

🗲 sciendo Vol. 32(2),2024, 99-113

# Some bounds on the coupon collector problem with universal coupon

Jelena Jocković and Bojana Todić

#### Abstract

We consider a generalization of the coupon collector problem with unequal probabilities, such that there are two additional coupons in the coupon set: one that speeds up the coupon collection process, and the one that slows it down. We derive some upper and lower bounds on the distribution function of the waiting time until a subcollection or a full collection of coupons is sampled.

#### 1 Introduction

The coupon collector problem (CCP), despite its simple formulation, still attracts considerable interest in the research community, either to modify and generalize the formulation of the problem itself or extend the results for existing versions of the problem.

The basic CCP (collecting coupons of n different types until a subcollection, or a complete collection of coupons is sampled) can be modified or generalized in several ways. Some generalizations are obtained by changing the goal of the collection process (for example, obtaining multiple copies of the original collection, collecting all pairs of the elements, etc.). Another set of generalizations is obtained by introducing additional coupons with special purposes (null coupon in [1], [2], bonus coupon in [7]).

Key Words: coupon collector problem, waiting time, universal coupon, Schur-convexity, bounds. 2010 Mathematics Subject Classification: Primary 60C05.

Received: 25.05.2023

Accepted: 22.10.2023

It is well known that the CCP has several applications in engineering (see, for example, [3]). In particular, the CCP with unequal probabilities has recently been used in biology, to model parasitism (explained in [9]), and in telecommunications, to solve Internet security problems (analyzed in [1], [2], [8]).

In the case of CCP with unequal probabilities (and any of its generalizations), computing quantities such as the expected waiting time until the end of the experiment becomes computationally intensive, and requires some sort of approximation. The determination of lower and upper bounds for quantities related to CCP is motivated by various technical applications, and has been addressed in several papers (see [1],[2],[8],[6],[5]). Although the contexts and formulations of these results vary widely, all authors prove that the complementary cumulative distribution function (ccdf) of the waiting time and the expected waiting time to complete the collection process are Schur-concave (Schur-convex, depending on the definition used) functions of the sampling probability, and conclude that the corresponding lowest bounds (or minimum values) are obtained when all coupons have the same drawing probability.

The goal of this work is to provide different versions of the lower and upper bounds on the waiting time to the end of the experiment when CCP is generalized by adding two types of additional coupons with special purposes, which, to the best of our knowledge, has not been considered yet.

The version of CCP we consider is the following: We assume that the set of coupons, in addition to the elements from  $\mathbb{N}_n = \{1, 2, \ldots, n\}$ , consists of a null coupon (which is not part of collection) and, in addition, a universal coupon (so called, joker), an element that can substitute for any element from the set  $\mathbb{N}_n$  (one at a time). We assume sampling with replacement, that the coupon  $k \in \mathbb{N}_n$  is drawn with probability  $p_k$ , that the joker is drawn with probability  $p_J$  and that the null coupon is drawn with probability  $p_N$  $(p_N, p_J < 1, \sum_{k=1}^n p_k + p_N + p_J = 1)$ . The quantity of interest is the waiting time  $W_{n,c}$  until a subcollection of  $c, 1 \leq c \leq n$ , different coupons from  $\mathbb{N}_n$  is sampled, where some or all elements can be replaced by jokers.

The paper is organized as follows: In Section 2 we compute the ccdf of  $W_{n,c}$  and the consequences of this result. In Section 3 we obtain several versions of bounds on the ccdf of  $W_{n,c}$ . In Section 4 we illustrate the behavior of the proposed bounds with numerical examples. Conclusions are given in Section 5.

#### **2** Distributional properties of $W_{n,c}$

The version of the CCP we consider is the direct generalization of the CCP with null coupon, considered in [1]. We will refer to some of these results,

precisely, to Theorem 1 (page 409), which we formulate as a lemma. With  $W_{n,c}^{(N)}$  we denote the corresponding waiting time until a subcollection of c,  $1 \leq c \leq n$ , different coupons from  $\mathbb{N}_n$  is sampled. In the rest of the text we will use the notation:  $P_K = \sum_{k \in K} p_k$ .

**Lemma 1** (Anceaume et al. [1]). For every  $n \ge 1$  and  $1 \le c \le n$ , we have for every  $t \ge 0$ ,

$$P\{W_{n,c}^{(N)} > t\} = \sum_{k=0}^{c-1} (-1)^{c-1-k} \binom{n-k-1}{n-c} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K|=k}} (P_K + p_N)^t.$$
(1)

The ccdf, first moment and second moment of  $W_{n,c}$  are determined in the following theorem.

**Theorem 1.** For the waiting time  $W_{n,c}$  the following relations hold: 1.

$$P\{W_{n,c} > t\} = \sum_{i=0}^{c-1} {t \choose i} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} {n-k-1 \choose n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K|=k}} (P_K + p_N)^{t-i},$$
(2)

for  $t \ge 0$ , 2.

$$E(W_{n,c}) = \sum_{i=0}^{c-1} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} \binom{n-k-1}{n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K|=k}} \frac{1}{\left(1 - P_K - p_N\right)^{i+1}},$$
3.
(3)

$$E(W_{n,c}^2) = \sum_{i=0}^{c-1} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} \binom{n-k-1}{n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K|=k}} \frac{2i+1+P_K+p_N}{(1-P_K-p_N)^{i+2}}.$$
(4)

*Proof.* 1. The waiting time  $W_{n,c}$  can be written as:

$$W_{n,c} = \min\{t \in \mathbb{N} | Y_t + Z_t = c\}, n \in \mathbb{N}, 1 \le c \le n,$$

where  $Y_t$  and  $Z_t$  are number of standard coupons and number of jokers, respectively, sampled by the time t.

The statement (2) follows from the following relations:

$$P\{W_{n,c} > t\} = P\{Y_t + Z_t \le c - 1\}$$

$$= \sum_{i=0}^{c-1} P\{Z_t = i\} P\{Y_t + Z_t \le c - 1 | Z_t = i\}$$

$$= \sum_{i=0}^{c-1} P\{Z_t = i\} P\{Y_{t-i} \le c - 1 - i | Z_{t-i} = 0\}$$

$$= \sum_{i=0}^{c-1} P\{Z_t = i\} \frac{P\{Y_{t-i} \le c - 1 - i, Z_{t-i} = 0\}}{P\{Z_{t-i} = 0\}}$$

$$= \sum_{i=0}^{c-1} P\{Z_t = i\} \frac{P\{W_{n,c-i}^{(N)} > t - i\}}{P\{Z_{t-i} = 0\}}$$

$$= \sum_{i=0}^{c-1} {t \choose i} p_J^i (1 - p_J)^{t-i} \sum_{k=0}^{c-i-1} (-1)^{c-i-1-k} {n-k-1 \choose n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K| = k}} {P\{K_{k-i} > t - i\}}$$
(5)

where the last line follows from Lemma 1.

