Hilfer fractional derivative (h.f.c.) operator intro-

duced in [3], F : [a, b]× R→ P(R) is a multi-valued compact valued function,
1 < ρ < 2, the increasing function χ ∈ C1([a, b]) is such that χ′(t) 6= 0 for all
t ∈ [a, b], a < εi < b, i = 1, 2, 3, · · · ,m and λi ∈ R.

In this research, we pursue two objectives: First, we introduce the multi-
valued contraction mappings of Boyd-Wong (B.-W.) type and demonstrate
that they have a fixed point. Second, we demonstrate the solvability of a few
(k−χ)-Hilfer fractional differential inclusions of any order n−1 < ρ < n using
our novel contraction with the following single-point initial value conditions:


kDρ,%;χ

a+ κ(t) ∈ F(t, κ(t)); t ∈ [a, b],
kJnk−ςk;χ
a+ κ(t)]t=a = 0,(
k

χ′(t)
d
dt

)n−j
kJnk−ςk;χ
a+ κ(t)]t=a = dj , j = 1, 2, · · · , n− 1, ςk = ρ+ %(nk − ρ),

(2)
when the right hand side function F : [a, b] × R → P(R) appraises the multi-
valued mappings, it does not necessarily appraise the Nadler’s contraction, but
rather the B.-W. type contraction. We provide an illustration to demonstrate
how our new findings are usable.

2 Preliminaries and auxiliary notions

Let (∇, d) be a metric space. Following [17], let Pcb(∇) be the class of all
nonempty closed bounded subsets of ∇ and H be the Hausdorff-Pompieu met-
ric on Pcb(∇) which is induced by the metric d, that is,

H(Υ1,Υ2) = max

{
sup
ς1∈Υ1

d(ς1,Υ2), sup
ς2∈Υ2

d(ς2,Υ1)

}
,
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for every Υ1,Υ2 ∈ Pcb(∇).
A fixed point of a multi-valued mapping  L : ∇ → P(∇) is an element ς ∈ ∇

such that ς ∈  Lς. Also,  L possesses the approximate valued property whenever
for any x ∈ ∇ there exists y ∈  Lx such that d(x, y) = d(x,  Lx).

Let’s review the basic definitions of fractional differential equations (see
[26] and [27] for references).

For a continuous function f : [a, b] → R, the Riemann-Liouville integral
(r.l.i.) of fractional order ρ ≥ 0 is defined by

Jρa+f(`) =
1

Γ(ρ)

∫ `

a

(`− u)ρ−1f(u)du; ρ > 0, (3)

and J0
af(`) = f(`) for ρ = 0 (for agreement). The c.f.d. of order ρ is defined

by
cDρ

a+f(`) = Jn−ρa f (n)(`) (n− 1 < ρ ≤ n, n = dρe), (4)

where d.e : R → Z denotes the ceiling function. The Riemann-Liouville frac-
tional derivative (r.l.f.d.) of order ρ is defined by

RLDρ
a+f(`) =

( d
d`

)n
Jn−ρa f(`) (n− 1 < ρ ≤ n, n = dρe). (5)

Definition 1. Let χ be an increasing map so that χ′(s) > 0 for any s ∈ [a, b].
Then, the χ-r.l.i. of order ρ of an integrable function f : [a, b] → R with
respect to χ is defined as

Jρ;χa+ f(`) =

{
1

Γ(ρ)

∫ `
a
χ′(`)(χ(`)− χ(u))ρ−1f(u)du, ρ > 0

f(`), ρ = 0,
(6)

if the right-hand side of the aforementioned equality has finite values.

It should be noted that, if χ(u) = u, then clearly the χ-r.l.i. (6) reduces
to the standard r.l.i. (3).

Definition 2. ([12]) Let n = dρe. For a real mapping f ∈ C([a, b],R), the
χ-r.l.f.d. of order ρ is formulated as

RLDρ;χ
a+ f(`) =

( 1

χ′(`)

d

d`

)n
Jn−ρ;χa+ f(`), (7)

provided that the right hand side of the above equality is finite-valued.

