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A new approach to (dual) Rickart modules via
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Abstract

In the past few decades, researchers have found that studying mod-
ules using endomorphisms is a powerful and useful tool. This has led
to valuable works in this field. Recently, the study of (dual) Rickart
modules has become an important approach as they are deeply con-
nected to endomorphisms. Building on this work, the authors introduce
a new perspective on (dual) Rickart modules using isomorphism. We
also define virtually (dual) Rickart modules. It is shown that rings with
all modules virtually Rickart are semisimple rings. The paper includes
various examples to illustrate the concepts presented.

1 Introduction

The rings discussed in this paper will have an identity element and will be
associative. Similarly, unless specified otherwise, all modules will be right
modules. A submodule L of V is considered essential in V if it does not
contain a nonzero element from an arbitrary nonzero submodule U of V . On
the other hand, a submodule W of V is considered small in V if V is not equal
to the sum of any proper submodule L of V with W . The module V is hollow,
provided each proper submodule is small in V . For a module V and W ≤ V ,
the notion W ≤⊕ V means W is a direct summand (ds, for short) of V . Note
also that Rad(V ) is defined to be the sum of all small submodules of V and
Soc(V ) is equal to sum of all simple submodules of V .

Key Words: annihilator, dual Rickart module, virtually Rickart module, virtually dual
Rickart module, endomorphism ring.

2010 Mathematics Subject Classification: Primary 16D10, 16D40; Secondary 16D90.
Received: 08.05.2023
Accepted: 25.10.2023

5



A NEW APPROACH TO (DUAL) RICKART MODULES VIA ISOMORPHISMS 6

The Q-module V has a subset called Z(V ), which consists of elements x in
V such that xI = 0 for some essential right ideal I of the ring Q. If Z(V ) = V ,
then V is called singular and when Z(V ) = 0 then V is said to be nonsingular.

The concepts of Rickart and Baer rings have their origins in functional
analysis and are closely related to C∗-algebras and von Neumann algebras.
The notion of Baer rings was first introduced by Kaplansky in 1955, and later
in 1960, he extended it to Rickart rings. In 1967, he added quasi-Baer rings
to the list. Rickart rings (also called p.p. rings) and (quasi-)Baer rings are
significant for providing a wide range of idempotents, which in turn contributes
to the structure theory for rings. There have been several research papers
exploring the characteristics of Baer, quasi-Baer, and Rickart rings ([2, 4, 5,
6, 7]). These rings have specific characteristics, such as Baer rings having an
idempotent that generates the right annihilator of any nonempty subset. The
concept of Baer rings has since been extended to modules ([18]), with a Baer
module having the property that the right annihilator of any nonempty subset
of the module is a ds. Similarly, Rickart modules have the property that the
right annihilator of any single element of the endomorphism ring is a ds. Dual
Baer modules have also been studied ([12]), and there is interest in exploring
the dual notion of the Rickart property for modules.

The study on modules V , where kernel of f is a ds of V for any f ∈ S =
EndQ(V ) (known as Rickart modules), was conducted in [14]. In [14], the
authors discuss Rickart modules and provide some characterizations of them.
They also explore the properties of Rickart modules and demonstrate that
any ds of a Rickart module will also possess the same property. Additionally,
they prove that each Rickart module is K-nonsingular and has the Summand
Intersection Property (SIP ). The authors establish that the class of rings Q
in which every right Q-module is Rickart is precisely that of the semisimple
artinian rings. Similarly, the class of rings Q in which each free right Q-
module is Rickart is exactly that of the right hereditary rings. They also
provide examples and results that distinguish the concept of a Rickart module
from that of a Baer module.

