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A HOMOTOPY THEORY FOR MAPS
HAVING STRONGLY CONVEXLY
TOTALLY BOUNDED RANGES IN
TOPOLOGICAL VECTOR SPACES

Donal O’Regan

Abstract

This paper presents Leray–Schauder alternatives and a topological
transversality (homotopy) theorem for compact upper semicontinuos
maps having (strongly) convexly totally bounded ranges.

1. Introduction.

In this paper we introduce essential maps and consider two maps F and G
with F ∼= G (in a natural way) and we discuss the situation that if either of the
maps is essential then the other map will be essential. This seems to be the
first very general theory of homotopy in topological vector spaces (without
additional structure like local convexity). To achieve this we will consider
upper semicontinuous maps having strongly convexly totally bounded ranges
or convexly totally bounded ranges. For some initial results in this direction
see [1, 6] and the references therein.

Let E be a Hausdorff topological vector space. Strongly convexly totally
bounded was considered in the literature (see [4] and the references therein).
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Definition 1.1. A subset K of E is said to be strongly convexly totally
bounded (s.c.t.b. for brevity) if for every neighborhood V of 0 there exists a
convex subset C of V and a finite subset N of E such that K ⊆ N + C.

From [4, Proposition 2.2] we have the following result.

Theorem 1.2. If K1 and K2 are two s.c.t.b. subsets of E then K1 ∪ K2,
K1+K2, αK1 (here α ∈ R), K1, co (K1) (and so co (K1)) are s.c.t.b. subsets
of E.

The analogue of the Schauder fixed point theorem was established in [5]
(see also [7] for a different proof).

Theorem 1.3. Let X be a nonempty convex subset of a Hausdorff topological
vector space E and Φ : X → CK(X) a upper semicontinuous compact map
(here CK(X) denotes the family of nonempty compact convex subsets of X).
If Φ(X) is a s.c.t.b. subset of X then Φ has a fixed point.

Next we discuss a more general notion, namely convexly totally bounded.

Definition 1.4. A subset K of E is said to be convexly totally bounded
(c.t.b. for brevity) if for every neighborhood V of 0 there exists a finite set
{xi : i ∈ I} ⊆ E (I finite) and a finite family of convex sets {Ci : i ∈ I} with
Ci ⊆ V for each i ∈ I and K ⊆ ∪i∈I (xi + Ci).

Recall the following results [1, 5].

Theorem 1.5. If a compact set K is c.t.b. then the set [0, 1]K is compact
and c.t.b.

Theorem 1.6. Let X be a convex subset of a Hausdorff topological vector
space E and Φ : X → CK(X) a upper semicontinuous compact map. If Φ(X)
is a c.t.b. subset of X then Φ has a fixed point.

Every s.c.t.b. set is c.t.b and every c.t.b. set is totally bounded; in locally
convex topological vector spaces these three notions are equivalent [8 pp. 277].
Also note every compact set in a locally convex topological vector space is a
c.t.b. set.

In [4] it was shown that the convex hull of a c.t.b. set does not need to
be c.t.b. However one can modify [4, Proposition 2.2] to obtain the following
result.

Theorem 1.7. If K1 and K2 are two c.t.b. subsets of E then K1 ∪K2, and
K1 +K2 are c.t.b. subsets of E.

Proof: Let V be a circled closed neighborhood of 0 in E. Now there exists a
finite set {xi : i ∈ I1} ⊆ E, I1 finite, (respectively, a finite set {yi : i ∈ I2} ⊆
E, I2 finite) and a finite family of convex sets {Ci : i ∈ I1} (respectively,
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a finite family of convex sets {Di : i ∈ I2}) with Ci ⊆ V for each i ∈ I1
(respectively, Di ⊆ V for each i ∈ I2) and K1 ⊆ ∪i∈I1 (xi + Ci) (respectively,
K2 ⊆ ∪i∈I2 (yi + Di)). Also since co(Ci ∪ {0}) ⊆ V and co(Di ∪ {0}) ⊆ V
we may assume 0 ∈ Ci (i ∈ I1) and 0 ∈ Di (i ∈ I2). Also by adding 0 if
necessaruy we may assume that I1 = I2 = I so

K1 ⊆ ∪i∈I (xi + Ci) and K2 ⊆ ∪i∈I (yi +Di).