Similar to this, it is clear that the χ-r.l.f.d. (7) reduces to the traditional
r.l.f.d. (5) if χ(u) = u. Almeida presented a novel χ-version of the c.f.d. in
the following formulation, which was motivated by these operators:
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Definition 3. ([10]) Let n = dρe and χ ∈ ACn([a, b],R) be an increasing map
with χ′(u) > 0 for any u ∈ [a, b]. The χ-c.f.d. of order ρ of f with respect to
χ is

CDρ;ζ
a+ f(`) = Jn−ρ;ζa+

( 1

χ′(`)

d

d`

)n
f(`), (8)

assuming that the right-hand side of this equality has finite values.

It should be understood that, if χ(u) = u, then it is obvious that the χ-
c.f.d. of order ρ, in the formula (8) reduces to the standard c.f.d. of order
ρ in (4). In the following, some useful specifications of the χ-Caputo and χ-
Riemann–Liouville integro-derivative operators can be seen. Let AC([a, b],R)
stand for the set of absolutely continuous functions from [a, b] into R. Define
ACnζ ([a, b],R) by

ACnχ([a, b],R) =
{
` : [a, b]→ R|δn−1

χ ` ∈ AC([a, b],R), δχ =
1

χ′(y)

d

dy

}
.

Lemma 1. ([12]) Let n = [ρ] + 1. For a real mapping f ∈ ACn([a, b],R),

Jρ;χa+
cDρ;χ

a+ f(t) = f(t)− Σn−1
k=0

(δkχf)(a)

k!
(f(t)− f(a))k, (9)

where δkχ = δχδχ · · · δχ︸ ︷︷ ︸
k times

.

Lemma 2. ([11]) Let n = [ρ] + 1 and ρ, % > 0. For a real mapping f ∈
C([a, b],R) we have:

(i) Jρ;χa+ J%;χa+ f(t) = Jρ+%;ζa+ f(t),

(ii) cDρ;χ
a+ Jρ;χa+ f(t) = f(t),

(iii) cDρ;χ
a+ (χ(t)− χ(a))%−1 = Γ(%)

Γ(%−ρ) (χ(t)− χ(a))%−ρ−1,

(iv) Jρ;χa+ (χ(t)− χ(a))%−1 = Γ(%)
Γ(%+ρ) (χ(t)− χ(a))%+ρ−1,

(v) cDρ;χ
a+ (χ(t)− χ(a))k = 0, k = 0, 1, 2, ..., n− 1.

Mubeen and Habibullah [6] extended the r.l.f.i. operator to k-r.l.f.i. of
order ρ as

kJρa+h(`) =
1

kΓk(ρ)

∫ `

a

(`− u)
ρ
k−1h(u)du; ρ > 0, (10)
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and kJ0
af(`) = f(`) for ρ = 0 (for agreement), where h ∈ L1([a, b],R), k > 0

and Γk is the k-Gamma function which is defined in [5] by

Γk(µ) =

∫ ∞
0

tµ−1e−
tk

k dt

where µ ∈ C with Re(µ) > 0, k ∈ R and k > 0.
The following equalities are met, as is widely known:

(i) Γk(µ) = k
µ
k−1Γ(µk ),

(ii) Γk(µ+ k) = µΓk(µ),

(iii) limk→1 Γk(µ) = Γ(µ).

Dorrego in [4] introduced the k-r.l.f.d. for a mapping h ∈ C([a, b],R) of order
n− 1 < ρ ≤ n as

k,RLDρ
a+h(`) =

(
k
d

d`

)n
kJnk−ρa+ h(`), n = dρ

k
e. (11)

Kucche and Mali in [3] introduced the k-c.f.d. as

k,CDρ
a+h(`) = kJnk−ρa+

(
k
d

d`

)n
h(`), n = dρ

k
e. (12)

Sousa and Oliveira [22] defined the χ-h.f.c. of the function h ∈ C([a, b],R)
of order n− 1 < ρ ≤ n and of type % ∈ [0, 1] for a χ ∈ Cn([a, b],R) such that
χ′(`) 6= 0 (` ∈ [a, b]) as

HDρ,%;χ
a+ h(`) = J

%(n−ρ);χ
a+

( 1

χ′(`)

d

d`

)n
J

(1−%)(n−ρ);χ
a+ h(`), n = dρ

k
e. (13)

In [2], the (k − ζ)-r.l.f.i. of order ρ ≥ 0 for a function h ∈ L1([a, b],R) and
for a k > 0 is defined as

kJρ;χa+ h(`) =

{
1

kΓk(ρ)

∫ `
a
χ′(`)(χ(`)− χ(u))