2. The statement (3) follows from the following relation:

$$E(W_{n,c}) = \sum_{t=0}^{+\infty} P\{W_{n,c} > t\}$$

$$= \sum_{i=0}^{c-1} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} \binom{n-k-1}{n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, t=i \\ |K|=k}} \sum_{t=0}^{+\infty} \binom{t}{i} (P_K + p_N)^{t-i}.$$
(6)

and from the equality:

$$\sum_{t=i}^{+\infty} {t \choose i} a^{t-i} = \frac{1}{(1-a)^{i+1}}, \quad |a| < 1.$$
(7)

3. We have

$$E(W_{n,c}^{2}) = \sum_{t=0}^{+\infty} P\{W_{n,c} > t\} + 2\sum_{t=0}^{+\infty} tP\{W_{n,c} > t\}.$$
(8)

The statement (4) is a consequence of (8) and the relation:

$$\sum_{t=i}^{+\infty} t\binom{t}{i} a^{t-i} = \frac{i}{(1-a)^{i+1}} + \frac{a(i+1)}{(1-a)^{i+2}} = \frac{i+a}{(1-a)^{i+2}}, \quad |a| < 1.$$
(9)

**Remark 1.** As we have  $P\{W_{n,c} \ge c\} = 1$ , Theorem 1 leads to the following combinatorial identities:

$$P\{W_{n,c} > t\} = \sum_{i=0}^{c-1} {t \choose i} p_J^{i} \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} {n-k-1 \choose n-c+i} \sum_{\substack{K \subset \mathbb{N}_n, \\ |K|=k}} (P_K + p_N)^{t-i} = 1,$$
(10)

that hold for any  $n \in \mathbb{N}$ ,  $1 \le c \le n$ ,  $0 \le t \le c - 1$ ,  $0 \le p_N, p_J < 1$ ,  $0 \le p_1, \dots, p_n \le 1$  and  $\sum_{k=1}^n p_k + p_N + p_J = 1$ .

## **3** Bounds on the ccdf of $W_{n,c}$

In [8], the author considers the CCP with unequal probabilities, and proposes two sets of upper and lower bounds on the ccdf of the waiting time until the full set of coupons is collected. The first set of bounds is obtained by direct combinatorial reasoning, and the other is derived by majorization theory. Numerical experiments have shown that the first set of bounds is tighter in most cases and is also useful for obtaining asymptotic results.

We have focused on the refinement of the bounds obtained using the majorization theory. Since the paper [8] was the basis for this work, we adopt most of the definitions and notations from there. For completeness, we include them in this paper.

**Definition 1.** Let  $(p_{(1)}, p_{(2)}, \ldots, p_{(n)})$  denote the coordinates of the vector  $\mathbf{p} = (p_1, \ldots, p_n)$  ordered in ascending order. Vector  $\mathbf{p} = (p_1, \ldots, p_n)$  is said to majorize vector  $\mathbf{q} = (q_1, \ldots, q_n)$  (in notation,  $\mathbf{q} \prec \mathbf{p}$ ) if

$$\sum_{i=1}^{k} q_{(i)} \le \sum_{i=1}^{k} p_{(i)}, k = 1, 2, \dots, n-1, \text{ and } \sum_{i=1}^{n} q_{(i)} = \sum_{i=1}^{n} p_{(i)}.$$
(11)

**Definition 2.** A real valued function f defined on  $\mathbb{R}^n$  is said to be Schurconvex (concave) if

$$\mathbf{q} \prec \mathbf{p} \rightarrow f(\mathbf{q}) \le (\ge) f(\mathbf{p}).$$

We will also need the next lemma.

**Lemma 2.** [Marshall and Olkin [4]]. A function f defined on  $\mathbb{R}^n$  is Schurconvex (concave) iff f is symmetric and  $f(\lambda q, (1 - \lambda)q, p_3, \ldots, p_n)$  is a nondecreasing (non-increasing) function of  $\lambda$  for  $\lambda \in (0, 1/2]$ .

In the rest of the text, we will denote  $W_{n,c}(\mathbf{p})$  to indicate that the waiting time corresponds to the particular sampling probability vector  $\mathbf{p}$ . We will use analogous notation for the first and second moments of  $W_{n,c}$ , where required.

**Lemma 3.** The ccdf (2) is Schur-concave function of the sampling probability  $(p_1, \ldots, p_n)$ .

*Proof.* The function (2) is symmetric, and we will apply Lemma 2. Let

$$h(p,t) = \sum_{\substack{K \subset \mathbb{N}_n \setminus \{1,2\}, \\ |K| = k}} (p + P_K + p_N)^{t-i}.$$
 (12)

We have

$$P\{W_{n,c} > t\} = \sum_{i=0}^{c-2} {t \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} h(p_1,t) + \sum_{i=0}^{c-2} {t \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} h(p_2,t) + \sum_{i=0}^{c-3} {t \choose i} p_J^i \sum_{k=0}^{c-i-3} (-1)^{c-i-k-1} {n-k-3 \choose n-c+i} h(p_1+p_2,t) + D,$$

where the term D does not depend on  $p_1$ , or  $p_2$ . Let  $f(\lambda) = P\{W_{n,c}(\mathbf{p}^*) > t\}, \mathbf{p}^* = (\lambda q, (1 - \lambda)q, p_3, \dots, p_n), \text{ and } \lambda \in (0, 1/2].$ 

$$\begin{aligned} &\frac{\partial f(\lambda)}{\partial \lambda} = q \sum_{i=0}^{c-2} (t-i) \binom{t}{i} p J^{i} \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-2}{n-c+i} h(\lambda q, t-1) \\ &-q \sum_{i=0}^{c-2} (t-i) \binom{t}{i} p J^{i} \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-2}{n-c+i} h((1-\lambda)q, t-1) \\ &= qt \sum_{i=0}^{c-2} \binom{t-1}{i} p J^{i} \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-2}{n-c+i} (h(\lambda q, t-1) - h((1-\lambda)q, t-1)) . \end{aligned}$$

For  $t \geq 1$ , we consider the function:

$$l(a) = \sum_{i=0}^{c-2} {\binom{t-1}{i}} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {\binom{n-k-2}{n-c+i}} h(a,t-1).$$
(14)

We define  $W_{n-2,c}^{(a+p_N)}$  as the waiting time until a subcollection of size c is sampled, in case when the null coupon is sampled with probability  $a+p_N$  (instead

of  $p_N$ ), and the set of standard coupons is  $\mathbb{N}_n \setminus \{1, 2\} = \{3, \ldots, n\}$  (instead of  $\mathbb{N}_n$ ). For  $t \geq 2$ , we have:

$$\begin{aligned} \frac{\partial l(a)}{\partial a} &= \sum_{i=0}^{c-2} (t-i-1) \binom{t-1}{i} p_J{}^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-2}{n-c+i} h(a,t-2) \\ &= (t-1) \sum_{i=0}^{c-2} \binom{t-2}{i} p_J{}^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-2}{n-c+i} h(a,t-2) \\ &= (t-1) \sum_{i=0}^{c-2} \binom{t-2}{i} p_J{}^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} \binom{n-k-3}{n-c+i-1} h(a,t-2) \\ &+ (t-1) \sum_{i=0}^{c-3} \binom{t-2}{i} p_J{}^i \sum_{k=0}^{c-i-3} (-1)^{c-i-k} \binom{n-k-3}{n-c+i} h(a,t-2) \\ &= (t-1) \left( P\{W_{n-2,c-1}^{(a+p_N)} > t-2\} - P\{W_{n-2,c-2}^{(a+p_N)} > t-2\} \right) \ge 0. \ (15) \end{aligned}$$

Therefore, l(a) is an increasing function of a, and we obtain

$$\frac{\partial f(\lambda)}{\partial \lambda} = qt(l(\lambda q) - l((1 - \lambda)q)) \le 0, \tag{16}$$

which completes the proof of the Lemma.

