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On generalized osculating-type curves in
Myller configuration

Zehra İşbilir and Murat Tosun

Abstract

In this study, we examine osculating-type curves with Frenet-type
frame in Myller configuration for Euclidean 3-space E3. We present the
necessary characterizations for a curve to be an osculating-type curve.
Characterizations originating from the natural structure of Myller con-
figuration are a generalization of osculating curves according to the
Frenet frame. Also, we introduce some new results that are not valid
for osculating curves. Then, we give an illustrative numerical example
supported by a figure.

1 Introduction and Basic Concepts

The theory of curves has quite an importance and applications in several
work-frames such as; mathematics, architecture, engineering, etc., and also
attracts a lot of researchers. It is quite a fundamental concept of differential
geometry in mathematics, as well. Also, moving frames are one of the most
important work-frames in differential geometry from the investigation of the
Frenet (Serret-Frenet) frame [6, 29]. In the Euclidean 3-space E3, every unit
speed curve C : I → E3 can be associated with the orthogonal unit vector
fields tangent vector field T , principal normal vector field N , and binormal
vector field B. The planes spanned by {T,N}, {T,B} and {N,B} are called
the osculating plane, rectifying plane, and normal plane at each point of the
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curve C, respectively [14]. Special curve types named osculating, rectifying
curves, and normal curves (spherical curves) which satisfy Cesaro’s fixed point
condition (see [28]) have been examined in several studies [1–5,8–18,31,32].

The curve C : I → E3 for which the position vector of the curve C always
lies in their rectifying plane, is named rectifying curves [2–5, 8, 11–14]. Also,
if the position vector of the curve C always lies in its normal plane, the curve
is named normal curve [1, 9, 10, 14, 15, 31, 32]. Then, if the position vector of
the curve C always lies in its osculating plane, the curve is named osculating
curve [14,16,18].

In E3, one describes some versor fields∗ such as; tangent, principal normal,
and binormal, alongside some plane fields such as; rectifying, normal, and os-
culating planes along the curve C. By and large, a versor field and a plane
field are denoted by (C, ζ) and (C, π), respectively. The couple {(C, ζ), (C, π)}
where ζ ∈ π is named a Myller configuration and denoted by M(C, ζ, π) in Eu-
clidean 3-space E3 [26, 27]. Radu Miron completed some studies with respect
to this pair

{
(C, ζ), (C, π)

}
in 1960 [26]. Provided that the plane π is tangent

to the curve C, we have a tangent Myller configuration which is denoted by
Mt(C, ζ, π) [24,27]. An investigation of the geometry of Myller configurations
M(C, ζ, π) and tangent Myller configuration Mt(C, ζ, π) is given and exam-
ined in the book [27] by Miron. On the other hand, if C is a curve on the
surface S, the geometry of the field (C, ζ) on surface S is the geometry of the
associated Myller configurations Mt(C, ζ, π) [27]. It is seen that the theory of
geometry for tangent Myller configuration Mt(C, ζ, π) is a special case of that
for general Myller configuration M(C, ζ, π) [27]. Moreover, the Darboux frame
is determined for a Myller configuration [27]. For more detailed information
on the concept of Myller configuration, we can refer to the book [27].

In the existing literature, there are several studies based on Myller con-
figuration. Recently, Macsim et al. examined the special curves in a Myller
configuration and their properties [25]. Also, Macsim et al. introduced the
rectifying-type curves [24] and Bertrand curves [23] in Myller configuration.
Rectifying-type curves and Bertrand curves with Frenet-type frame in Myller
configuration for Euclidean space E3 are a generalization of rectifying curves
and Bertrand curves with Frenet frame in E3 [23, 24]. Keskin and Yaylı in-
vestigated the rectifying-type curves with rotation minimizing frame in n-
dimensional space of R in [22]. Additionally, versor fields along a curve in
a four-dimensional Lorentz space are scrutinized in [7]. Also, Smarandache
curves with Frenet-type frame in Myller configuration were examined in [21].
Moreover, osculating-type curves in Myller configuration for Euclidean 4-space
E4 [19] and rectifying-type curves in Myller configuration for Euclidean 4-space
E4 [20] were studied.