Note for each i ∈ I and j ∈ I that Mi,j = Ci +Dj is a convex set, it contains
Ci and Dj (since 0 ∈ Ci and 0 ∈ Dj), Mi,j ⊆ V + V with

K1 +K2 ⊆ ∪i∈I, j∈I {(xi + yj) +Mi,j}

and (since Ci ⊆Mi,j and Dj ⊆Mi,j)

K1 ∪K2 ⊆ ∪i∈I, j∈I {(xi ∪ yj) +Mi,j}. �

2. Homotopy Results.

Let E be a Hausdorff topological vector space and U an open subset of
E. We begin by defining the class of maps.

Definition 2.1. We say F ∈ IPTW (U,E) if F : U → CK(E) is a upper

semicontinuous compact map with F (U) a s.c.t.b. subset of E; here U denotes
the closure of U in E.

Definition 2.2. We say F ∈ IPTW∂U (U,E) if F ∈ IPTW (U,E) and
x /∈ F (x) for x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Now we introduce the notion of an essential map.

Definition 2.3. We say F ∈ IPTW∂U (U,E) is essential in IPTW∂U (U,E)
if for every G ∈ IPTW∂U (U,E) with G|∂U = F |∂U there exists a x ∈ U with
x ∈ G(x).

Next we present the notion of homotopy.

Definition 2.4. Let F, G ∈ IPTW∂U (U,E). We say F ∼= G in IPTW∂U (U,E)
if there exists an upper semicontinuous, compact map H : U× [0, 1]→ CK(E)

with H(U × [0, 1]) a s.c.t.b. subset of E, x /∈ Ht(x) for any x ∈ ∂ U and
t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = F and H1 = G.

Remark 2.5. We note that ∼= in IPTW∂U (U,E) is an equivalence rela-
tion. To see this we need only show transitivity. Let F, G, Ψ be maps in
IPTW∂U (U,E) with F ∼= G in IPTW∂U (U,E) andG ∼= Ψ in IPTW∂U (U,E)
i.e.suppose there exists an upper semicontinuous, compact map H : U ×
[0, 1] → CK(E) (respectively, N : U × [0, 1] → CK(E)) with H(U × [0, 1])
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(respectively, N(U × [0, 1])) a s.c.t.b. subset of E, x /∈ Ht(x) (respectively
x /∈ Nt(x)) for x ∈ ∂ U and t ∈ (0, 1), H0 = F (respectively, N0 = G) and
H1 = G (respectively, N1 = Ψ). Let

Φ(x, t) =

{
H(x, 2 t), t ∈

[
0, 12
]
, x ∈ U

N(x, 2 t− 1), t ∈
[
1
2 , 1
]
, x ∈ U.

Note Φ : U × [0, 1] → CK(E) is a upper semicontinuous compact map with
x /∈ Φt(x) for x ∈ ∂U and t ∈ (0, 1) and Φ0 = F and Φ1 = Ψ. Also Φ(U ×
[0, 1]) = K1 ∪ K2 where K1 = H(U × [0, 1]) and K2 = N(U × [0, 1]) and
note K1, K2 are s.c.t.b. subsets of E. Now Theorem 1.2 guarantees that

Φ(U × [0, 1]) = K1 ∪K2 = K1 ∪K2 is a s.c.t.b. subset of E.

Next we present a result which will then generate a Leray–Schauder alter-
native and a topological transversality theorem.

Theorem 2.6. Let E be a Hausdorff topological vector space, U an open subset
of E and F ∈ IPTW∂U (U,E). Assume G ∈ IPTW∂U (U,E) is essential in
IPTW∂U (U,E) and suppose the following holds:

(2.1)

{
for any θ ∈ IPTW∂U (U,E) with θ|∂U = F |∂U
we have G ∼= θ in IPTW∂U (U,E).

Then F is essential in IPTW∂U (U,E).

Proof: Consider any map θ ∈ IPTW∂U (U,E) with θ|∂U = F |∂U . We must
show there exists a x ∈ U with x ∈ θ(x). Now (2.1) guarantees that there exists

a upper semicontinuous, compact map H : U × [0, 1]→ CK(E), H(U × [0, 1])
a s.c.t.b. subset of E, x /∈ Ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here Ht(x) =
H(x, t)), H0 = G and H1 = θ. Let

Ω =
{
x ∈ U : x ∈ H(x, t) for some t ∈ [0, 1]

}
.