A module V is dual Rickart provided the image of every endomorphism
of V is a direct summand of V ([15]). The property of being a dual Rickart
module is inherited by ds but not by direct sums. It is also shown that dual
Rickart modules satisfy the Summand Sum Property (SSP ). The concept of
relative dual Rickart condition is introduced to characterize a dual Rickart
module. In [15], it is shown that a ring over which each right module is dual
Rickart is semisimple artinian, while a ring where every finitely generated free
module is dual Rickart is a von Neumann regular ring (a ring Q is called von
Neumann regular if for each a ∈ Q, there is x ∈ Q such that a = axa). Some
generalizations of dual Rickart modules have been introduced and studied,
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recently ([1, 16, 17]).
Over the past ten years, there has been a growing interest in using isomor-

phisms to study modules. A recent paper by Behboodi et al. proposed a new
approach to semisimple modules using the concept of virtually (semi)simple
modules and rings ([3]). Chaturvedi et al. ([8]) introduced iso-retractable
modules as a extension of retractable modules. The present article aims to
build on their works by examining Rickart modules and dual Rickart modules.

This paper has two main sections. In Section 2, we introduce the concept
of virtually Rickart modules and provide examples of such modules. We say
a module V is virtually Rickart if the kernel of each endomorphism of V is
isomorphic to a ds of V . Some general properties of such modules are studied
and investigated.

Section 3 is devoted to explore the dual notion of virtually Rickart modules,
which we call virtually dual Rickart modules. We prove that every virtually
dual Rickart module satisfies GSSP . Also, it is proven that over a ring Q
each projective right Q-module is virtually dual Rickart if and only if Q is a
right hereditary ring.

2 virtually Rickart modules

Recently, researchers have become interested in studying module theory con-
cepts via isomorphisms. This is a strong motivation for the authors to focus
on some known concepts such as Rickart modules. This section explores the
general properties of virtually Rickart modules and their relationship with
other known module classes. It also notes that virtually Rickart modules pos-
sess GSIP . Additionally, we prove that rings where all modules are virtually
Rickart are semisimple rings.

Definition 2.1. Let V be a module. We call V virtually Rickart, in case the
kernel of each endomorphism of V is isomorphic to a ds of V .

Modules V with each submodule isomorphic to V are called virtually simple
in [3]. The Z-module Z is virtually simple while it is not simple (semisimple).

Recall from [3] that, a module V is said to be virtually semisimple provided
each submodule of V is isomorphic to a ds of V . Note that each virtually
(semi)simple module is virtually Rickart.

Clearly, every Rickart module is virtually Rickart. The converse may not
hold.

Example 2.2. Set V = Z ⊕ Zp as an Z-module where p is a prime number.
Suppose W is a proper submodule of V . Then W is either aZ⊕ 0 or aZ⊕ Zp
(a ∈ Z). In this direction, W is isomorphic to a direct summand of W implying
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that V is virtually semisimple. In fact, W is virtually Rickart. Note also that
by a similar endomorphism to one defined in [14, Example 2.5], we conclude
that V is not a Rickart Z-module.

Remark 2.3. Assume V is an indecomposable module. If V is virtually Rickart,
then for each endomorphism η : V → V , the kernel must be zero or Kerη ∼=
V . Note that if V is finite, therefore each endomorphism of V must be a
monomorphism.

Definition 2.4. Let V be a module. Then V is said to satisfy T ∗ provided
if L ≤ U ≤ V and U is a ds of V with L ∼= D and D a ds of V , we have L is
isomorphic to a ds of U .

It is clear that every semisimple module satisfies T ∗.
Recall that a module V is (weak) duo, in case each (ds) submodule W of

V is fully invariant (i.e. for each endomorphism η of V , η(W ) is contained in
W ).

Proposition 2.5. Let V be a module such that for each 0 6= L ≤ U ≤ V ,
there exists an epimorphism from U to L. If V is weak duo, then V satisfies
T ∗.

Proof. Let L ≤ U ≤ V , where U is a ds of V . Suppose L ∼= D and D is a ds
of V . Set λ : L → D be the corresponding isomorphism. From assumption,
there exists an epimorphism f : U → L. Now, consider θ = j ◦ λ ◦ f ◦ πU . So
θ ∈ EndQ(V ). Being V weak duo implies θ(U) ⊆ U . Note that θ(U) = D.
Hence D is contained in U . Now, we are done.

