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Recent advances of crack propagation in human
bone

EM. Craciun1,2, R. Cergan3,4∗, S. Dragosloveanu3,4

Abstract

Recent results in mathematical modeling predicting crack behavior
under various load conditions in human bones as anisotropic elastic com-
posite materials are presented in this survey. New and interesting chal-
lenges in theoretical models of fracture were proposed and had significant
importance for fracture mechanics. Our goal is to present an overview of
the use and limitations of existing relevant theories. The present study
aims to introduce mathematical models to researchers unfamiliar with
the concepts, to improve and provide new insights into bone fracture
mechanics.

1 Introduction

This survey reports recent advances in our understanding of mathematical
modeling providing crack behavior in human bone, being a complex mate-
rial, a hard connective tissue, forming a rigid skeleton, and aims to illustrate
pertinent research on the crack propagation theory in 2D bones, considered
composite materials. Bone has a great hierarchized material structure, which
is complex, multiphasic, heterogeneous, and anisotropic. The elastic coeffi-
cients depend on the applied load or the orientation. Bone defects, i.e. holes,
and cracks, constitute. A common problem in medicine represents the oc-
currence of cracks, or other defects in bone microstructure, considered to be
orthotropic elastic composite, (see [1]-[3]).
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There are excellent books and papers covering bone mechanics (see [1]-
[12]), regarded as anisotropic materials. In the last period fracture mechanics
studies of elastic composites in biomechanics were done by several authors,
(see [13]-[17]).

An ample survey of the mathematical models of crack propagations in
bones under the classical or mixed modes of fracture is done by extending
fracture criteria. Crack path propagation direction and the value of the crit-
ical stress which produces crack propagation are presented (see [10]-[17]). A
significant number of studies of fracture bone mechanics have been done to a
very sophisticated level and reported on the effects of bone density, aging, and
disease on these properties, (see [4], [18]-[19]).

Figure 1: Ilium bones

2 Developments in the theory of fracture of bone

Many mathematical models were developed for the fracture of bone phenom-
ena, as composite material. In many papers, human bone is studied as an
orthotropic composite with own microstructure (see [1]-[2], [5]-[6], [10]-[12]).

In this research work, we focus study to 2D quasistatic crack initialization
in human bones, modeled as homogeneous orthotropic materials.

Craciun et al. (see [10,11]), and respectively, Baesu et al. (see [12]), for-
mulated and studied the mathematical problem for a crack in modes I and
III, respectively in mixed mode (I+II) of classical fracture in Ilium, Tibia and
Femur Bones considered to be orthotropic homogeneous materials (see [2]).
Were obtained stress and displacement fields and their asymptotic expressions
necessary to apply the extended versions of generalized Sih’s strain energy den-
sity and maximum stress criteria to get the direction of the crack initialization
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in the Femur, Tibia, and Ilium bones.

2.1 Representation of the fields by complex potentials. Asymptotic
values

Supposing that the bone is an initial deformed homogeneous orthotropic
material, with a crack of length 2a lying on the Ox1, modeled as a cut with
two faces. Also, we consider that the configuration of the body is homogeneous
and stable, ie. the phenomenon of resonance could not appear, (see [13]).

2.1.1 Plane state

Craciun et al. (see [11]) and Baesu et al. (see [12]) studied a cracked bone
in plane state relative to the plane Ox1x2, ie. the nonvanishing displacement
components are uj = uj (x1, x2), for j = 1, 2 and u3 = 0. The nonvanishing
stress and displacement components, (see [11-13]) are given by

tij = 2(−1)i+jReΘij , ui = 2ReΥi,
Θ11 = α1ν

2
1φ
′
1(ζ1) + α2ν

2
2φ
′
2(ζ2), Θ12 = ν1φ

′
1(ζ1) + ν2φ

′
2(ζ2),

Θ21 = α1ν1φ
′
1(ζ1) + α2ν2φ

′
2(ζ2), Θ22 = φ′1(ζ1) + φ′2(ζ2),

Υ1 = β1φ1(ζ1) + β2φ2(ζ2), Υ2 = γ1φ1(ζ1) + γ2φ2(ζ2),

(1)

where φj = φj(ζj), ζj = x1 + νjx2 and the coefficients αj , βj γj , i, j = 1, 2
depend by instantaneous elasticities wklmn, k, l,m, n = 1, 2, 3 and the roots
νj , j = 1, 2 of the characteristic equation.