∗unit vector fields
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Let (C, ζ) be a versor field and r(s) be a position vector of the curve C
where s is the arc-length on the curve C. For Frenet-type frame
RF = {P, ζ1, ζ2, ζ3} of versor field, we can write:

r′(s) = %1(s)ζ1(s) + %2(s)ζ2(s) + %3(s)ζ3(s), (1.1)

where %21(s) + %22(s) + %23(s) = 1. Also, the following derivative formulas hold:
ζ
′
1(s) = K1(s)ζ2(s),

ζ
′
2(s) = −K1(s)ζ1(s) + K2(s)ζ3(s),

ζ
′
3(s) = −K2(s)ζ2(s),

(1.2)

where K1 > 0. K1-curvature and K2-torsion have the same geometrical in-
terpretation as the curvature and torsion of a curve in E3. It is clear that, if
%1(s) = 1, %2(s) = 0 and %3(s) = 0, we have Frenet equations of a curve in Eu-
clidean 3-space E3 [27]. Additionally, the fundamental theorem of invariants
for versor field (C, ζ) is given as follows:

Theorem 1.1 ( [27]). If the invariants K1(s),K2(s), %1(s), %2(s), %3(s), with
%21(s) + %22(s) + %23(s) = 1 are smooth functions for s ∈ [a, b], then there exist
a curve C : [a, b] → E3 parameterized by arc-length s and a versor field ζ(s),
s ∈ [a, b], whose the curvature, torsion and the functions %i(s) are K1(s),K2(s)
and %i(s), i = 1, 2, 3. Any two such versor fields

(
C, ζ

)
differ by a proper

Euclidean motion.

In this work, we introduce osculating-type curves in a Myller configuration.
We express the necessary conditions for a curve to be an osculating-type curve
with Frenet-type frame in Myller configuration for E3. We have shown that
well-known situations in Euclidean space do not always hold. Considering
the versor field and plane areas due to the structure of the osculating curves,
we believe that it is a work that sheds light. The osculating curves with
Frenet frame in E3 are one of the special cases for the generalized osculating-
type curves since the geometry of versor fields along a curve with Myller
configuration in E3 is a generalization of the usual theory of curves in E3 (see
for generalization [7, 27]).

2 Generalized Osculating-Type Curves

In this section, we introduce the osculating-type curves with Frenet-type frame
in Myller configuration for Euclidean space E3. We acquire the conditions for
being osculating-type curves in Myller configuration and some characteriza-
tions with respect to them. Also, we get some corollaries for the cases of
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invariants %1(s), %2(s) and %3(s) with the condition %21(s) + %22(s) + %23(s) = 1.
Then, we see the osculating-type curves in Myller configuration for Euclidean
space E3 is a generalization of osculating curves in Euclidean space E3.

Definition 2.1. r(s) : I → E3 is called osculating-type curve with Frenet-type
frame in Myller configuration for Euclidean space E3 if

r(s) = η(s)ζ1(s) + ω(s)ζ2(s), s ∈ I, (2.1)

where η(s) and ω(s) are smooth functions.

Before starting the relevant theorems, let us give some preliminary prepa-
rations:

By differentiating the equation (2.1) and using the equation (1.1), we get
as follows:

%1(s)ζ1(s) + %2(s)ζ2(s) + %3(s)ζ3(s) =η′(s)ζ1(s) + η(s)K1(s)ζ2(s)

+ ω′(s)ζ2(s)

+ ω(s)

(
−K1(s)ζ1(s)

+ K2(s)ζ3(s)

)
.

(2.2)

Then, we have: 
η′(s)− ω(s)K1(s) = %1(s),

ω′(s) + η(s)K1(s) = %2(s),

ω(s)K2(s) = %3(s).

(2.3)

We should examine the solutions of equation (2.3) according to the cases
%3(s) = 0 or %3(s) 6= 0. First, let us examine the situation %3(s) 6= 0. Since
%1(s) = 1, %2(s) = %3(s) = 0 is accepted for the Frenet frame in Euclidean
space E3, the case %3 6= 0 will be a new classification that does not correspond
to Frenet frame in E3.

Theorem 2.1. Let r(s) : I → E3 be a curve with Frenet-type frame in Myller
configuration for Euclidean space E3. Then, r(s) is an osculating-type curve
if and only if

r(s) =

(
%2(s)

K1(s)
− 1

K1(s)

(
%3(s)

K2(s)

)′)
ζ1(s) +

%3(s)

K2(s)
ζ2(s), (2.4)

where %3(s) 6= 0.