Next, we prove another lemma that we will need later.

**Lemma 4.** The ccdf (2) is an increasing function of (any) sampling probability.

*Proof.* The ccdf (2) is symmetric on  $p_1, p_2, \ldots, p_n$ , therefore it is enough to prove that it is increasing function of  $p_1$ . Let

$$q(p,t) = \sum_{\substack{K \subset \mathbb{N}_n \setminus \{1\}, \\ |K| = k}} (p + P_K + p_N)^{t-i}.$$
 (17)

We have

$$P\{W_{n,c} > t\} = r(p_1) = \sum_{i=0}^{c-2} {t \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} q(p_1,t) + C,$$
(18)

where the term C does not depend on  $p_1$ . For  $t \ge 1$  we obtain:

$$\frac{\partial r(p_1)}{\partial p_1} = \sum_{i=0}^{c-2} (t-i) {t \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} q(p_1,t-1)$$
$$= t \sum_{i=0}^{c-2} {t-1 \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} q(p_1,t-1).$$
(19)

We define  $W_{n-1,c}^{(a+p_N)}$  as the waiting time until a subcollection of size c is sampled, in case when the null coupon is sampled with probability  $a+p_N$  (instead of  $p_N$ ), and the set of standard coupons is  $\mathbb{N}_n \setminus \{1\} = \{2, \ldots, n\}$  (instead of  $\mathbb{N}_n$ ). Now we have:

$$\frac{\partial r(p_1)}{\partial p_1} = tP\{W_{n-1,c-1}^{(p_1+p_N)} > t-1\} \ge 0,$$

which completes the proof of the Lemma.

From now on, we assume that the probability vector  $\mathbf{p} = (p_1, p_2, \dots, p_n)$  is already in ascending order.

Next, we define the following vectors:

$$\mathbf{p}^{(s,1)} = \left( p_1, \dots, p_s, \sum_{\substack{k=s+1 \ n-s}}^n \frac{p_k}{n-s}, \dots, \sum_{\substack{k=s+1 \ n-s}}^n \frac{p_k}{n-s} \right), s \in \{1, \dots, n-1\},$$

$$\mathbf{p}^{(0,1)} = (\underbrace{p_{ave}, \dots, p_{ave}}_n), p_{ave} = \frac{1}{n} \sum_{\substack{k=1 \ n-s}}^n p_k,$$

$$\mathbf{p}^{(s,2)} = \left( \underbrace{0, \dots, 0}_{s-1}, \underbrace{p_s, \dots, p_s}_{n-s}, \sum_{\substack{k=1 \ n-s}}^n p_k - (n-s)p_s \right), s \in \{1, \dots, n\},$$

$$\mathbf{p}^{(s,3)} = \left( \underbrace{0, \dots, 0}_{s-1}, p_s, \dots, p_{n-1}, \sum_{\substack{k=1 \ n-s}}^n p_k - \sum_{\substack{k=s}}^{n-1} p_k \right), s \in \{1, \dots, n-1\},$$

$$\mathbf{p}^{(n,3)} = \left( \underbrace{0, \dots, 0}_{n-1}, \sum_{\substack{k=1 \ n-s}}^n p_k \right).$$
(20)

It is easy to see that

$$\mathbf{p}^{(n,2)} = \mathbf{p}^{(n,3)}, \mathbf{p}^{(n-1,2)} = \mathbf{p}^{(n-1,3)} \text{ and } \mathbf{p}^{(n-1,1)} = \mathbf{p}^{(1,3)} = \mathbf{p}.$$
 (21)

Further relations between vectors are described in the next lemma.

Lemma 5. The following relations hold:

$$\mathbf{p}^{(s,1)} \prec \mathbf{p}^{(s-1,1)}, \quad 1 \le s \le n-1. \tag{22}$$

$$\mathbf{p}^{(s,3)} \prec \mathbf{p}^{(s-1,3)}, \quad 2 \le s \le n.$$
(23)

$$\mathbf{p}^{(s,2)} \prec \mathbf{p}^{(s,3)}, \quad 1 \le s \le n.$$
 (24)

Proof. For proving (22) it is enough to check that the relation

$$p_s + k \sum_{i=s+1}^{n} \frac{p_i}{n-s} \le (k+1) \sum_{i=s}^{n} \frac{p_i}{n-s+1}$$
(25)

holds for any  $0 \le k \le n-s$ . However, (25) can be reduced to the obvious inequality:

$$(n-s-k)\left(\sum_{i=s+1}^{n} p_i - (n-s)p_s\right) \ge 0.$$
 (26)

Relations (23) and (24) trivially hold.

The set of possible lower and upper bounds is obtained in the next theorem.

**Theorem 2.** Lower bounds for the ccdf (2) are given by

$$L^{(s,1)}(t) = P\{W_{n,c}(\mathbf{p}^{(s,1)}) > t\}, \text{ for } s \in \{0, \dots, n-2\}.$$
 (27)

For  $s \in \{1, ..., n\}$ , the upper bounds for the ccdf (2) are given by

$$U^{(s,2)}(t) = P\{W_{n,c}(\mathbf{p}^{(s,2)}) > t\} \text{ and } U^{(s,3)}(t) = P\{W_{n,c}(\mathbf{p}^{(s,3)}) > t\}.$$
 (28)

*Proof.* All the bounds follow from Lemma 2, Lemma 3, and Lemma 5.  $\Box$ 

The exact expressions for all the bounds obtained in Theorem 2 are displayed in Table 1.

**Remark 2.** From Lemma 3 and Lemma 5 we have the following relationship between the bounds proposed in Theorem 2:

$$L^{(0,1)}(t) \le \dots \le L^{(n-1,1)}(t) \le P\{W_{n,c}(\mathbf{p}) > t\} \le U^{(2,3)}(t) \le \dots \le U^{(n,3)}(t),$$

and  $P\{W_{n,c}(\mathbf{p}) > t\} \leq U^{(s,3)}(t) \leq U^{(s,2)}(t), s \in \{2,\ldots,n\}$ . Obviously, the bounds of the type  $U^{(s,2)}$  are computationally simpler than the bounds  $U^{(s,3)}$ .