Now Ω 6= ∅ (note G is essential in IPTW∂U (U,E), Ω is closed (since H
is upper semicontinuous) and in in fact Ω is compact (since H is compact).
Also note Ω ∩ ∂U = ∅ since x /∈ Ht(x) for any x ∈ ∂ U and t ∈ [0, 1]. Now
since Hausdorff topological vector spaces are completely regular there exists
a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define
a map R : U → CK(E) by R(x) = H(x, µ(x)) = Hµ(x)(x) = H ◦ g(x)

where g : U → U × [0, 1] is given by g(x) = (x, µ(x)). Note R is a upper
semicontinuous compact map with R|∂U = G|∂U since if x ∈ ∂U then R(x) =

H(x, 0) = G(x). Also since R(U) ⊆ H(U × [0, 1]) then R(U) is a s.c.t.b.
subset of E. Thus R ∈ IPTW∂U (U,E) with R|∂U = G|∂U . Now since
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G is essential in IPTW∂U (U,E) then there exists a x ∈ U with x ∈ R(x)
i.e. x ∈ Hµ(x)(x) = H(x, µ(x)). Thus x ∈ Ω so µ(x) = 1 and as a result
x ∈ H1(x) = θ(x). �

To establish the topological transversality (homotopy) theorem we must
first prove the following:

(2.2)

{
if F G ∈ IPTW∂U (U,E) with F |∂U = G|∂U
then F ∼= G in IPTW∂U (U,E).

To see this let H(x, t) = (1 − t)F (x) + tG(x) and note H : U × [0, 1] →
CK(E) is a upper semicontinuous compact map (to see the compactness note

D1 = [0, 1]F (U) (note D1 = f([0, 1] × F (U)) where f(α, z) = α z for α ∈
[0, 1], z ∈ F ((U)) and D2 = [0, 1]G(U) are compact so D1 + D2 is compact

(see [3, pp. 121]) and as a result H(U × [0, 1]) is compact). Also note if
x ∈ ∂ U and t ∈ (0, 1) then Ht(x) = (1 − t)F (x) + tG(x) = F (x) since
F |∂U = G|∂U and as a result x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1). Finally note

since J1 = F (U) and J2 = G(U) are s.c.t.b. subsets of E then from Theorem
1.2 we have that co(J1 ∪ J2) is a s.c.t.b. subset of E and as a result since

H(U × [0, 1]) ⊆ co(J1 ∪ J2) we have that H(U × [0, 1]) is a s.c.t.b. subset of
E. Thus since H0 = F and H1 = G we have F ∼= G in IPTW∂U (U,E).

Remark 2.7. From (2.2) note in (2.1) since θ ∈ IPWT∂U (U,E) and θ|∂U =
F |∂U then θ ∼= F in IPWT∂U (U,E).

Theorem 2.8. Let E be a Hausdorff topological vector space and U an open
subset of E. Suppose F and G are two maps in IPTW∂U (U,E) with F ∼= G
in IPTW∂U (U,E). Now F is essential in IPTW∂U (U,E) if and only if G
is essential in IPTW∂U (U,E).

Proof: Assume G is essential in IPTW∂U (U,E). We will use Theorem 2.6 to
show F is essential in IPTW∂U (U,E). Consider any map θ ∈ IPTW∂U (U,E)
with θ|∂U = F |∂U . Now (2.2) guarantees that θ ∼= F in IPTW∂U (U,E) and
this together with F ∼= G in IPTW∂U (U,E) guarantees (see Remark 2.5) that
θ ∼= G in IPTW∂U (U,E). Thus (2.1) holds so Theorem 2.6 guarantees that
F is essential in IPTW∂U (U,E). A similar argument shows if F is essential
in IPTW∂U (U,E) then G is essential in IPTW∂U (U,E). �

Next we present an example of an essential maps and then we will give two
general Leray-Schauder alternatives in topological vector spaces.

Theorem 2.9. Let E be a Hausdorff topological vector space, U an open
subset of E and 0 ∈ U . Then the zero map is essential in IPTW∂U (U,E).

Proof: Let F (x) = {0} for x ∈ U (i.e. F is the zero map). Consider any map



A HOMOTOPY THEORY 122

θ ∈ IPTW∂U (U,E) with θ|∂U = F |∂U = {0}. We must show there exists a
x ∈ U with x ∈ θ(x). Let

J(x) =

{
θ(x), x ∈ U
{0}, x ∈ E\U.