Proposition 2.6. Let V be a virtually Rickart module. If V satisfies T ∗, then
each ds of V is virtually Rickart.

Proof. Let V be a virtually Rickart module with T ∗. Suppose that W is a ds
of V with the decomposition V = W ⊕W ′. Let η : W → W be an arbitrary
endomorphism of W . So h = j ◦ η ◦ πW : V → V is an endomorphism of V .
Note that V is virtually Rickart, so that Kerh is isomorphic to a ds D of V .
It is not hard to check that Kerh = Kerη⊕W ′. Now, Kerη is isomorphic to
a ds of D and hence is isomorphic to a ds of V . Since V satisfies T ∗, Kerη is
isomorphic to a ds of W . This completes the proof.

Proposition 2.7. Let V = V1⊕ . . .⊕Vn be a weak duo module, where Vi ≤ V .
If Vi is virtually Rickart for i = 1, . . . , n, then V is virtually Rickart.

Proof. Let f : V → V be an endomorphism of V . Hence fi = f |Vi
: Vi → Vi

is an endomorphism of Vi for i = 1, . . . , n. Being Vi virtually Rickart implies
there exists a ds Di of Vi such that Kerfi ∼= Di, for i = 1, . . . , n. As Vi is
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a fully invariant submodule of V , we have Kerf = Kerf1 ⊕ . . . ⊕ Kerfn ∼=
D1 ⊕ . . .⊕Dn. Note that D1 ⊕ . . .⊕Dn is a ds of V .

The following introduces a condition to ensure us a virtually Rickart mod-
ule is Rickart.

Theorem 2.8. Assume V is a virtually Rickart module. Then V is Rickart if
and only if for each η : V → V and every isomorphism σ : Kerη → W where
W is a ds of V , σ can be extended to an endomorphism θ of V .

Proof. Suppose that V is a Rickart module. Consider an endomorphism η :
V → V and an isomorphism σ : Kerη → W where W is a ds of V . Being
V Rickart implies Kerη ⊕ L = V where L ≤ V . It is not hard to verify that
j ◦ σ ◦ πKerη is an extension of σ. Here j : W → V is the inclusion and
πKerη : V → Kerη is the projection on Kerη.

For the converse, suppose that η : V → V is an endomorphism of V . As V
is virtually Rickart, hence there exists an isomorphism σ : Kerη → W where
W is a ds of V . By assumption σ can be extended to θ : V → V . Now consider
ξ = πW ◦θ, where πW : V →W is the projection of V on W . Note that for each
t ∈ Kerη, we have ξ(t) = πW ◦ θ(t) = πW (θ(t)) = πW (σ(t)) = σ(t). We next
show that V = Kerξ⊕Kerη. To verify, choose m ∈ V as an arbitrary element
of V . Then ξ(m) = (πW ◦ θ)(m) = σ(t) = ξ(t) (note that (πW ◦ θ)(m) ∈ W
and σ is onto, so there is an element t of Kerη such that σ(t) = (πW ◦ θ)(m)).
It follows that m − t ∈ Kerξ. This means that V = Kerξ + Kerη. Choose
y ∈ Kerξ ∩Kerη. Hence σ(y) = ξ(y) = 0, as y ∈ Kerξ and also y ∈ Kerη.
As σ is one-to-one, y = 0. This completes the proof.

Definition 2.9. ([20]) Let V be a module. Then V satisfies GSIP (general-
ized SIP ) provided the intersection of each two ds of V is isomorphic to a ds
of V .

Theorem 2.10. ([20, Theorem 2.3]) An Q-module V satisfies GSIP if and
only if for every decomposition V = A ⊕ B and each Q-homomorphism η :
A→ B, the kernel of η is isomorphic to a ds of V .

From [14, Proposition 2.16], each Rickart module satisfies SIP . It is nat-
ural to verify an analogue for virtually Rickart modules.

Proposition 2.11. Each virtually Rickart module satisfies GSIP .