Proof. Suppose that r(s) is an osculating-type curve with %3(s) 6= 0. Accord-
ing to the equation (2.3), we get ω(s) 6= 0 and K2(s) 6= 0. Then, we obtain:

ω(s) =
%3(s)

K2(s)
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and since K1(s) > 0, we have:

η(s) =
%2(s)

K1(s)
− 1

K1(s)

(
%3(s)

K2(s)

)′
.

Therefore, if the equation (2.1) is considered, what is desired is shown. Con-
versely, assume that the equation (2.4) is provided when %3(s) 6= 0. Then, we
obtain: 

〈
r(s), ζ1(s)

〉
=

%2(s)

K1(s)
− 1

K1(s)

(
%3(s)

K2(s)

)′
,

〈
r(s), ζ2(s)

〉
=

%3(s)

K2(s)
.

(2.5)

By differentiating of the last equation of equation (2.5), we get:

%2(s)−K1(s)
〈
r(s), ζ1(s)

〉
+ K2(s)

〈
r(s), ζ3(s)

〉
=

(
%3(s)

K2(s)

)′
.

By using the equation
〈
r(s), ζ1(s)

〉
, since K2(s) 6= 0, we get 〈r(s), ζ3(s)〉 = 0.

Therefore, r(s) is an osculating-type curve.

Remark 2.2. In Euclidean space E3, the curve is an osculating curve if and
only if the curve is a planar curve (i.e. τ = 0) for Frenet frame (cf. [14]).
However, this is not the case in the case of %3(s) 6= 0 in Myller configuration.

Theorem 2.3. Let r(s) : I → E3 be a curve with Frenet-type frame in
Myller configuration for Euclidean space E3 with %3(s) 6= 0. Then, r(s) is
an osculating-type curve if and only if K1(s)-curvature, K2(s)-torsion and the
functions %1(s), %2(s), %3(s) satisfy the following relation(

%2(s)

K1(s)
− 1

K1(s)

(
%3(s)

K2(s)

)′)′
− %3(s)

K2(s)
K1(s)− %1(s) = 0. (2.6)

Proof. Assume that r(s) be an osculating-type curve where %3(s) 6= 0. In
the first equation of the equation (2.3), by using η(s) and ω(s), we have the
equation (2.6). Conversely, suppose that r is a curve satisfying the relation
given in the equation (2.6). Then, we have:

d

ds

[
r(s)−

(
%2(s)

K1(s)
− 1

K1(s)

(
%3(s)

K2(s)

)′)
ζ1(s)− %3(s)

K2(s)
ζ2(s)

]
= 0.

Consequently, r(s) is an osculating-type curve.
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Since %3(s) 6= 0, some special solutions of differential equation given in the
equation (2.6) where %21(s) + %22(s) + %23(s) = 1 are as follows:

Corollary 2.1. Let r(s) : I → E3 be an osculating-type curve with Frenet-
type frame in Myller configuration for Euclidean space E3 with %3(s) 6= 0. If
%1(s) = 0 and %22(s) + %23(s) = 1, we get:(

− 1

K1(s)

(
%3(s)

K2(s)

)′)′
− %3(s)

K2(s)
K1(s) = 0. (2.7)

Equation (2.7) is a homogeneous differential equation with variable coefficients.

Corollary 2.2. Let r(s) : I → E3 be an osculating-type curve with Frenet-
type frame in Myller configuration for Euclidean space E3 with %3(s) 6= 0. If
%2(s) = 0 and %21(s) + %23(s) = 1, we have:(

− 1

K1(s)

(
%3(s)

K2(s)

)′)′
− %3(s)

K2(s)
K1(s) = %1(s).

Since %3(s) 6= 0, assume that
%3(s)

K2(s)
= y(s) and

1

K1(s)
= p(s), we have:

(p(s)y′(s))′ +
y(s)

p(s)
= −%1(s).

Hence, an inhomogeneous differential equation is obtained from the second
order. This differential equation is first solved with respect to the homogeneous
part, then special solutions are generated depending on the function %1(s).

Corollary 2.3. Let r(s) : I → E3 be an osculating-type curve with Frenet-
type frame in Myller configuration for Euclidean space E3 with %3(s) 6= 0. If
%1(s) = 0, %2(s) = 0 and %3(s) = 1, we get:(

− 1

K1(s)

(
1

K2(s)

)′)′
− K1(s)

K2(s)
= 0.