Note J : E → CK(E) is a upper semicontinuous, compact map. Also note

since θ(U) is a s.c.t.b. subset of E then J(U) ⊆ co (θ(U) ∪ {0}) and Theorem

1.2 guarantee that J(U) is a s.c.t.b. subset of E. Now Theorem 1.3 guarantees
that there exists a x ∈ E with x ∈ J(x). If x ∈ E \U then J(x) = {0}, a
contradiction since 0 ∈ U . Thus x ∈ U and so x ∈ θ(x). �

Next we present a very general Leray–Schauder alternative from Theorem
2.6.

Theorem 2.10. Let E be a Hausdorff topological vector space, U an open
subset of E and F ∈ IPTW∂U (U,E). Assume G ∈ IPTW∂U (U,E) is essen-
tial in IPTW∂U (U,E) and x /∈ t F (x)+(1−t)G(x) for x ∈ ∂U and t ∈ (0, 1).
Then F is essential in IPTW∂U (U,E) (in particular F has a fixed point in
U).

Proof: Let θ ∈ IPTW∂U (U,E) with θ|∂U = F |∂U . Let H(x, t) = t θ(x)+(1−
t)G(x) and the argument after (2.2) guarantees that H : U × [0, 1]→ CK(E)

is a upper semicontinuous compact map and H(U × [0, 1]) is a s.c.t.b. subset
of E. Also note if x ∈ ∂U and t ∈ (0, 1) then since θ|∂U = F |∂U we have
H(x, t) = t θ(x)+(1− t)G(x) = t F (x)+(1− t)G(x) so x /∈ Ht(x) for x ∈ ∂ U
and t ∈ (0, 1). Finally note H0 = G and H1 = θ so G ∼= θ in IPTW∂U (U,E)
i.e. (2.1) holds. Thus F is essential in IPTW∂U (U,E) from Theorem 2.6. �

Now we combine Theorem 2.9 and Theorem 2.10 to obtain the following
result.

Theorem 2.11. Let E be a Hausdorff topological vector space, U an open
subset of E, 0 ∈ U and F ∈ IPTW∂U (U,E) with x /∈ t F (x) for x ∈ ∂U and
t ∈ (0, 1). Then F is essential in IPTW∂U (U,E) (in particular F has a fixed
point in U).

Proof: Let G be the zero map which we know from Theorem 2.9 is essential
in IPTW∂U (U,E). Now apply Theorem 2.10. �

Next we discuss a more general situation. Let E be a Hausdorff topological
vector space and U an open subset of E.

Definition 2.12. We say F ∈ I(U,E) if F : U → CK(E) is a upper semi-

continuous compact map with F (U) a c.t.b. subset of E.
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Definition 2.13. We say F ∈ I∂U (U,E) if F ∈ I(U,E) and x /∈ F (x) for
x ∈ ∂U .

Definition 2.14. We say F ∈ I∂U (U,E) is essential in I∂U (U,E) if for every
G ∈ I∂U (U,E) with G|∂U = F |∂U there exists a x ∈ U with x ∈ G(x).

Definition 2.15. Let F, G ∈ I∂U (U,E). We say F ∼= G in I∂U (U,E) if there
exists an upper semicontinuous, compact map H : U × [0, 1] → CK(E) with

H(U × [0, 1]) a c.t.b. subset of E, x /∈ Ht(x) for any x ∈ ∂ U and t ∈ (0, 1)
(here Ht(x) = H(x, t)), H0 = F and H1 = G.

We note that ∼= in I∂U (U,E) is an equivalence relation; the proof is as
in Remark 2.5 where Theorem 1.2 is replaced by Theorem 1.7. The same
reasoning as in Theorem 2.6 (with only the words s.c.t.b. are replaced by
c.t.b.) immediately gives our next result.

Theorem 2.16. Let E be a Hausdorff topological vector space, U an open
subset of E and F ∈ I∂U (U,E). Assume G ∈ I∂U (U,E) is essential in
I∂U (U,E) and suppose the following holds:

(2.3)

{
for any θ ∈ I∂U (U,E) with θ|∂U = F |∂U
we have G ∼= θ in I∂U (U,E).

Then F is essential in I∂U (U,E).

To establish the topological transversality (homotopy) theorem we must
first prove the following:

(2.4)

{
if F G ∈ I∂U (U,E) with F |∂U = G|∂U
then F ∼= G in I∂U (U,E).