Proof. Suppose that V = A⊕B is a decomposition of V . Assume η : A→ B
is an Q-homomorphism. Therefore h = j ◦η◦πA : V → V is an endomorphism
of V where j : B → V is the inclusion and πA : V → A is the projection of
V on A. Now consider the kernel of h. It is not hard to check that Kerh =
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Ker(η ◦ πA). As V is virtually Rickart, we can say Kerh is isomorphic to a
ds of V . Next, we show that Kerh = Kerη ⊕ B. To prove it, suppose that
x ∈ Kerh. So x = a + b where a ∈ A and b ∈ B. As η ◦ πA(x) = η(a) = 0,
we conclude that a ∈ Kerη. It follows that Kerh ⊆ Kerη ⊕B. Now consider
x = a+ b ∈ Kerη⊕B. Now, η ◦πA(x) = η(a) = 0. Hence, Kerh = Kerη⊕B.
By assumption, Kerη ⊕ B is isomorphic to a ds D of V . Now, it is easy to
verify that Kerη is isomorphic to a ds of D and hence is isomorphic to a ds
of V .

Remark 2.12. The converse of Proposition 2.11 may not hold. Consider the
Z-module V = Zpn where n > 1. Verify that the kernel of η : V → V with
η(x) = px, ∀x ∈ V is pV 6= 0. Therefore, V is not virtually Rickart. Note that
V is indecomposable, so satisfies GSIP .

Remark 2.13. Note that if the injective envelope of a module V over a com-
mutative Noetherian ring is (virtually) Rickart, then E(V ) is a Baer module.
This is a consequence of [14, Proposition 2.15] and [20, Corollary 2.10].

Definition 2.14. Let V1 and V2 be two Q-modules. In this direction, we say
V1 is virtually V2-Rickart provided for each Q-homomorphism η : V1 → V2,
the kernel of η is isomorphic to a ds of V1.

Note that if V1 is V2-Rickart then V1 is virtually V2-Rickart. Also, for a
semisimple module V , every submodule W of V is virtually Rickart relative
to each submodule U of V .

Proposition 2.15. Assume that V is a module and Vi, Vj ≤ V . If V satisfies
GSIP and Vi⊕Vj is a ds of V for i 6= j, then for each ξ : Vi → Vj, the kernel
of ξ is isomorphic to a ds of V .

Proof. Let η : Vi → Vj be an arbitrary Q-homomorphism. We define W =
{mi + η(mi) | mi ∈ Vi}. Consider mi + η(mi) = mj ∈ W ∩ Vj . So mi =
mj − η(mi). It follows that mi = 0, as Vi ∩ Vj = 0. So W ∩ Vj = 0. It is
clear that W ⊕ Vj ⊆ Vi ⊕ Vj . For the other side, assume mi + mj ∈ Vi ⊕ Vj .
Hence mi + mj = mi + η(mi) + mj − η(mi) ∈ W ⊕ Vj . It follows that
W ⊕ Vj = Vi ⊕ Vj . Therefore, W is a ds of V . Satisfying V in GSIP implies
that W ∩ Vi is isomorphic to a ds of V . This means Kerη is isomorphic to a
ds of V .

Corollary 2.16. If V ⊕ V satisfies GSIP , then the kernel of each endomor-
phism of V is isomorphic to a ds of V ⊕ V .

Proposition 2.17. Let V be a module. Consider the following:
(1) E(V ) is virtually Rickart;
(2) For each two submodules A,B of V , E(A ∩B) = E(A) ∩ E(B).
Then (1)⇒ (2). The converse holds in case E(V )⊕ E(V ) satisfies SIP .
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Proof. (1)⇒ (2) Follows from [20, Corollary 2.8] and Proposition 2.11.
(2)⇒ (1) If (2) holds, then by [14, Corollary 2.23], E(V ) is Rickart.

Theorem 2.18. Let V be a right Q-module. Then the following are equivalent:
(1) V is virtually Rickart;
(2) For each submodule W of V , each ds L of V and each Q-homomorphism

ξ : L→W , the kernel of ξ is isomorphic to a ds of V ;
(3) For each ds W,L of V and each Q-homomorphism η : V → W , the

kernel of η |L is isomorphic to a ds of V .