Table 1: Exact expressions for the bounds  $L^{(s,1)}(t), U^{(s,2)}(t)$  and  $U^{(s,3)}(t)$ 

| bound            | exact formula                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $L^{(0,1)}(t)$   | $\sum_{i=0}^{c-1} {t \choose i} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} {n-k-1 \choose n-c+i} {n \choose k} (kp_{ave} + p_N)^{t-i}$     |
| $U^{(n-1,3)}(t)$ | $\sum_{i=0}^{c-3} {t \choose i} p_J{}^i (1-p_J)^{t-i} + {t \choose c-1} p_J{}^{c-1} p_N^{t-c+1}$                                        |
|                  | $+\binom{t}{c-2}p_{J}^{c-2}\left((p_{n-1}+p_{N})^{t-c+2}+(1-p_{J}-p_{n-1})^{t-c+2}-p_{N}^{t-c+2}\right)$                                |
| $U^{(n,3)}(t)$   | $\sum_{i=0}^{c-2} {t \choose i} p_J^{i} (1-p_J)^{t-i} + {t \choose c-1} p_J^{c-1} p_N^{t-c+1}$                                          |
| $U^{(1,2)}(t)$   | $\sum_{i=0}^{c-2} {t \choose i} p_J^i \sum_{k=0}^{c-i-2} (-1)^{c-i-k} {n-k-2 \choose n-c+i} {n-1 \choose k} (1-p_J - (n-1-k)p_1)^{t-i}$ |
|                  | $+\sum_{i=0}^{c-1} {t \choose i} p_J^i \sum_{k=0}^{c-i-1} (-1)^{c-i-k-1} {n-k-1 \choose n-c+i} {n-1 \choose k} (kp_1+p_N)^{t-i}$        |

Table 2: Exact expressions for the bounds  $L^{(0,1)}(t)$ ,  $U^{(n-1,3)}(t)$ ,  $U^{(n,3)}(t)$  and  $U^{(1,2)}(t)$ 

Simpler formulas for particular cases of lower and upper bounds, obtained with some combinatorics, are displayed in Table 2.

**Proposition 1.** The first and second moments of  $W_{n,c}$ , given in Theorem 1, are Schur-concave functions of the sampling probability.

*Proof.* The statements follow from Lemma 3 and similar considerations as in the proof of Corollary 2 in [6].  $\Box$ 

**Remark 3.** From Proposition 1 follows that it is possible to construct upper and lower bounds for  $E(W_{n,c}(\mathbf{p}))$  and  $Var(W_{n,c}(\mathbf{p}))$  by combining upper and lower bounds for the ccdf of  $W_{n,c}$ , proposed in Theorem 2. We can also conclude (using the same argument as in [6], Corollary 1), that the ccdf of  $W_{n,c}(\mathbf{p})$  is minimized for  $\mathbf{p} = \mathbf{p}^{(0,1)}$ , and the same holds for  $E(W_{n,c}(\mathbf{p}))$  and  $E(W_{n,c}^2(\mathbf{p}))$ .

Using the representation (5) and the relation:

$$P\{Y_t = 0, Z_t \le c - 1\} \le P\{Y_t + Z_t \le c - 1\} \le P\{Z_t \le c - 1\},$$
(29)

we obtain another pair of simple, trivial lower  $(L^*)$  and upper  $(U^*)$  bounds for the ccdf (2):

$$L^{*}(t) = \sum_{i=0}^{c-1} {t \choose i} p_{J}^{i} p_{N}^{t-i}, \text{ and } U^{*}(t) = \sum_{i=0}^{c-1} {t \choose i} p_{J}^{i} (1-p_{J})^{t-i}.$$
 (30)

The bounds  $L^*$  and  $U^*$  are less sharp than any other bounds proposed in this work, which is clear from the following considerations. For the bound  $U^*$  we have:

$$U^{*}(t) \ge U^{(n,3)}(t) = U^{(n,2)}(t).$$
(31)

For the bound  $L^*$ , using the well known inequality

$$\sum_{k=0}^{c-1} (-1)^{c-1-k} \binom{n-k-1}{n-c} \binom{n}{k} = 1,$$
(32)

we obtain:

$$L^{*}(t) = \sum_{i=0}^{c-1} {\binom{t}{i}} p_{J}^{i} \sum_{k=0}^{c-i-1} (-1)^{c-i-1-k} {\binom{n-k-1}{n-c+i}} {\binom{n}{k}} p_{N}^{t-i}.$$
 (33)

Using Lemma 4 we obtain

$$L^*(t) \le L^{(0,1)}(t). \tag{34}$$

Conclusion follows from Remark 2.

## 4 Numerical results

In this section we provide numerical comparison of the efficiency of the sets of bounds proposed in Section 3. We consider the following combinations of additional parameters:  $(p_N, p_J) \in \{(1/22, 1/22), (1/3, 1/4), (1/3, 0)\}, (n, c) \in \{(20, 10), (20, 20)\}$ , and check the behavior of the proposed bounds on the following distributions:

$$\mathbf{q}(1) = (q, q(1-q), q(1-q)^2, \dots, q(1-q)^{19}), q = 1 - (p_J + p_N)^{\frac{1}{20}},$$

and

$$\mathbf{q}(4) = (\underbrace{q, \dots, q}_{4}, \underbrace{q(1-q), \dots, q(1-q)}_{4}, \dots, \underbrace{q(1-q)^{4}, \dots, q(1-q)^{4}}_{4}),$$

where

$$q = 1 - \left(1 - \frac{1 - p_J - p_N}{4}\right)^{\frac{1}{5}}.$$

We include results for the bounds  $L^{(0,1)}(t)$ ,  $L^{(1,1)}(t)$ ,  $L^{(2,1)}(t)$ ,  $U^{(19,3)}(t)$ ,  $U^{(20,3)}(t)$ ,  $U^{(1,2)}(t)$ ,  $U^{(10,2)}(t)$ , which are chosen for their relative computational simplicity. For comparison, we also include the bounds  $L^{(10,1)}(t)$  and

 $U^{(10,3)}(t)$  that are not so computationally simple, but are tight. Results are presented in Tables 4 - 9.

Conclusions are the following:

1. In most cases, the bounds for the ccdf of  $W_{20,20}$  are more tight than the same type of bounds for the ccdf of  $W_{20,10}$ , and the bounds seems to be the most tight for  $(p_N, p_J) = (1/3, 1/4)$ . This is not surprising, because of the following relation:

$$U^*(t) \le \frac{(1-p_J)^{t-c+1}}{p_N t} L^*(t).$$
(35)

Therefore, the accuracy of the proposed bounds strongly depends both on the probabilities  $p_J$  and  $p_N$ , and the size of the portion of the collection sampled. 2. In most cases considered, the combination of bounds  $L^{(2,1)}(t)$ , and  $U^{(1,2)}(t)$  seems to be the most appropriate, taking into consideration both tightness and computational effort. We indicated these cases by bold font.

3. The only case where none of the proposed bounds seems to work so well is the case  $(n, c) = (20, 10), (p_N, p_J) = (1/22, 1/22)$  in Table 4. This can be explained by (35), as well.

4. In most cases considered, the bound  $L^{(10,1)}(t)$  is relatively close to the true ccdf of  $W_{n,c}$ , which confirms the trade - off between the accuracy of the bounds and computational effort.