Using Eqs. (1) and the boundary conditions we get two Riemann-Hilbert
problems with the solutions ψj(ζj) = φ′j(ζj), j = 1, 2,

- for mode I (see [11], [13]):

ψj(ζj) = (−1)jιjIj , j = 1, 2 (2)

where

ι1 = − pα2ν2

2π∆
√
ζ21 − a2

, ι2 =
pα1ν1

2π∆
√
ζ22 − a2

, Ij =

∫ a

−a

√
a2 − t2
t− ζj

dt, (3)

with the following asymptotical values in a small vicinity of the crack tips

ψ1(ζ1) =
α2ν2κI
χ1(ϕ)

, ψ2(ζ2) = −α1ν1κI
χ1(ϕ)

, κs =
Kj

2∆
√

2πr
, s = I, II (4)

Respectively,
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- for mixed mode (I+II) (see [12]):

ψ1(ζ1) = (−ι1/α2ν2)(I1 sinβ cosβ + I1 sin2 β),

ψ2(ζ2) = (ι2/α1ν1)(I2 sinβ cosβ + I2 sin2 β), (5)

Ij =
∫ a
−a

1
t−ζj dt, j = 1, 3

with the asymptotical values

ψ1(ζ1) =
α2ν2κI + κII

χ1(ϕ)
, ψ2(ζ2) = −α1ν1κI + κII

χ1(ϕ)
, κi =

Ki

2∆
√

2πr
, i = I, II

(6)
where χj(ϕ) =

√
cosϕ+ νj sinϕ, j = 1, 3, p represents the normal force act-

ing on the crack, KI , KII , and KIII represent the stress intensity factors in
the fracture modes I−III and β is the angle between the crack and Ox2 axis.

2.1.2 Anti-plane state. Mode III of Fracture

Craciun et al. (see [10]) studied a cracked bone in an anti-plane state
relative to the planeOx1x2, ie. the only nonvanishing displacement component
is u3 = u3 (x1, x2). We have the following representation of the stresses and
displacements fields, (see [10], [13]), by an arbitrary complex potential φ3 =
φ3(ζ3), ζ3 = x1 + ν3x2 = i(Ω1331/Ω2332)1/2

t23 = −2Reφ′3(ζ3), t13 = 2Reν3φ
′
3(ζ3), u3 = −2Ω−12332Reν

−1
3 φ3(ζ3), (7)

where ν3 is the root of the characteristic equation.
Using the representation formulae and the boundary conditions it was ob-

tained the solution to Riemann-Hilbert problems (see [10], [13]):

ψ(ζ3) =
τ

2π
√
ζ23 − a2

I3, (8)

with the following asymptotical value in a small vicinity of the crack tips

φ(ζ3) = −KIII

√
r

2π
χ3(ϕ), (9)

where τ is a constant anti-plane force.
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2.2 Crack propagation criteria

2.2.1 Sih’s generalized fracture strain energy density criterion (SED)

We denote by W the involved strain energy density and we have

W (r, ϕ) =
K2
I

4πr
si(ϕ) + a regular part (10)

where si(ϕ), i = I, III are Sih’s strain energy density factors corresponding
to the plane i = I and respectively anti-plane modes i = III, (see Table 1):

The Strain Energy Density (SED) criterion states that the crack will start
to propagate when the strain energy density factor sI(ϕ) has the lowest value.

Erdogan and Sih’s Maximum Tangential Stress (MTS) criterion states that:
The crack propagation will initialize in a radial direction in the plane normal
to the direction of highest tension.
These hypotheses imply that the crack will start in a perpendicular direction
on ϕc along which the tangential stress t∗23, respectively t∗ϕϕ, are maximum,
with t∗23(ϕc) = maxϕ∈[−π,π] t

∗
23(ϕ), t∗ϕϕ(ϕc, β) = maxϕ∈[−π,π] t

∗
ϕϕ(ϕ, β), (see

Table 1).

Table 1: SED and MTS criteria
Paper Strain energy density

Tangential stress

Craciun et al. ([10]) sIII(ϕ) = (cos2 ϕ+ q2 sin2 ϕ)−1/2

t∗23 = Re (cosϕ+ ν3 sinϕ)−1/2

Craciun et al. ([11]) sI(ϕ)=Re
[
ν1ν2
ν2−ν1

(
ν1

χ1(ϕ)
− ν2

χ2(ϕ)

)]
Re
[

1
ν2−ν1

(
ν2b1
χ1(ϕ)

− ν1b2
χ2(ϕ)

)]
-

Re
[
ν1ν2
ν2−ν1

(
1

χ1(ϕ)
− 1

χ2(ϕ)

)]
Re
[
ν1ν2
ν2−ν1

(
b1

χ1(ϕ)
− b2

χ2(ϕ)

)]
-

Re
[
ν1ν2
ν2−ν1

(
1

χ1(ϕ)
− 1

χ2(ϕ)

)]
Re
[
ν1ν2
ν2−ν1

(
c1ν2
χ1(ϕ)

− c2ν1
χ2(ϕ)

)]
+

Re
[

1
ν2−ν1

(
ν2

χ1(ϕ)
− ν1

χ2(ϕ)