Proof. (1) ⇒ (2) Suppose that W ≤ V and L is a ds of V . Let ξ : L → W
be an Q-homomorphism. So h = ξ ◦ πL : V → W is a homomorphism where
πL : V → L is the projection on L. Consider Ker(ξ ◦ πL). It can be verified
that Kerh = Kerξ ⊕ L′ where L ⊕ L′ = V . By (1), we can say Kerh ∼= D
where D is a ds of V . So the kernel of ξ will be isomorphic to a ds of V , as
required.

(2)⇒ (3) Obvious.
(3)⇒ (1) Take W and L to be V .

The rings with all modules virtually Rickart are precisely semisimple rings,
as the following shows.

Theorem 2.19. Let Q be a ring. Then the following statements are equiva-
lent:

(1) Every right Q-module is virtually Rickart;
(2) Each injective right Q-module is virtually Rickart;
(3) Q is semisimple;
(4) Each right Q-module satisfies GSIP .

Proof. (1)⇒ (2) Obvious.
(2) ⇒ (3) Since for an injective right Q-module, being virtually Rickart

coincide with being Rickart, so by [14, Theorem 2.25] Q is semisimple.
(3)⇒ (1) Clear.
(3)⇔ (4) It follows from [20, Corollary 2.9].

3 virtually dual Rickart modules

After introducing virtually Rickart modules, it is expected we define an ana-
logue for dual Rickart modules. By the way, we call a module V virtually dual
Rickart if the image of any endomorphism of V is isomorphic to a ds of V .
We will see that a direct summand of a virtually dual Rickart module does
not inherit the property. We shall provide a condition to fix this issue. Every
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virtually dual Rickart module has been proved to satisfy GSSP . If V is a
uniserial module and V ⊕ V is virtually dual Rickart, then it is shown that V
is virtually dual Rickart.

Let’s start with the key definition.

Definition 3.1. Let Q be a ring and V be an Q-module. Then we call V
virtually dual Rickart in case for each endomorphism η of V , the submodule
Imη is isomorphic to a ds of V .

The following is a direct consequence of the definitions.

Proposition 3.2. Assume V is a module. Then the following statements are
equivalent:

(1) V is virtually dual Rickart;
(2) For each η ∈ EndQ(V ), there is a decomposition V = D ⊕ D′ where

Imη ∼= D such that the sequence 0→ D → V → D′ splits where j : D → V is
the inclusion and π : V → D′ is the projection of V on D′.

Recall that a module V satisfies C2 condition if for W ≤ V , we have
W ∼= D ≤⊕ V , then W itself is a ds of V . Each quasi-injective module
satisfies C2. Also V satisfies D2 provided V/W ∼= D ≤⊕ V implies W is a ds
of V . It is not hard to verify that any quasi-projective module satisfies D2.

By the definition, we can say that each dual Rickart module is virtually
dual Rickart while the converse may not hold. Although, if V satisfies C2 and
V is virtually dual Rickart then V is dual Rickart.

Remark 3.3. For a quasi-injective module V two concepts virtually dual Rickart
and dual Rickart, coincide. This follows from the fact that each quasi-injective
module is injective relative to its each ds.

Recall from [11] that a module V is called anti-Hopfian in case V is not
simple and for each proper submodule W of V we have V ∼= V/W . Note that
these modules were called co-isosimple in [10].

Let V be a module. Then V is called noncosingular (cosingular) if Z(V ) =⋂
{Kerη | η : V → Y, Y ∈ S} is equal to V ({0}). Here S denotes the class of

all small right Q-modules ([19]). Each homomorphic image of a noncosingular
module is noncosingular. Note that if a module V is both cosingular and
noncosingular, then V = {0}.

We provide some examples of virtually dual Rickart modules. In fact, we
include some virtually dual Rickart modules that are not dual Rickart.