Finally, for their overall performance, we can recommend the pair of bounds  $L^{(2,1)}(t)$ , and  $U^{(1,2)}(t)$ .

**Remark 4.** When we reduce the problem to the CCP with unequal probabilities (by setting probabilities of additional coupons to zero), we can compare the bounds we propose to those considered in [8]. The lower bound obtained in [8] using majorization (which we denote as  $L_1^{(S)}$ ) coincides with the bound  $L^{(0,1)}$  considered in this paper, and the corresponding upper bound in [8] (which we denote as  $U_1^{(S)}$ ), is, in our experience, less tight than any upper bound we considered.

For illustration, we compare in Table 3 the pair of bounds  $L_{1}^{(2,1)}$ , and  $U^{(1,2)}$ , recommended in this paper, with the bounds  $L_{1}^{(S)}$  and  $U_{1}^{(S)}$ . We also include the upper and lower bounds obtained by direct probabilistic arguments in [8] (which we denote as  $U_{2}^{(S)}$  and  $L_{2}^{(S)}$ , respectively), which are specific to the variant of the problem considered. The results for the bounds  $L_{1}^{(S)}$ ,  $U_{1}^{(S)}$ ,  $L_{2}^{(S)}$  and  $U_{2}^{(S)}$  are taken from Table 1, p. 161 in [8]. We can observe that the pair of bounds ( $L_{1}^{(2,1)}(t), U_{1}^{(1,2)}(t)$ ) is tighter than the pair of bounds ( $L_{1}^{(S)}(t), U_{1}^{(S)}(t)$ ) in most of the cases considered, but less tight than the pair ( $L_{2}^{(S)}(t), U_{2}^{(S)}(t)$ ).

| t    | $P\{W_{20,20}>t\}$ | $L_1^{(S)}(t)$ | $L^{(2,1)}(t)$ | $L_2^{(S)}(t)$ | $U_1^{(S)}(t)$ | $U^{(1,2)}(t)$ | $U_2^{(S)}(t)$ |
|------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 50   | 9.9915e-01         | 9.9859e-01     | 9.9877e-01     | -6.8488        | 9.9999e-01     | 9.9998e-01     | 5.1241         |
| 100  | 7.9769e-01         | 7.2222e-01     | 7.4740e-01     | 5.3002e-01     | 9.7367e-01     | 9.6798e-01     | 1.4451         |
| 200  | 1.3314e-01         | 6.7771e-02     | 9.2527e-02     | 1.3290e-01     | 3.9348e-01     | 3.7786e-01     | 1.4095e-01     |
| 500  | 2.6724e-04         | 1.4339e-05     | 1.6181e-04     | 2.6724e-04     | 1.8377e-03     | 1.7459e-03     | 2.6726e-04     |
| 1000 | 1.5259e-08         | 1.0281e-11     | 1.2326e-08     | 1.5259e-08     | 1.6911e-07     | 1.6065e-07     | 1.5259e-08     |

Table 3: Comparison of the bounds  $L^{(2,1)}$  and  $U^{(1,2)}$  with those obtained in [8], Table 1, p. 161 (the same sampling distribution)

## 5 Conclusions

We have presented introductory results related to the extension of the CCP with unequal probabilities, dealing with the situation when there are additional coupons in the coupon set: null coupon that slows down the collection process, and universal coupon that speeds it up. We derived a class of bounds for the ccdf of the waiting time until the end of the experiment, by refining the bounds proposed in [8]. The quality of the proposed bounds is tested in numerical experiments, and we indicate the specific bounds from the class with the most desirable properties. The bounds we derive may be as well applied to functions of sampling probability that require approximation in other contexts.

#### Acknowledgments

This work was supported by Ministry of Science, Technological Development and Innovation of the Republic of Serbia: Grant No. 451 - 03 - 47/2023 - 01/200104.

The authors would also like to thank the anonymous referee for his/her useful comments and suggestions, which significantly improved the manuscript.

#### References

- E. Anceaume, Y. Busnel, B. Sericola, New results on a generalized coupon collector problem using Markov chains, *Journal of Applied Probability* 52(2), 405418 (2015).
- [2] E. Anceaume, Y. Busnel, E. Schulte-Geers, B. Sericola, Optimization Results for a Generalized Coupon Collector Problem, *Journal of Applied Probability* 53, 622-629 (2016).

- [3] A. Boneh, M. Hofri, *The Coupon-Collector Problem Revisited*, Department of Computer Science Purdue University Technical Reports. Paper 807. https://docs.lib.purdue.edu/cstech/807(1989).
- [4] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, 2nd. edn., Springer - Verlag, New York, (2011).
- [5] S. Martinez, Some bounds on the coupon collector problem, *Random Structures & Algorithms* 25 (2), 208-226, (2004).
- [6] T. Nakata, Coupon collector's problem with unlike probabilities, *Journal of Classical Analysis* 14 (2), 177-180, (2019).
- [7] T. Nakata, I. Kubo, A coupon collectors problem with bonuses. In: Proceedings of the 4th Colloquium on Mathematics and Computer Science, DMTCS Proceedings, 215224, (2006).
- [8] S. Shioda, Some upper and lower bounds on the coupon collector problem, Journal of Computational and Applied Mathematics 200, 154167, (2007).
- [9] N. Zoroa, E. Lesigne, M. J. Fernández-Sáez, P. Zoroa, J. Casas, The coupon collector urn model with unequal probabilities in ecology and evolution, J. R. Soc. Interface 14, 20160643 (2016).

Jelena JOCKOVIĆ, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia. Email: jelena.jockovic@matf.bg.ac.rs

Bojana TODIĆ, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia. Email: bojana.todic@matf.bg.ac.rs