ρ
k−1h(u)du

h(`), ρ = 0.
(14)

Kucche and Mali in [3] defined the (k−χ)-h.f.c. for a function h ∈ C([a, b],R)
of order ρ ≥ 0 and for a k > 0 and of type % ∈ [0, 1] w.r.t. a χ ∈ Cn([a, b],R)
for which χ′(`) 6= 0 (` ∈ [a, b]) as

k,HDρ,%;χ
a+ h(`) = kJ

%(nk−ρ);χ
a+

( k

χ′(`)

d

d`

)n
kJ

(1−%)(nk−ρ);χ
a+ h(`), n = dρ

k
e. (15)
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Remark 1. (i) Taking % = 0, (15) reduces to the (k − χ)-r.l.f.d.

k,RLDρ;χ
a+ h(`) =

( k

χ′(`)

d

d`

)n
kJ

(nk−ρ);χ
a+ h(`). (16)

Also, taking χ(`) = ` in (16), it is reduced to the k-r.l.f.d. (11).

(ii) Taking % = 1, (15) reduces to the (k − χ)-c.f.d.

k,CDρ;χ
a+ h(`) = kJ

(nk−ρ);χ
a+

( k

χ′(`)

d

d`

)n
h(`) (17)

and taking χ(`) = ` in (17), it reduced to the k-c.f.d. (12).

(iii) Taking χ(`) = `p, (15) reduces to the k-Hilfer-Katugampola fractional
derivative in [1]:

(a) If χ(`) = `p and % = 0, then (15) reduces to the k-Katugampola
fractional derivative in [1],

(b) If χ(`) = `p and % = 1,then (15) reduces to the
k-Caputo-Katugampola fractional derivative in [1];

(iv) Taking χ(`) = log `, (15) reduces to the k-Hilfer-Hadamarad fractional
derivative in [3]:

(a) If χ(`) = log ` and % = 0, then (15) reduces to the k-Hadamarad
fractional derivative in [3],

(b) If χ(`) = log ` and % = 1, then (15) reduces to the k-Caputo-
Hadamarad fractional derivative in [3].

Remark 2. If ςk = ρ+%(nk−ρ), then %(nk−ρ) = ςk−ρ and (1−%)(nk−ρ) =
nk− ςk. Therefore, the (k−χ)-Hilfer fractional derivative will get the (k−χ)-
r.l.f.d. form as

k,HDρ,%;χ
a+ h(`) = kJςk−ρ;χa+

(
k

χ′(`)
d
d`

)n
kJnk−ςk;χ
a+ h(`)

= kJςk−ρ;χa+

(
k,RLDςk;χ

a+ h
)

(`),
(18)

Note that for n− 1 < ρ
k ≤ n, we have n− 1 < ςk

k ≤ n.

Lemma 3. ([8]) Let ρ, k ∈ R+ = (0,∞) and n = d ρk e. Assume that h ∈
Cn([a, b],R) and kJnk−ρ;χa+ h ∈ Cn([a, b],R). Then

kJρ;χa+

(
k,RLDρ;χ

a+ h
)

(`)

= h(`)−
∑n−1
j=1

(χ(`)−χ(a))
ρ
k
−j

Γk(ρ−jk+k)

[(
k

χ′(`)
d
d`

)n−j
kJnk−ρ;χa+ h(`)

]
`=a

(19)
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Lemma 4. ([8]) Let ρ, k ∈ R+ = (0,∞) with ρ < k and % ∈ [0, 1]. Assume
that ςk = ρ+ %(k − ρ) and h ∈ Cn([a, b],R). Then

kJρ;χa+ (k,HDρ,%;χ
a+ h)(`) = kJςk;χ

a+

(
k,RLDςk;χ

a+ h
)

(`), (20)

For some relations on k-r.l.f.d.s we refer the reader to [28, 29, 30, 31, 32, 33]
and references therein. Some properties of (k−χ)-h.f.c.s are investigated in [3].
Moreover, by applying the famous Banach contraction principle, they studied
the solvability of the following initial value problem involving (k − χ)-h.f.c.{

k,HDρ,%;χ
a+ κ(t) = f(t, κ(t)), t ∈ [a, b]

kJk−ςk;χκ(a) = xa ∈ R, ςk = ρ+ %(k − ρ)
(21)

where kDρ,%;χ
a+ is the (k − χ)-h.f.c. operator of order 0 < ρ ≤ 1 and of type

% ∈ [0, 1], f : [a, b] × R → R is a continuous function and the increasing
function χ ∈ C1([a, b]) is such that χ′(t) 6= 0 (t ∈ [a, b]).