Example 3.4. (1) Each virtually simple module is obviously virtually dual
Rickart. Although, there exist virtually simple modules which are not dual
Rickart. For instance, the Z-module Z is not dual Rickart.
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(2) Every anti-Hopfian (co-isosimple) module is virtually dual Rickart.
Suppose η : V → V is a nonzero endomorphism of V . Then Imf ∼= V/Kerf .
As V is anti-Hopfian, so Imf ∼= V . Hence, V is virtually dual Rickart. Note
that the converse may not hold. Assume that Q is a semisimple ring. There-
fore each right Q-module is virtually dual Rickart as well as dual Rickart.
Note that by [11, Remark 6], an Artinian ring does not admit an anti-Hopfian
module. Also, if Q is a commutative ring, then each anti-Hopfian module must
be quasi-injective ([11, Theorem 10]) while over such rings there are virtually
dual Rickart non-quasi-injective modules (for example ZZ).

(3) Each Rickart module V is virtually dual Rickart. The converse holds
if V satisfies D2.

(4) Each noncosingular hollow module is virtually dual Rickart. This fol-
lows from the fact that for each nonzero endomorphism f ∈ EndQ(V ), the
image of f is either small in V or equal to V .

Example 3.5. (1) Any submodule of the Z-module V = Q is a Rickart module
([13, Example 2.2(iv)]). So that any submodule of V is both virtually dual
Rickart and virtually Rickart.

(2) Let Q be a Dedekind domain and V be a direct sum of finitely generated
torsion- free Q-modules of rank one. So each submodule of V is a Rickart
module ([13, Example 2.2(v)]). Therefore, such modules are both virtually
dual Rickart and virtually Rickart.

(3) Each finitely generated free (projective) module over a right semi-
hereditary ring is a Rickart module, so that is both virtually dual Rickart
and virtually Rickart ([13, Example 2.2(vi)]).

Assume V is an indecomposable module. Note that the converse of Ex-
ample 3.4(1), holds in case each proper submodule of V is an image of an
endomorphism of V .

It is clear that, each virtually semisimple module is virtually dual Rickart.
Note that by Socr(Q) for a ring Q, we mean the socle of the right Q-module

Q. The left socle is defined in a same manner.

Example 3.6. ([3, Example 2.7])
Assume Q = Z4 and W = Soc(Q) = {0, 2}. Set U =

⊕∞
i=1W . As W is

semisimple, U is a semisimple Q-module. Consider the Q-module V = Q⊕U .
Then Soc(V ) = Soc(Q) ⊕ Soc(U) = W ⊕ U ∼= U . Suppose that f : V → V
is an endomorphism of V . We consider two cases. First, suppose that Imf ⊆
Soc(V ). It follows that Imf is a ds of Soc(V ). In fact, Imf is isomorphic to
a ds of U and hence is isomorphic to a ds of V . Otherwise, Imf * Soc(V ).
So, Imf ∼= Q⊕D, where D is a ds of U . In this case, Imf is also isomorphic
to a ds of V . Hence, V is virtually dual Rickart. Note that, Q as a ds of V
can not be virtually dual Rickart. Consider, the endomorphism g : Q → Q
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defined as g(x) = 2x for each x ∈ Q. It is clear that Img is not isomorphic to
a ds of Q.

Via Example 3.6, a ds of a virtually dual Rickart module need not be
virtually dual Rickart. It is expected to provide a condition to make it possible.

Proposition 3.7. Let V be a virtually dual Rickart module satisfying T ∗.
Then each ds of V is virtually dual Rickart.

Proof. Let V be virtually dual Rickart, V = W ⊕W ′ and η ∈ EndQ(W ). So
h = j ◦ η ◦ πW ∈ EndQ(V ). Note also that Imh = Imη. By assumption
Imh ∼= D ≤⊕ V . As Imh ≤ W ≤⊕ V and V satisfies T ∗, then Imh is
isomorphic to a ds of W , as required.

Remark 3.8. It is easy to check that each virtually dual Rickart module with
D2 is Rickart. So, we can say that each ds of a virtually dual Rickart module
with D2 is virtually dual Rickart. This follows from the fact that any ds of a
Rickart module inherits the property.