To see this let H(x, t) = (1−t)F (x)+tG(x) and (see the argument after (2.2))
H : U×[0, 1]→ CK(E) is a upper semicontinuous compact map and x /∈ Ht(x)

for x ∈ ∂U and t ∈ (0, 1). Also note F (U) and G(U) are c.t.b. subsets of E

so from Theorem 1.5 we have that D1 = [0, 1]F (U) and D2 = [0, 1]G(U) are
c.t.b. subsets of E and from Theorem 1.7 we have that D1 + D2 is a c.t.b.

subset of E and so H(U × [0, 1]) is a c.t.b. subset of E. Also H0 = F and
H1 = G so F ∼= G in I∂U (U,E).

The same reasoning as in Theorem 2.8 immediately gives our next result.

Theorem 2.17. Let E be a Hausdorff topological vector space and U an open
subset of E. Suppose F and G are two maps in I∂U (U,E) with F ∼= G in
I∂U (U,E). Now F is essential in I∂U (U,E) if and only if G is essential in
I∂U (U,E).
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Theorem 2.18. Let E be a Hausdorff topological vector space, U an open
subset of E and 0 ∈ U . Then the zero map is essential in I∂U (U,E).

Proof: Let F , θ and J be as in Theorem 2.9. and note J : E → CK(E) is a

upper semicontinuous, compact map. Also note since θ(U) is a c.t.b. subset of

E then [0, 1] θ(U) is a c.t.b. subset of E so J(U) is a c.t.b. subset of E. Now
Theorem 1.6 guarantees that there exists a x ∈ E with x ∈ J(x). If x ∈ E \U
then J(x) = {0}, a contradiction since 0 ∈ U . Thus x ∈ U and so x ∈ θ(x).
�

The same reasoning as in Theorem 2.10 (with only the words s.c.t.b. are
replaced by c.t.b.) and Theorem 2.11 immediately gives our next results.

Theorem 2.19. Let E be a Hausdorff topological vector space, U an open
subset of E and F ∈ I∂U (U,E). Assume G ∈ I∂U (U,E) is essential in
I∂U (U,E) and x /∈ t F (x) + (1− t)G(x) for x ∈ ∂U and t ∈ (0, 1). Then F is
essential in I∂U (U,E) (in particular F has a fixed point in U).

Theorem 2.20. Let E be a Hausdorff topological vector space, U an open
subset of E, 0 ∈ U and F ∈ I∂U (U,E) with x /∈ t F (x) for x ∈ ∂U and
t ∈ (0, 1). Then F is essential in I∂U (U,E) (in particular F has a fixed point
in U).

Many problems which arise naturally in differential and integral inclu-
sion can be formulated in the form x ∈ F x. A simple example is y′′(t) =
− ey(t), t ∈ [0, 1] with y(0) = y(1) = 0 which models the steady state temper-
ature in a rod with temperature dependent internal heating and note it can
be rewritten in the form

y(t) =

∫ 1

0

G(t, s) ey(s) ds ≡ F y(t)

where

G(t, s) =

{
t (1− s), 0 ≤ t ≤ s ≤ 1
s (1− t), 0 ≤ s ≤ t ≤ 1.

Homotopy theory is a useful tool to establish whether the fixed point problem
has a solution. The idea is to relate the problem above with the simpler
problem y′′(t) = 0, t ∈ [0, 1] with y(0) = y(1) = 0 via the family y′′(t) =
−λ ey(t), t ∈ [0, 1], 0 ≤ λ ≤ 1, with y(0) = y(1) = 0 and to apply a homotopy
result. As a result in general to establish existence for differential and integral
inclusions one rewrites the problem as a fixed point problem and set up a family
of problems relating the fixed point problem one is considering with a simpler
problem (whose solution is known). The idea then is to use a homotopy result
(usually a Leray–Schauder alternative or a topological transversality theorem)
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to guarantee a solution to the fixed point problem considered. In the non-
normable setting, say in a locally convex topological vector space setting, the
situation can be more complicated and usually here one uses a Leray–Schauder
alternative or a topological transversality theorem to establish a Furi–Pera
type result (see [2, Chapter 8]) which will then guarantee a solution to the
fixed point problem considered. Our paper is the first theory of homotopy
in topological vector spaces (without additional structure like local convexity)
and our hope is to use this theory to establish an applicable theory of Furi-Pera
type in a general setting.
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