Let us assume that
1

K2(s)
= y(s) and

1

K1(s)
= p(s), we have:

(p(s)y′(s))′ +
y(s)

p(s)
= 0.
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If we apply the t =
∫ 1

p(s)
ds, we get:

d2y

dt2
+ y = 0. (2.8)

The solution of the differential equation (2.8) is y = c1 cos t+ c2 sin t where c1

and c2 are constants. Since,
1

K2(s)
= y(s) and t =

∫ 1

p
ds, we can write:

1

K2(s)
= c1 cos

(∫
K1(s)ds

)
+ c2 sin

(∫
K1(s)ds

)
.

Therefore,

ω(s) =
1

K2(s)
= c1 cos

(∫
K1(s)ds

)
+ c2 sin

(∫
K1(s)ds

)
,

η(s) = − 1

K1(s)

(
1

K2(s)

)′
= c1 sin

(∫
K1(s)ds

)
− c2 cos

(∫
K1(s)ds

)
.

(2.9)

According to the equation (ürkür), we get:

〈r(s), r(s)〉 = η2(s) + ω2(s) = c21 + c22,

where c1 and c2 are constants. Obviously, the osculating-type curve r(s) is a
spherical curve when %1(s) = 0, %2(s) = 0 and %3(s) = 1.

Now let us give the characterizations for the case of %3(s) = 0. According
to the equation (2.3), we get ω(s) = 0 or K2(s) = 0.

Proposition 2.1. Let r(s) : I → E3 is a curve with Frenet-type frame in
Myller configuration for Euclidean space E3. If r(s) is an osculating-type
curve where %3(s) = 0, the functions η(s) =

〈
r(s), ζ1(s)

〉
, ω(s) =

〈
r(s), ζ2(s)

〉
and %1(s), %2(s), %3(s) satisfy

η2(s) + ω2(s) = 2

∫
(η(s)%1(s) + ω(s)%2(s)) ds, (2.10)

where K2(s) = 0 or ω(s) = 0.

Proof. Let r(s) be a curve with %3(s) = 0 and we get ω(s) = 0 or K2(s) = 0.
Then, from the equation (2.3), we have:{

η′(s)− ω(s)K1(s) = %1(s),

ω′(s) + η(s)K1(s) = %2(s).
(2.11)
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If each side of the first equation of (2.11) is multiplied by η(s), and each side
of the second equation is multiplied by ω(s), then

η(s)η′(s) + ω(s)ω′(s) = η(s)%1(s) + ω(s)%2(s). (2.12)

By integrating both sides of the equation (2.12), the equation (2.10) is ob-
tained.

Proposition 2.2. Let r(s) : I → E3 is a curve with Frenet-type frame in
Myller configuration for Euclidean space E3. If

η2(s) + ω2(s) = 2

∫
(η(s)%1(s) + ω(s)%2(s)) ds (2.13)

one of the expressions

(i) K2(s) = 0, that is %3(s) = 0

(ii) ω(s) = 0, that is %3(s) = 0 and r(s) is a rectifying-type curve

(iii) r(s) is a osculating-type curves

is provided.

Proof. Assume that r(s) be a curve with the equation (2.13). Then, we have:

η(s)η′(s) + ω(s)ω′(s) = η(s)%1(s) + ω(s)%2(s).

By using the following equations
η(s) =

〈
r(s), ζ1(s)

〉
,

η′(s) = %1(s) +
〈
r(s),K1(s)ζ2(s)

〉
,

ω(s) =
〈
r(s), ζ2(s)

〉
,

ω′(s) = %2(s) +
〈
r(s),−K1(s)ζ1(s) + K2(s)ζ3(s)

〉
,

we get:
K2(s)

〈
r(s), ζ2(s)

〉
〈r(s), ζ3(s)〉 = 0. (2.14)

That is, K2(s) = 0 or
〈
r(s), ζ2(s)

〉
= 0 or

〈
r(s), ζ3(s)

〉
= 0. If K2(s) = 0, then

%3(s) = 0. If
〈
r(s), ζ2(s)

〉
= 0, r(s) is a rectifying-type curve with %3(s) = 0

[24]. However, from the definition of osculating-type curves,
〈
r(s), ζ2(s)