)]
Re
[

1
ν2−ν1

(
c1

χ1(ϕ)
− c2

χ2(ϕ)

)]
tϕϕ(ϕ) = Re

[
ν1ν2
ν2−ν1

(
ν1

χ1(ϕ)
− ν2

χ2(ϕ)

)]
sin2 ϕ+

2 Re
[
ν1ν2
ν2−ν1

(
1

χ1(ϕ)
− 1

χ2(ϕ)

)]
sinϕ cosϕ+

Re
[

1
ν2−ν1

(
ν2

χ1(ϕ)
− ν1

χ2(t)

)]
cos2 ϕ

Baesu et al. ([12]) t∗ϕϕ(ϕ, β) = t∗11 sin2 ϕ− (t∗12 + t∗21) sinϕ cosϕ+ t∗22 cos2 ϕ



Recent advances of crack propagation in human bone 48

2.2.2 Crack propagation in Femur, Tibia, and Ilium bones

In biomechanics studies regarding fracture of bones, modeled as elastic com-
posites were done by several authors in excellent books and papers, (see [1]-
[12]). Extending SED and MTS fracture criteria, (see [13], [16]-[17]) deter-
mined the crack path propagation direction and the value of the critical stress
which produces crack propagation in human bones as the Tibia, Femur, and
Ilium, considered to be modeled as orthotropic materials characterized by the
mechanical constants as in Table 2.

Table 2: Elastic constants for Femur, Tibia, and Ilium bones, ([2], [10]-[12])
E1 E2 E3 G12 G13 G23 ν12 ν13 ν21 ν31 ν32 ν23

Femur 12 13.4 20 4.53 5.61 6.23 0.37 0.22 0.42 0.37 0.35 0.22
GPa GPa GPa GPa GPa GPa

Tibia 6.91 8.51 18.4 2.41 3.56 4.91 0.49 0.12 0.62 0.32 0.31 0.14
GPa GPa GPa GPa GPa GPa

Ilium 11.6 12.2 19.9 4 5 5.4 0.42 0.23 0.44 0.39 0.38 0.23
GPa GPa GPa GPa GPa GPa

Craciun et al. [10], studied the crack propagation in the anti-plane mode, mode
III of classical fracture, in Femur and Tibia bones. Using Sih’s SED generalized
criterion, for finding the anti-plane crack propagation angle ϕc, was necessary
to get the minimum of sIII(ϕ), given in Table 1. Was obtained that ϕc = 0,
and the same result was found using MTS generalized criterion for the shear
stress t23. An interesting fact is that both SED and MTS generalized criteria
indicate the same value of ϕc in the vicinity of 0o, ie. crack will propagate
along its line.
Craciun et al. [11] and Baesu et al. [12] studied the plane crack propagation
in Ilium bones subjected to mode I and respectively for mixed mode (I+II) of
classical fracture.
For the crack in mode I, computing sI(ϕ), tϕϕ(ϕ), (see Table 1), and using
SED and MTS generalized criteria was obtained that the crack propagates
along its line.
For the mixed mode (I+II) computing t∗ϕϕ(ϕ, β), (see Table 1), and using
MTS generalized criteria was obtained an interesting result that, meanwhile
the inclination angle β, increases from 0o, to 90o, the crack propagation angle
ϕc decreases to 0o, well-known result for a crack subjected in mode I of classical
fracture.
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Table 3: Crack propagation angle
Paper Bone Crack propagation angle (ϕc)

Craciun et al. ([10]) Femur 0o

Tibia 0o

Craciun et al. ([11]) Ilium 0o

Baesu et al. ([12]) Ilium ϕc = ϕc(β)

3 Conclusions

The occurrence of cracks or other defects in bones represents an important
problem that can be studied by analytical, numerical, and experimental meth-
ods. The applications of fracture mechanics mathematical models in bone me-
chanics represent a great success in a deeper understanding of bone fracture
phenomena in medicine. Also, the interesting problems proposed by biology
and medicine helped in developing new and generalized crack propagation cri-
teria for applications of fracture mechanics.
Assuming that bones have almost the same structure as orthotropic elas-
tic composites, using the representing theories by complex potentials of the
stresses and displacements fields, their asymptotical values in the vicinity of
the crack tips and extending classical crack propagation criteria from isotropic
case crack propagation studies in human bones were presented.
Interesting results were obtained that in Femur, Tibia, and Ilium bones the
crack propagates along its line in mode I and antiplane mode, and in mixed
mode, the crack propagation direction depends on the inclination angle.
Future researches in bone biomechanics are necessary and will probably use
more complex mathematical models to study the dependence of crack prop-
agation and critical values of stresses which produces crack initialization by
other factors from medicine such as bone density, healing, aging, and diseases
such as diabetes and osteoporosis.

The authors declare that all subjects gave their informed consent for in-
clusion before they participated in the study.
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