Recently, Tariboon et al. [8] used this operators to multi-point initial value
(k−χ)-Hilfer fractional differential equations and inclusions at form (1) using
the Banach contraction principle and the Nadler contraction principle.

This paper is currently in the following state: In Section 3, we provide
the B.-W. type contraction for multivalued mappings and demonstrate that
such mappings have a fixed point. In Section 4, we use our new contraction
to demonstrate that the (k − χ)-Hilfer fractional differential inclusion of any
order n − 1 < ρ ≤< n with the single-point initial value condition (2) is
solvable. However, the right-hand side function F : [a, b]×R→ P(R) does not
always teach the Nadler contraction for multi-valued mappings. We provide
an illustration to demonstrate how our new findings are usable.

3 Main results

The set of all functions η : [0,∞)→ [0,∞) so that

(δ1) η is continuous,

(δ2) limn→∞ η(tn) = 0 ⇔ limn→∞ tn = 0, for all (tn) ⊆ [0,∞),

is denoted by Ψ.
Some examples of elements of Ψ are the following functions defined on

[0,∞):

(i) η1(t) = a1t+ a2t
2 + · · ·+ ant

n, n ∈ N, ai ≥ 0, i = 1, 2, · · ·n,

(ii) η2(t) = ln(t+ 1)
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(iii) η3(t) = t
t+1 ,

(iv) η4(t) = sin t+ t,

(v) η5(t) = m
√
tn, m, n ∈ N.

The collection of all functions ζ : [0,∞)→ [0,∞) such that

(δ1) ζ is nondecreasing and upper semi continuous,

(δ2) ζ(t) < t for all t > 0,

is denoted by Φ.
Some examples of elements of Φ are the following functions defined on

[0,∞):

(i) ζ1(t) = t
t+1 ,

(ii) ζ2(t) = kt (0 ≤ k < 1),

(iii) ζ3(t) = t2

t+1 ,

(iv) ζ4(t) = t3

1+t2 .

Definition 4. Let (∇, d) be a metric space and  L : ∇ → Pcb(∇) be a multival-
ued mapping. We say that  L is a (η− ζ)-B.-W. type multi-valued contraction
if there exist η ∈ Ψ and ζ ∈ Φ such that

η(H( Lx,  Ly)) ≤ ζ(η(d(x, y))), (22)

for all x, y ∈ ∇.

Theorem 1. Let (∇, d) be a complete metric space and  L : ∇ → Pcb(∇) is a
(η−ζ)-B.-W. type multi-valued contraction satisfying comparable approximate
valued property. Moreover, let limn→∞H({xn},  Lxn) = 0, for any sequence
(xn) with xn+1 ∈  Lxn. Then  L has at least one fixed point.

Proof. Choose a fixed element ς0 ∈ ∇. If ς0 ∈  Lς0, then we have nothing to
prove. Suppose that ς0 /∈  Lς0. Since  L has comparable approximative valued
property, there exists ς1 ∈  Lς0 such that d(ς0,  Lς0) = d(ς0, ς1). It is clear that
ς1 6= ς0. If ς1 ∈  Lς1, then ς1 is a fixed point of  L. Suppose that ς1 /∈  Lς1.
Then, there exists ς2 ∈  Lς1 such that d(ς1,  Lς1) = d(ς1, ς2). It is clear that
ς2 6= ς1. By continuing this process, we obtain a sequence {ςn} in ∇ such that
ςn ∈  Lςn−1, ςn 6= ςn−1 and d(ςn−1, ςn) = d(ςn−1,  Lςn−1) for all n ∈ N.
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In view of (22), we obtain that

η(d(ςn+1, ςn+2)) = η(d(ςn+1,  Lςn+1))
≤ η(H( Lςn,  Lςn+1)))
≤ ζ(η(d(ςn, ςn+1)))

(23)

for each n ≥ 0. Put tn := η(d(ςn, ςn+1)). From (23), we have

tn+1 ≤ ζ(tn) ≤ tn, for each n ≥ 0. (24)

So, (tn) is a nonincreasing sequence in [0,∞) and so there is r ≥ 0 so that
tn → r+.