A module V satisfies GSSP (generalized SSP ) provided the sum of each
two ds of V is isomorphic to a ds of V ([21]). Note that each SSP module
satisfies GSSP . Also every dual Rickart module satisfies SSP (see [15, Propo-
sition 2.11]). We next try to present an analogue for the virtually dual Rickart
modules.

Proposition 3.9. Each virtually dual Rickart module satisfies GSSP .

Proof. Assume that V = A ⊕ B is an arbitrary decomposition of V and η :
A→ B is an Q-homomorphism. So h = j◦η◦πA : V → V is an endomorphism
of V where j : B → V is the inclusion and πA : V → A is the projection of V
on A. As Imh = Imη, so Imη is isomorphic to a ds U of V . Now, the result
follows from [21, Proposition 2.6].

We next provide a condition to ensure us a virtually dual Rickart module
is dual Rickart.

Theorem 3.10. Let V be a virtually dual Rickart module. Then V is dual
Rickart if and only if for each endomorphism η of V and each isomorphism
σ : Imη → D where D is a ds of V , there exists θ : V → V such that
θ |Imη= σ.

Proof. Assume V is dual Rickart and η : V → V is an endomorphism of V . Let
σ : Imη → D be an isomorphism where D is a ds of V . Being V dual Rickart,
there is a direct decomposition V = Imη ⊕ L, for L ≤ V . Now consider
θ = j ◦ σ ◦ πImη where j : D → V is the inclusion map and πImη : V → Imη
is the projection on Imη. Then, θ is the required Q-homomorphism.
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Conversely, suppose that V satisfies stated property and η : V → V is an
endomorphism. As V is virtually dual Rickart, there is a direct summand D
of V and an isomorphism σ : Imη → D. By assumption, σ can be extended
to θ : V → V . Set ξ = πD ◦ θ. Let y ∈ Imη be arbitrary. Now, ξ(y) =
(πD ◦ θ)(y) = πD(σ(y)) = σ(y). Consider an arbitrary m ∈ V . So ξ(m) ∈ D.
As σ is onto, there exists a y ∈ Imη such that ξ(m) = σ(y). Note also that
σ(y) = θ(y). It follows that m−y ∈ Kerξ. In fact, we prove V = Imη+Kerξ.
For each x ∈ Imη∩Kerξ, we have ξ(x) = 0 = σ(x). As σ is one-to-one, x = 0.
Therefore, V = Imη ⊕Kerξ, as required.

Definition 3.11. Let V1 and V2 be two Q-modules. We say V1 is virtually
V2-dual Rickart provided for each Q-homomorphism η : V1 → V2, the image
of η is isomorphic to a ds of V2.

By [15], a module V1 is V2-dual Rickart if the image of anyQ-homomorphism
from V1 to V2 is a ds of V2. So, it is obvious that relatively dual Rickartness
implies relatively virtually dual Rickartness.

Example 3.12. Consider the Z-modules V1 = Zp and V2 = Zp∞ . Note
that both of V1 and V2 are virtually dual Rickart while V1 is not virtually dual
Rickart relative to V2 as the image of each nonzero Z-homomorphisms from V1
to V2 is finite and can not be equal to V2. Note also that, a non-virtually dual
Rickart module can be virtually dual Rickart relative to a module. Consider
the Z-modules Zpn and Zt where t is a square-free natural number.

Proposition 3.13. Let V be a virtually dual Rickart module relative to W .
If W ′ ≤W and W ′ ∼= V ′ ≤⊕ V , then W ′ is isomorphic to a ds of W .

Proof. Suppose that W ′ ≤ W and W ′ ∼= V ′ ≤⊕ V . Assume ξ : V ′ → W ′

is the corresponding isomorphism. Hence h = j ◦ ξ ◦ πV ′ : V → W is an
Q-homomorphism where πV ′ : V → V ′ is the projection of V on V ′ and
j : W ′ → W is the inclusion. As V is virtually W -dual Rickart, Imh is
isomorphic to a ds of W , namely U . Notice that Imh = W ′. This completes
the proof.