|                       | 1          |            |            |               | _           |                                        | r          |            |            |            |            | 1                               |                    |              |              |              |               |               |                            |            |              |              |              |               |
|-----------------------|------------|------------|------------|---------------|-------------|----------------------------------------|------------|------------|------------|------------|------------|---------------------------------|--------------------|--------------|--------------|--------------|---------------|---------------|----------------------------|------------|--------------|--------------|--------------|---------------|
| $U^{(10,3)(t)}$       | 1.3384e-02 | 1.1138e-05 | 2.058e-11  | 6.0488e-28    | 3.2073e-55  | $U^{(10,3)(t)}$                        | 9.9984e-01 | 9.6347e-01 | 4.4063e-01 | 2.8248e-04 | 4.7809e-12 |                                 | $U^{(10,3)}(t)$    | 5.9733e-05   | 2.5742e-13   | 2.3673e-29   | 9.3361e-75    | 7.7398e-150   | $U^{\left(10,3\right)}(t)$ | 3.956e-01  | 4.4039e-05   | 1.1734e-15   | 4.9776e-50   | 1.3368e-110   |
| $U^{(10,2)}(t)$       | 1.2223e-01 | 3.0781e-04 | 1.5286e-09 | 2.9585e-25    | 1.9451e-51  | $U^{(10,2)}(t)$                        | 9.9996e-01 | 9.6915e-01 | 4.4172e-01 | 2.8248e-04 | 4.7809e-12 | $\mathbf{q}(1)$                 | $J^{(10,2)}(t)$    | L.3948e-04   | L.0828e-12   | L.1212e-28   | 1.241e-73     | .4208e-148 7  | $J^{(10,2)}(t)$            | 1.5312e-01 | 5.5431e-05   | L.3489e-15   | 1.9785e-50   | 3368e-110 4   |
| $U^{(1,2)}(t)$        | 1.7929e-01 | 1.6048e-04 | 2.4914e-12 | 4.7788e-37    | 2.9632e-78  | $U^{(1,2)}(t)$                         | 9.9929e-01 | 6.3534e-01 | 3.4966e-03 | 5.0153e-12 | 5.9623e-25 | $\frac{1}{22}$ , $\mathbf{p} =$ | $U^{(1,2)(t)}$     | .8412e-07    | 1398e-19     | .0747e-44    | .0447e-116    | 2.164e-236    | $U^{(1,2)(t)}$             | 7.3e-02    | 0079e-08     | .3897e-24    | .4378e-66    | .0317e-133 4  |
| $U^{(20,3)}(t)$       | 9.9825e-01 | 9.1446e-01 | 3.0777e-01 | 9.0905e-05    | 7.8929e-13  | $U^{(20,3)}(t)$                        | 1.0000e+00 | 1.0000e-01 | 9.9521e-01 | 1.285e-01  | 7.8807e-07 | $\frac{1}{22}, p_J =$           | $U^{(20,3)}(t)$    | 5.5857e-02 2 | 3.3484e-06 2 | 1.2123e-16 7 | 2.4075e-51 4  | 0449e-111 2   | $U^{(20,3)}(t)$            | 9.5345e-01 | 3.9051e-02 1 | 2.0081e-09 1 | 4.7812e-40 1 | 2.3056e-97 1. |
| $U^{(19,3)(t)}$       | 9.9962e-01 | 9.6141e-01 | 4.4042e-01 | 2.8248e-04    | 4.7809e-12  | $U^{(19,3)}(t)$                        | 1.0000e+00 | 1.0000e-01 | 9.979e-01  | 1.8333e-01 | 2.117e-06  | $p_N = 0$                       | $U^{(19,3)(t)}$    | 9.1597e-02   | 1.2085e-05   | 9.8403e-16   | 4.9773e-50    | L.3368e-110 1 | $U^{(19,3)(t)}$            | 9.7127e-01 | 6.3011e-02   | 6.9418e-09   | 4.3072e-39   | 4.2107e-96    |
| $L^{(10,1)}(t)$       | 6.4489e-08 | 7.7998e-17 | 5.5487e-34 | 2.2927e-85    | 5.2563e-171 | $L^{(10,1)}(t)$                        | 7.3277e-01 | 5.0344e-02 | 4.9933e-05 | 3.1668e-13 | 3.916e-26  | and $c = 2$                     | $L^{(10,1)(t)}$    | 4.3199e-09   | 2.7879e-23   | 7.5319e-51   | 5.1192e-131   | 1.4372e-262   | $L^{(10,1)}(t)$            | 2.2871e-02 | 4.1349e-10   | 6.6384e-26   | 2.6781e-67   | 1.185e-134    |
| $L^{(2,1)}(t)$        | 1.2527e-11 | 3.1685e-27 | 2.0619e-58 | 5.6947e-152   | 6.67e-308   | $L^{\left( 2,1 ight) \left( t ight) }$ | 4.5853e-01 | 1.1016e-02 | 1.8105e-05 | 2.6179e-13 | 3.787e-26  | c = 10.8                        | $L^{(2,1)(t)}$     | 3.7498e-09   | l.5489e-23   | 8.1643e-52   | .6537e-136    | .8689e-275    | $L^{(2,1)}(t)$             | 2.1727e-02 | 3.2192e-10   | 4.1872e-26   | 1.6144e-67   | .4902e-135    |
| $L^{(1,1)}(t)$        | 3.9312e-12 | 1.6986e-28 | 3.1215e-61 | 1.9389e-159   | 0.0000e+00  | $L^{\left( 1,1 ight) \left( t ight) }$ | 3.9424e-01 | 5.4955e-03 | 8.0432e-06 | 1.7698e-13 | 3.1323e-26 | esults for                      | $L^{(1,1)(t)}$     | 3.6543e-09   | 1.3942e-23   | 5.5723e-52   | 1.9177e-136 9 | 3.9355e-277 1 | $L^{(1,1)(t)}$             | 2.1509e-02 | 3.0563e-10   | 3.7087e-26   | 1.1508e-67   | 5.5198e-135 8 |
| $L^{(0,1)}(t)$        | 1.2441e-12 | 9.6148e-30 | 5.5039e-64 | 1.0324e - 166 | 0.0000e+00  | $L^{(0,1)}(t)$                         | 3.2661e-01 | 1.8106e-03 | 1.0565e-07 | 4.0243e-20 | 8.0974e-41 | able 4: R                       | $L^{(0,1)(t)}$     | 3.5551e-09   | 1.2471e-23   | 3.7427e-52   | 3.7548e-137   | 8.3941e-279   | $L^{(0,1)(t)}$             | 2.1275e-02 | 2.8867e-10   | 3.217e-26    | 5.1856e-68   | 1.3423e-136   |
| ${}^{2}{W_{20,10}>t}$ | 4.6973e-07 | 2.4998e-15 | 7.3601e-31 | 1.8795e-76    | 3.314e-152  | ${}^{O}{W_{20,20} > t}$                | 7.6509e-01 | 5.2792e-02 | 5.0073e-05 | 3.1668e-13 | 3.9157e-26 | Ľ                               | $P\{W_{20,10}>t\}$ | 4.4893e-09   | 3.2566e-23   | 1.2508e-50   | 3.0634e-130   | 4.1565e-261   | $P\{W_{20,20}>t\}$         | 2.3151e-02 | 4.3526e-10   | 7.0316e-26   | 2.7148e-67   | 1.186e-134    |
| t I                   | 50         | 100        | 200        | 500           | 1000        | t I                                    | 50         | 100        | 200        | 500        | 1000       |                                 | t I                | 50           | 100          | 200          | 500           | 1000          | t J                        | 50         | 100          | 200          | 500          | 1000          |

| _            |
|--------------|
| E            |
| ॅ            |
|              |
| d            |
| -114<br>-114 |
|              |
| 5            |
| d            |
| -103         |
|              |
| Z            |
| d            |
| S,           |
| 1            |
| Ü            |
| ц            |
| ar           |
| 10           |
|              |
| Ü            |
| or           |
| s            |
| ılt          |
| esi          |
| Ř            |
| <u>с</u>     |
| le           |
| ab           |
| Ĥ            |