We now demonstrate that r = 0. On the contrary, suppose that r >
0. Taking the limit through (24), r ≤ ζ(r), which is a contradiction. So,
lim
n→∞

η(d(ςn, ςn+1)) = lim
n→∞

tn = r = 0. Therefore, lim
n→∞

d(ςn, ςn+1)) = 0. We

claim that {ςn} is a Cauchy sequence. If {ςn} is not Cauchy, then there are
ε > 0 and subsequences {ςmi} and {ςni} of {ςn} so that ni > mi > i,

d(ςmi , ςni) ≥ ε (25)

and
d(ςmi , ςni−1) < ε. (26)

Using (25), we get

ε ≤ d(ςmi , ςni) ≤ d(ςmi , ςni−1) + d(ςni−1, ςni) < ε+ d(ςni−1, ςni). (27)

As i→∞, we find

lim
i→∞

d(ςmi , ςni) = ε. (28)

Also, we have

d(ςmi , ςni)− d(ςmi , ςmi+1)− d(ςni , ςni+1)
≤ d(ςmi+1, ςni+1)
≤ d(ςmi , ςmi+1) + d(ςmi , ςni) + d(ςni , ςni+1).

As i→∞, we find

lim
i→∞

d(ςmi+1, ςni+1) = ε. (29)

Also,

d(ςmi+1, ςni+1) ≤ H(ςmi+1,  Lςmi) + H( Lςmi ,  Lςni) +H(ςni+1,  Lςni)
≤ d(ςmi , ςmi+1) +H(ςmi ,  Lςmi) + H( Lςmi ,  Lςni)
+H(ςni ,  Lςni) + d(ςni , ςni+1).

(30)
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By (22) and (30), we find

η(ε) = lim
i→∞

η(d(ςmi+1, ςni+1))

≤ lim
i→∞

η(H( Lςmi ,  Lςni))

≤ lim
i→∞

ζ(η(d(ςmi , ςni)))

≤ ζ(η(ε))

(31)

a contradiction.
Thus, {ςn} is a Cauchy sequence in the complete metric space (∇, d) and

hence there exists z ∈ ∇ so that

lim
n−→∞

ςn = z. (32)

We claim that d(z,  Lz) = 0. On the contrary, suppose that d(z,  Lz) 6= 0.
We have

η(d(ςn+1,  Lz)) ≤ η(H( Lςn,  Lz)) ≤ ζ(η(d(ςn, z))). (33)

Taking the limit through (33), we obtain η(d(z,  Lz)) ≤ ζ(η(d(z,  Lz))),
which is a contradiction. Thus, d(z,  Lz) = 0. Now since  L has compara-
ble approximate valued property, there exists u ∈ ∇ such that u ∈  Lz and
d(z, u) = d(z,  Lz). Consequently, d(z, u) = 0 and so z = u ∈  Lz. The proof is
completed.

Let Pcp(∇) be the family of all nonempty compact subsets of ∇.

Corollary 1. Let (∇, d) be a complete metric space and  L : ∇ → Pcp(∇) be a
(η−ζ)-B.-W. type multi-valued contraction satisfying comparable approximate
valued property. Moreover, let limn→∞H({xn},  Lxn) = 0, for any sequence
(xn) with xn+1 ∈  Lxn. Then  L possesses at least one fixed point.

Using the identity function η, we get the following outcome:

Corollary 2. Let (∇, d) be a complete metric space and  L : ∇ → Pcp(∇) be
a B.-W. type multi-valued contraction, i.e., there exists ζ ∈ Φ such that

H( Lx,  Ly)) ≤ ζ(d(x, y)), (34)

for all x, y ∈ ∇. Moreover, let limn→∞H({xn},  Lxn) = 0, for any sequence
(xn) such that xn+1 ∈  Lxn. Then there exists at least one fixed point for  L.
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4 Application to fractional differential equations

From now on, assume that ∇ = C([a, b], [0,∞)) is the Banach space of con-
tinuous nonnegative real valued functions z : [a, b]→ [0,∞) endowed with the
norm

‖z‖ = sup
t∈[a,b]

|z(t)|.

Define d(z1, z2) = ‖z1−z2‖ for all z1, z2 ∈ ∇. Then (∇, d) is a complete metric
space.