〉
= 0

is a contradiction. So,
〈
r(s), ζ2(s)

〉
6= 0. If

〈
r(s), ζ3(s)

〉
= 0, r(s) is an

osculating-type curve.
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Special Case 2.4. Let r(s) : I → E3 is an osculating-type curve with Frenet-
type frame in Myller configuration for Euclidean space E3. Therefore, If
%1(s) = 1, %2(s) = %3(s) = 0, we have the equation (2.10). That is,

η2(s) + ω2(s) = 2

∫
η(s)ds. (2.15)

The expression (2.15) is a characterization of osculating curves in Euclidean
space according to Frenet frame [14]. Then, we get:

(i) If η(s) = 0, since K2(s) = 0 and K1(s) =constant, r(s) is a circle.

(ii) If ω(s) = 0, since K1(s) = 0, r(s) is a line.

By inspiring the example of the study [30], we construct the following
example:

Example 2.5. Let us consider versor fields and invariants as following

ζ1(s) =

(
−4

5
sin(s),− cos(s),

3

5
sin(s)

)
,

ζ2(s) =

(
−4

5
cos(s), sin(s),

3

5
cos(s)

)
,

ζ3(s) =

(
−3

5
, 0,−4

5

)
,

and {
K1(s) = 1,

K2(s) = 0.

By choosing %1(s) = sin(s), %2(s) = cos(s), %3(s) = 0, we have:

r(s) =

(
−4s

5
, 1,

3s

5

)
(2.16)

and

dr

ds
=

(
−4

5
, 0,

3

5

)
= sin(s)

(
−4

5
sin(s),− cos(s),

3

5
sin s

)
+ cos (s)

(
−4

5
cos(s), sin(s),

3

5
cos(s)

)
= %1(s)ζ1(s) + %2(s)ζ2(s).
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Therefore, we get:
r(s) = η(s)ζ1(s) + ω(s)ζ2(s), (2.17)

where {
η(s) = s sin(s)− cos(s),

ω(s) = s cos(s) + sin(s).

Consequently, r(s) is a straight line in E3, and r(s) is an osculating-type curve
in Myller configuration.

Figure 1: The curve with parametric representation written in the equation
(2.16)

It should be noted that the Figure 1 is drawn by using the Wolfram Math-
ematica (Wolfram Cloud).

3 Conclusion

In this paper, we determine osculating-type curves with Frenet-type frame
in Myller configuration for Euclidean space E3. We present some necessary
characterizations for a curve to be an osculating-type curve. Then, we get
some new results that are not valid for osculating curves with Frenet frame in
E3. Also, we construct a numerical example with a figure. As one can say, the
osculating curves with Frenet frame in E3 are one of the special cases for the
generalized osculating-type curves because of the fact that the geometry of
versor fields along a curve with Myller configuration in E3 is a generalization
of the classical theory of curves in E3.



ON GENERALIZED OSCULATING-TYPE CURVES IN MYLLER
CONFIGURATION 95

References

[1] S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, Proc.
Amer. Math. Soc., 27(1) (1971), 126–127.

[2] B.-Y. Chen, When does the position vector of a space curve always lie in
its rectifying plane? Amer. Math. Monthly, 110(2) (2003), 147–152.

[3] B.-Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves,
Bull. Inst. Math. Academia Sinica, 33(2) (2005), 77–90.

[4] B.-Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean
3-space, Tamkang J. Math., 48(2) (2017), 209-–214.

[5] S. Deshmukh, B.-Y. Chen, S. H. Alshammari, On rectifying curves in
Euclidean 3-space, Turk. J. Math., 42(2) (2018), 609-–620.
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[9] K. İlarslan, E. Nešović, Timelike and null normal curves in Minkowski
space E3

1, Indian J. Pure Appl. Math., 35(7) (2004), 881–888.
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Düzce, 81620, Türkiye.
Emails: zehra.isbilir@ogr.sakarya.edu.tr, zehraisbilir@duzce.edu.tr

Murat TOSUN,
Department of Mathematics,
Sakarya University,
Sakarya, 54187, Türkiye.
Email: tosun@sakarya.edu.tr



ON GENERALIZED OSCULATING-TYPE CURVES IN MYLLER
CONFIGURATION 98