Proposition 3.14. ([21, Proposition 2.6]) Let V be a module and Vi, Vj ≤ V .
If V satisfies GSSP and Vi⊕Vj is a ds of V for i 6= j, then the image of each
element of HomQ(Vi, Vj) is isomorphic to a ds of V .

Corollary 3.15. Let V be a module such that V ⊕ V satisfies GSSP . Then
the image of each endomorphism of V , is isomorphic to a ds of V ⊕ V .

Recall that a module V is called uniserial if the lattice of submodules of V
is linearly ordered by inclusion.
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Proposition 3.16. Let V be a uniserial module. If V ⊕ V is virtually dual
Rickart, then V is virtually dual Rickart.

Proof. Assume η : V → V is an endomorphism of V . So λ : V ⊕ V → V ⊕ V
by λ(x, y) = (η(x), 0) is an endomorphism of V ⊕ V such that Imλ ∼= Imη.
As V ⊕ V is virtually dual Rickart, Imη is isomorphic to a ds of V ⊕ V . Now
Imη will be isomorphic to a ds of V from [9, Proposition 2.4]. This completes
the proof.

Let V be a module. Then V is said to be (co-)Hopfian in case each (epi-
morphism) monomorphism η : V → V is an isomorphism.

Remark 3.17. Let V be an indecomposable module. Therefore V is virtually
dual Rickart if and only if the image of any nonzero endomorphism of V is
isomorphic to V . In other words, if V is a finite indecomposable module, then
V is virtually dual Rickart if and only if any nonzero endomorphism of V is
isomorphism. In this case, V is Hopfian and also co-Hopfian.

Proposition 3.18. Let V = V1⊕. . .⊕Vn be a weak duo module, where Vi ≤ V .
If Vi is virtually dual Rickart for i = 1, . . . , n, then V is virtually dual Rickart.

Proof. Assume f : V → V is an endomorphism of V . Hence fi = f |Vi
: Vi →

Vi is an endomorphism of Vi for i = 1, . . . , n. Being Vi virtually dual Rickart
implies there exists a ds Di of Vi such that Imfi ∼= Di, for i = 1, . . . , n. As
Vi is a fully invariant submodule of V , we have Imf = Imf1 ⊕ . . .⊕ Imfn ∼=
D1 ⊕ . . .⊕Dn. Note that D1 ⊕ . . .⊕Dn is a ds of V .

The following characterizes modules V , for which their injective envelopes
are (virtually) dual Rickart.

Proposition 3.19. Let V be an Q-module. Consider the following:
(1) E(V ) is dual Rickart;
(2) E(V ) is virtually dual Rickart;
(3) For each two submodules A and B of V , we have E(A+B) = E(A) +

E(B).
Then (1)⇔ (2)⇒ (3).
They are equivalent if E(V )⊕ E(V ) satisfies SSP .

Proof. As E(V ) is injective (1)⇔ (2) holds.
(2) ⇒ (3) Suppose that E(V ) is virtually dual Rickart. Then, E(V ) is

dual Rickart, so that E(V ) satisfies SSP . Now, the result follows from [21,
Theorem 2.10].

(3)⇒ (1) Let (3) holds. Then by [15, Corollary 2.17], E(V ) is dual Rickart.
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Theorem 3.20. Assume Q is a ring. Consider the following statements:
(1) Each right Q-module is virtually dual Rickart;
(2) Each projective right Q-module is virtually dual Rickart;
(3) Q is right hereditary;
(4) Each injective right Q-module is virtually dual Rickart.
Then (1)⇒ (2)⇔ (3)⇔ (4).

Proof. (1)⇒ (2) Obvious.
(2)⇒ (3) Let V be a an arbitrary projective right Q-module. By assump-

tion, V is virtually dual Rickart. So V is Rickart. Now, by [14, Theorem 2.26]
Q is a hereditary ring.

(3)⇔ (4) It follows from [15, Theorem 2.29].

It remains open to characterize a ring Q such that each right Q-module is
virtually dual Rickart. They might be semisimple ones.
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