Lemma 5. For a function g ∈ L1([a, b], [0,∞)), function κ ∈ C([a, b], [0,∞))
is a solution of the equation

k,HDρ,%;χ
a+ κ(`) = g(`); ` ∈ [a, b],

kJnk−ςk;χ
a+ κ(`)]`=a = 0,(
k

χ′(`)
d
d`

)n−j
kJnk−ςk;χ
a+ κ(`)]`=a = dj , j = 1, 2, · · · , n− 1,

ςk = ρ+ %(nk − ρ)

(35)

if and only if

κ(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

ζ ′(t)(χ(`)− χ(t))
ρ
k−1g(t)dt,

for all ` ∈ [a, b].

Proof. Asssume that κ ∈ ∇ is a solution of the equation (35). Then, from
Remark 2,

k,HDρ,%;χ
a+ κ(`) = kJςk−ρ;χa+

(
k,RLDςk;χ

a+ κ
)

(`) = g(`), (36)

Appling kJρ;χa+ on both sides of the above equality, we get

kJςk;χ
a+

(
k,RLDςk;χ

a+ κ
)

(`) = kJρ;χa+ g(`). (37)

From Lemma 3, we get

κ(`)−
n−1∑
j=1

(χ(`)− χ(a))
ςk
k −j

Γk(ςk − jk + k)

[( k

χ′(`)

d

d`

)n−j
kJnk−ςk;χ
a+ κ(`)

]
`=a

= kJρ;χa+ g(`).
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Thus

κ(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

χ′(t)(χ(`)− χ(t))
ρ
k−1g(t)dt,

where

dj =

[( k

χ′(`)

d

d`

)n−j
kJnk−ςk;χ
a+ κ(`)

]
`=a

.

An inverse direct calculation can be used to quickly find the proof’s opposite.

Definition 5. A function ς ∈ C := C([a, b], [0,∞)) is a solution of the
system (2) if and only if it satisfies the initial conditions and there is z ∈
L1([a, b], [0,∞)) such that z(`) ∈ F(`, z(`)) for almost all ` ∈ [a, b] and

κ(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

ζ ′(t)(ζ(`)− ζ(t))
ρ
k−1z(t)dt,

for all ` ∈ [a, b].

For each κ ∈ C, we define the set of selections of the operator F as follows

SF,κ =
{
z ∈ L1([a, b], [0,∞)) : z(`) ∈ F(`, κ(`)),∀` ∈ [a, b]

}
.

Define the operator U : C→ P(C) by

U(z) =
{
p ∈ C : there exists z ∈ SF,z such that p(`) = Υ(`),∀` ∈ [a, b]

}
,

(38)

where

Υ(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

χ′(t)(χ(`)− χ(t))
ρ
k−1z(t)dt.

Theorem 2. Let F : [a, b]×R→ Pcp(R) be a multi-valued mapping. Suppose
that the following conditions are satisfied:

(i) The multi-valued mapping F is integrable, and F(., u) : [a, b] → Pcp(R)
is measurable for all u ∈ R,

(ii) There exist ζ ∈ Φ such that

H(F(`, u),F(`, v)) ≤ Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|v − v|), (39)

for all ` ∈ [a, b] and u, v ∈ [0,∞).
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Moreover, let limn→∞H({vn(`)},F(`, vn(`)) = 0, for any sequence (vn) with
vn+1(`) ∈ F(`, vn(`)). Thus, there is at least one answer to the inclusion
problem (2).

Proof. We shall show that the multi-valued mapping U, defined in (38), has a
fixed point. Let z1, z2 ∈ C and }∗1 ∈ U(z1) and choose z1 ∈ SF,z1 such that

}∗1(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

χ′(t)(χ(`)− χ(t))
ρ
k−1z1(t)dt

for all ` ∈ [a, b]. From (39), we have

H(F(`, z(`)),F(`, z′(`))) ≤ Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|z1(`)− z2(`)|).

Thus, there exists Υ ∈ F(`, z′(`)) such that

|z1(`)−Υ(`)| ≤ Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|z(`)− z′(`)|).

Now, define a multi-valued mapping N : [a, b]→ P(C) as

N(`) =

{
Υ ∈ C : |z1(`)−Υ(`)| ≤ Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|z1(`)− z2(`)|)
}
,

for all ` ∈ [a, b]. As z1 and

Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|z1(`)− z2(`)|)

are measurable, so is N(.)∩F(., z′(.)). Now, let z2(`) ∈ F(`, z2(`)) be such that

|z1(`)− z2(`)| ≤ Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|z1(`)− z2(`)|).