| $L^{(0,1)}(t)$ | $L^{(1,1)}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L^{(2,1)}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $L^{(10,1)(t)}$                                             | $U^{(19,3)}(t)$                                        | $U^{(20,3)}(t)$                                        | $U^{(1,2)(t)}$                                         | $U^{(10,2)(t)}$                                        | $U^{(10,3)}(t)$                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 1.1207e-05     | 1.3107e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5242e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7927e-05                                                  | 1                                                      | 1                                                      | 4.7996e-02                                             | 6.6713e-01                                             | 4.1167e-01                                             |
| 2.3565e-15     | 4.0932e-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0456e-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3849e-13                                                  | 1                                                      | 1                                                      | 3.1413e-06                                             | 6.3662e-02                                             | 1.4619e-02                                             |
| 3.5613e-35     | 1.7077e-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.2361e-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9031e-29                                                  | 1                                                      | 1                                                      | 5.0312e-16                                             | 1.3092e-04                                             | 9.9319e-06                                             |
| 1.1e-94        | 1.3358e-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7535e-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8111e-73                                                  | 1                                                      | 1                                                      | 3.1782e-46                                             | 6.6062e-13                                             | 1.0572e-14                                             |
| 7.2036e-194    | 1.9317e-189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3243e-185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3628e-146                                                 | 1                                                      | 1                                                      | 1.3365e-96                                             | 9.6982e-27                                             | 3.9781e-29                                             |
| $L^{(0,1)}(t)$ | $L^{(1,1)}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L^{\left( 2,1 ight) \left( t ight) }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $L^{(10,1)}(t)$                                             | $U^{(19,3)}(t)$                                        | $U^{(20,3)}(t)$                                        | $U^{(1,2)}(t)$                                         | $U^{(10,2)}(t)$                                        | $U^{(10,3)}(t)$                                        |
| 9.914e-01      | 9.9243e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9324e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.9599e-01                                                  | -1                                                     | 1                                                      | 9.9998e-01                                             | 1                                                      | 1                                                      |
| 5.0996e-01     | 5.4733e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7748e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7938e-01                                                  | 1                                                      | 1                                                      | 9.6267e-01                                             | 1                                                      | 1                                                      |
| 2.2526e-02     | 4.0307e-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4226e-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.2704e-02                                                  | 1                                                      | 1                                                      | 3.5352e-01                                             | 1                                                      | 1                                                      |
| 8.6976e-07     | 7.534e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1863e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6987e-04                                                  | 1                                                      | 1                                                      | 1.4201e-03                                             | 1                                                      | 1                                                      |
| 3.7825e-14     | 5.5925e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4845e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3309e-09                                                  | 1                                                      | 1                                                      | 1.0626e-07                                             | 1                                                      | 1                                                      |
| $L^{(0,1)}(t)$ | $L^{(1,1)(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L^{(2,1)(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $L^{(10,1)(t)}$                                             | $U^{(19,3)}(t)$                                        | $U^{(20,3)}(t)$                                        | $U^{(1,2)(t)}$                                         | $U^{(10,2)(t)}$                                        | $U^{(10,3)}(t)$                                        |
| 1.2441e-12     | 1.2856e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3332e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6437e-12                                                  | 9.9962e-01                                             | 9.9837e-01                                             | 1.0127e-10                                             | 3.3243e-02                                             | 2.5113e-02                                             |
| 9.6148e-30     | 1.0914e-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2568e-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8683e-29                                                  | 9.6141e-01                                             | 9.1478e-01                                             | 1.531e-25                                              | 2.0743e-05                                             | 1.2166e-05                                             |
| 5.5039e-64     | 8.5896e-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4128e-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0007e-62                                                  | 4.4042e-01                                             | 3.0777e-01                                             | 3.1022e-55                                             | 8.7877e-12                                             | 3.3596e-12                                             |
| 1.0324e-166    | 6.1113e-166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.441e-165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4135e-159                                                 | 2.8248e-04                                             | 9.0905e-05                                             | 2.5796e-144                                            | 7.574e-31                                              | 1.1872e-31                                             |
| 0.0000e+00     | 0.0000e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2367e-318                                                 | 4.7809e-12                                             | 7.8929e-13                                             | 8.8039e-293                                            | 1.2748e-62                                             | 1.0761e-63                                             |
| $L^{(0,1)}(t)$ | $L^{\left( 1,1 ight) \left( t ight) }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $L^{(2,1)(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $L^{(10,1)(t)}$                                             | $U^{(19,3)}(t)$                                        | $U^{(20,3)}(t)$                                        | $U^{(1,2)}(t)$                                         | $U^{(10,2)(t)}$                                        | $U^{(10,3)}(t)$                                        |
| 3.2661e-01     | 3.2732e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.281e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3228e-01                                                  | 1.0000e + 00                                           | 1.0000e + 00                                           | 4.1779e-01                                             | 9.9989e-01                                             | 9.9988e-01                                             |
| 1.8106e-03     | 1.8275e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.846e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9405e-03                                                  | 1.0000 + 00                                            | 1.0000+00                                              | 3.2062e-03                                             | 9.6407e-01                                             | 9.6354e-01                                             |
| 1.0565e-07     | 1.0959e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1383e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3272e-07                                                  | 9.979e-01                                              | 9.9521e-01                                             | 2.7477e-07                                             | 4.4054e-01                                             | 4.405e-01                                              |
| 4.0243e-20     | 5.8095e-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6594e-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3703e-19                                                  | 1.8333e-01                                             | 1.285e-01                                              | 4.6731e-19                                             | 2.8248e-04                                             | 2.8248e-04                                             |
| 8.0974e-41     | 6.64e-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2516e-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6567e-39                                                  | 2.117e-06                                              | 7.8807e-07                                             | 1.1494e-38                                             | 4.7809e-12                                             | 4.7809e-12                                             |
|                | $\sum_{\substack{1.1207e-0.5\\2.3565e-15}\\3.2365e-194\\1.1e-94\\1.2.036e-194\\5.0996e-01\\5.0996e-07\\5.0996e-07\\3.7825e-14\\3.7822e-14\\3.7822e-14\\1.55296-07\\3.7822e-14\\1.2448-30\\9.6148-30\\9.6148-30\\9.6148-30\\1.0000e+00\\0.0000e+00\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.00000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+06\\1.0000e+00\\1.0000e+00\\1.000$ | $\frac{1.1207 - (v)}{2.3656 - 15} = \frac{1.3107 - 0.5}{3.3107 - 0.5} = \frac{1.0}{3.3268 - 194} = \frac{1.03177 - 34}{1.33108 - 28} = \frac{1.0}{1.10} = \frac{1.0}{1.0} = \frac{1.0}{$ | $ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| _              |
|----------------|
| Ð              |
| σ              |
|                |
| d              |
| 6              |
| -12            |
|                |
| Ľ              |
| 1,             |
| $\frac{1}{22}$ |
|                |
| Z              |
| d              |
| <u>,</u>       |
| 2              |
| п<br>С         |
| Ч              |
| an             |
| 0              |
|                |
|                |
| г.             |
| $\mathbf{fo}$  |
| $\mathbf{ts}$  |
| 'n             |
| es             |
| Ч              |
| 4              |
| е              |
| [di            |
| Ë              |