Now, we define }∗2 ∈ U(z2) as

}∗2(`) =

n−1∑
j=1

dj
(χ(`)− χ(a))

ςk
k −j

Γk(ςk − jk + k)
+

1

kΓk(ρ)

∫ `

a

χ′(t)(χ(`)− χ(t))
ρ
k−1z2(t)dt

for all ` ∈ [a, b]. Then
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|}∗1(`)− }∗2(`)| ≤ 1
kΓk(ρ)

∫ `
a
χ′(t)(χ(`)− χ(t))

ρ
k−1(|z1(`)− z2(`)|)dt

≤ 1
kΓk(ρ)

∫ `
a
χ′(t)(χ(`)− χ(t))

ρ
k−1 Γk(ρ+k)

(χ(b)−χ(a))
ρ
k
ζ(|z1(`)− z2(`)|)dt

≤ 1

(χ(b)−χ(a))
ρ
k
ζ(‖z1 − z2‖)(χ(`)− χ(a))

ρ
k ≤ ζ(‖z1 − z2‖).

Therefore

‖}∗1 − }∗2‖ ≤ ζ(‖z1 − z2‖)

Thus

H(U(z),U(z′)) ≤ ζ(‖z1 − z2‖).

All of the requirements of Corollary (2) have now been met. Thus, there is a
fixed point for U : C→ Pcp(C) and so the problem (2) possesses a solution.

Example 1. Consider the fractional differential inclusion

4
3 ,HD

10
3 ,

4
5 ;`2

2+ κ(`) ∈
[
0, e` + 4

√
π

15
√

15

κ(`)
κ(`)+1

]
, ` ∈ [2, 3],

4
3 J

2
15 ;`2

2+ κ(`)]`=2 = 0,(
4
6`

d
d`

)1
4
3 J

2
15 ;`2

2+ κ(`)]`=2 = 5,(
4
6`

d
d`

)2
4
3 J

2
15 ;`2

2+ κ(`)]`=2 = 7.

(40)

Note that,

F(`, u) =
[
0, e` +

4
√
π

15
√

15

u

u+ 1

]
.

Obviously, F is continuous and compact valued. Here,

k =
4

3
, ρ =

10

3
, % =

4

5
, a = 2, b = 3, d1 = 7, d2 = 5, χ(`) = `2

and ςk = ρ + %(nk − ρ) = 174
45 , n = d ςkk e = d 174

60 e = 3, nk − ςk = 4 − 174
45 =

6
45 = 2

15 . Thus

Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

=
k
ρ
kΓ(ρ+kk )

5
5
2

=
( 4

3 )
5
2 Γ( 7

2 )

5
5
2

=
4
√
π

15
√

15
,
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and

H
(
F(`, u),F(`, v)

)
= | 4

√
π

15
√

15

u

u+ 1
− 4

√
π

15
√

15

v

v + 1
|

=
4
√
π

15
√

15
| u

u+ 1
− v

v + 1
| ≤ 4

√
π

15
√

15
| u− v
(u+ 1)(v + 1)

|

≤ 4
√
π

15
√

15

|u− v|
|u− v|+ 1

=
Γk(ρ+ k)

(χ(b)− χ(a))
ρ
k

ζ(|v − v|),

where ζ(t) = t
t+1 .

As a result, the condition (ii) in the Theorem 2 is met. The additional
prerequisites for the theorem 2 are clear. Therefore, the problem (40) has a
solution according to this theorem.

5 Conclusion

In this article, we introduce a multi-valued contraction of the B.-W. type
and demonstrate that such mappings have a fixed point. We examine various
(k − χ)-Hilfer initial value fractional differential inclusions of arbitrary order
n− 1 < ρ < n (n ≥ 2) for solvability. Our conclusion is based on certain find-
ings concerning the presence of (k− χ)-Hilfer fractional differential inclusions
(h.f.d.i.s). To demonstrate the usability of our primary result, an example is
provided. We suggest developing such fixed point theorems for multivalued
mappings of two variables that fulfill a multivalued contraction of the B.-W.
type in the future. Next, we suggest looking into whether the (k − χ)-Hilfer
fractional differential systems of inclusions are solvable when the right hand
functions reveal a multi-valued contraction of the B.-W. type.
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