| $U^{(10,3)}(t)$    | 1.0145e-04 | 6.1249e-13 | 5.765e-29  | 3.2912e-74  | 2.6905e-149 | $U^{(10,3)}(t)$    | 4.3059e-01 | 5.5515e-05 | 1.2599e-15 | 4.3368e-110 |                                            | $U^{(10,3)}(t)$    | 5.4915e-01 | 3.1275e-02   | 2.8275e-05 | 1.631e-14    | 8.9056e-30  | $U^{(10,3)}(t)$    | 1          | 1          | 1          | 1          | 1            |
|--------------------|------------|------------|------------|-------------|-------------|--------------------|------------|------------|------------|-------------|--------------------------------------------|--------------------|------------|--------------|------------|--------------|-------------|--------------------|------------|------------|------------|------------|--------------|
| $U^{(10,2)}(t)$    | 1.1794e-04 | 7.9932e-13 | 7.8368e-29 | 6.0021e-74  | 8.003e-149  | $U^{(10,2)}(t)$    | 4.4111e-01 | 5.988e-05  | 1.298e-15  | 4.3368e-110 | (4)                                        | $U^{(10,2)(t)}$    | 5.8862e-01 | 3.9726e-02   | 4.6471e-05 | 4.9227e-14   | 5.3851e-29  | $U^{(10,2)(t)}$    | 1          |            | -1         | -1         | 1            |
| $U^{(1,2)}(t)$     | 5.0364e-09 | 4.0878e-23 | 7.5454e-51 | 2.2162e-133 | 6.4983e-271 | $U^{(1,2)}(t)$     | 2.3584e-02 | 4.2689e-10 | 5.0834e-26 | 4.4168e-136 | $\frac{1}{4}$ , $\mathbf{p} = \mathbf{q}($ | $U^{(1,2)}(t)$     | 3.4811e-05 | 6.0092e - 14 | 5.383e-32  | 3.2394e - 86 | 1.3884e-176 | $U^{(1,2)}(t)$     | 9.944e-01  | 5.8266e-01 | 3.4855e-02 | 2.8337e-06 | 4.2262e-13   |
| $U^{(20,3)}(t)$    | 5.8712e-02 | 3.595e-06  | 1.2324e-16 | 2.4075e-51  | 1.0449e-111 | $U^{(20,3)(t)}$    | 9.5516e-01 | 3.9897e-02 | 2.0231e-09 | 2.3056e-97  | $\frac{1}{3}, p_J =$                       | $U^{(20,3)(t)}$    | -          | 1            | 1          | 1            | 1           | $U^{(20,3)(t)}$    | 1          | 1          | 1          | 1          | 1            |
| $U^{(19,3)}(t)$    | 9.1597e-02 | 1.2085e-05 | 9.8403e-16 | 4.9773e-50  | 4.3368e-110 | $U^{(19,3)}(t)$    | 9.7127e-01 | 6.3011e-02 | 6.9418e-09 | 4.2107e-96  | 20, $p_N =$                                | $U^{(19,3)}(t)$    |            | 1            | 1          | 1            | 1           | $U^{(19,3)(t)}$    | 1          |            | -1         | -1         | 1            |
| $L^{(10,1)}(t)$    | 3.584e-09  | 1.2905e-23 | 4.2879e-52 | 8.623e-137  | 1.8835e-277 | $L^{(10,1)}(t)$    | 2.1338e-02 | 2.9293e-10 | 3.3119e-26 | 1.8882e-136 | and $c =$                                  | $L^{(10,1)}(t)$    | 1.1637e-05 | 2.7627e-15   | 6.6838e-35 | 4.0418e-93   | 8.6959e-189 | $L^{(10,1)}(t)$    | 9.9157e-01 | 5.1493e-01 | 2.3783e-02 | 1.2196e-06 | 1.2427e-13   |
| $L^{(2,1)}(t)$     | 3.5624e-09 | 1.2579e-23 | 3.8734e-52 | 4.6144e-137 | 1.7622e-278 | $L^{(2,1)}(t)$     | 2.1291e-02 | 2.8977e-10 | 3.242e-26  | 1.5171e-136 | or $c = 10$                                | $L^{(2,1)}(t)$     | 1.1314e-05 | 2.4522e-15   | 4.1613e-35 | 2.572e-94    | 9.201e-193  | $L^{(2,1)(t)}$     | 9.9145e-01 | 5.1128e-01 | 2.2876e-02 | 9.8077e-07 | 7.0363e-14   |
| $L^{(1,1)}(t)$     | 3.5586e-09 | 1.2522e-23 | 3.804e-52  | 4.1388e-137 | 1.1903e-278 | $L^{(1,1)}(t)$     | 2.1283e-02 | 2.8919e-10 | 3.2289e-26 | 1.4268e-136 | Results f                                  | $L^{(1,1)}(t)$     | 1.1257e-05 | 2.4013e-15   | 3.8333e-35 | 1.6413e-94   | 2.392e-193  | $L^{(1,1)}(t)$     | 9.9142e-01 | 5.1059e-01 | 2.2693e-02 | 9.2346e-07 | 5.3799e-14   |
| $L^{(0,1)}(t)$     | 3.5551e-09 | 1.2471e-23 | 3.7427e-52 | 3.7548e-137 | 8.3941e-279 | $L^{(0,1)}(t)$     | 2.1275e-02 | 2.8867e-10 | 3.217e-26  | 1.3423e-136 | Table 8:                                   | $L^{(0,1)(t)}$     | 1.1207e-05 | 2.3565e-15   | 3.5613e-35 | 1.1e-94      | 7.2036e-194 | $L^{(0,1)}(t)$     | 9.914e-01  | 5.0996e-01 | 2.2526e-02 | 8.6976e-07 | 3.7825e-14   |
| $P\{W_{20,10}>t\}$ | 3.5891e-09 | 1.2983e-23 | 4.3909e-52 | 9.9616e-137 | 3.1334e-277 | $P\{W_{20,20}>t\}$ | 2.1349e-02 | 2.9363e-10 | 3.3263e-26 | 1.9281e-136 |                                            | $P\{W_{20,10}>t\}$ | 1.1715e-05 | 2.843e-15    | 7.4844e-35 | 7.3392e-93   | 4.461e-188  | $P\{W_{20,20}>t\}$ | 9.9159e-01 | 5.1567e-01 | 2.3945e-02 | 1.2463e-06 | 1.2683e - 13 |
| t .                | 50         | 100        | 200        | 500         | 1000        | <i>t</i>           | 50         | 100        | 200        | 1000        |                                            | t                  | 50         | 100          | 200        | 500          | 1000        | t                  | 50         | 100        | 200        | 500        | 1000         |

| $\mathbf{q}(4)$      |
|----------------------|
| <br>d                |
| = 0, 1               |
| $p_J =$              |
| ы<br>М               |
| <br>2                |
| 20, p                |
|                      |
| nd e                 |
| 10 a                 |
| c = c                |
| $\operatorname{for}$ |
| lesults              |
| 9: I                 |
| Table                |