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Abstract

The fundamental aim of this research is to analyze the configu-
ration of F4R submodules, skew cyclic codes over F4R and establish
their connection with DNA codes, where F4 is a field of order 4 and
R = F4 + uF4 + vF4 + wF4 with u2 = u, v2 = v, w2 = w, uv = vu =
0, vw = wv = 0, wu = uw = 0 is a finite ring. This is achieved by exam-
ining particular subclasses like reversible codes. Ultimately, this study
aims to utilize Gray maps to derive codes that possess the characteris-
tics of DNA structures. At the end of this paper, we have provided the
necessary and sufficient condition for skew cyclic codes to be reversible
complement.

1 Introduction

Cyclic codes, a significant category of block codes have been researched for
over fifty years. Various rings, including those referenced as [10, 14, 16, 19],
have been used to investigate cyclic codes. Apart from cyclic and negacyclic
codes, constacyclic and quasi-cyclic codes are generalizations within this field.
Many coding theory articles employ the non-commutative ring, also known as
the skew polynomial ring. One particular generalization of cyclic codes is the
skew cyclic code, introduced by Boucher et al. in [8] using the skew polyno-
mial ring. In addition, Ulmer et al. [9] focused on studying skew constacyclic
codes utilizing the Galois ring. Irfan Siap et al. [18] examined the structure
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of skew cyclic codes of arbitrary length.

Furthermore, San Ling et al. [13] investigated skew constacyclic codes over
the finite chain ring. Many authors studied skew cyclic codes over the rings
F2 + vF2, Fq + vFq, Fq + uFq + vFq, where u2 = u, v2 = v, uv = vu = 0
and Fq + uFq + vFq + uvFq, where u2 = u, v2 = v, uv = vu in [2, 4, 12, 20].
In the beginning, specifically in 1997, Rifa et al. [17] established the concept
of codes using a mixed alphabet. Subsequently, Borges et al. [6, 7] explored
additive codes and additive cyclic codes over Z2Z4.

In [3], Adleman studies on DNA computing by solving an instance of an
NP-complete problem over DNA molecules. A single DNA strand is a se-
quence of four possible nucleotides: adenine (A), guanine (G), cytosine (C)
and thymine (T ). DNA has two strands governed by the rule called Watson
Crick complement (WCC), i.e., A pairs with T and G pairs with C. We denote
the WCC as A = T, T = A, C = G, G = C. The structure of DNA is used
as a model for constructing good error-correcting codes. Conversely, error-
correcting codes with similar properties to DNA structure are also used to
understand DNA. Several papers have proposed different techniques to con-
struct a set of DNA codeword. Several authors have also extensively used
linear and cyclic codes to construct DNA codes.

There are various constraints that a DNA code must satisfy, such as the
Hamming constraint for minimum distance, the reverse constraint, the reverse-
complement constraint, the GC-content constraint, the melting temperature
constraint, the thermodynamic constraint, and the uncorrelated-correlated
constraint. The challenge for DNA code design is constructing a DNA code of
a given length, size, and distance that satisfies the maximum set of constraints.
Classical algebraic block codes have been extensively used to construct DNA
codes. In this approach, a block code that satisfies the reverse-complement
constraint is usually called a DNA code [15]. Among many methods of con-
structing DNA codes from classical codes is using skew cyclic codes over var-
ious fields and rings [5, 15]. In [5], the authors show how to construct DNA
codes from skew cyclic codes over the mixed alphabet F4(F4 + vF4), where
v2 = v. They state a condition on the associated generator polynomial of
a skew cyclic code that guarantees the code to be a reversible complement.
Further, Dertli et al. [11] investigated the utilization of skew cyclic codes for
DNA codes over the mixed alphabet F4(F4+uF4+vF4), where u2 = u, v2 = v.
Motivated by this work, In this research article, we examine the application of
skew cyclic codes over F4(F4+uF4+vF4+wF4),where u2 = u, v2 = v, w2 = w
to construct DNA codes.
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2 Preliminaries

Let F4 be defined as the set {0, 1, ~, ~2 = ~ + 1} be the field with order 4 and
let R = {a + ub + vd + we : a, b, d, e ∈ F4}, where u2 = u, v2 = v, w2 = w,
uv = vu = 0, vw = wv = 0, wu = uw = 0 be the finite commutative ring with
ideals

〈
1 + u

〉
,
〈
1 + v

〉
,
〈
1 + w

〉
and

〈
u + v + w

〉
. Let µ1 = u, µ2 = v, µ3 = w

and µ4 = 1 + u+ v + w. Then, we can show that

µιµ =

{
µι; if ι = 

0; if ι 6= 

and
∑4
ι=1 µι = 1. Therefore, we have R = µ1R ⊕ µ2R ⊕ µ3R ⊕ µ4R and

µιR ∼= µιF4 for ι ∈ {1, . . . , 4}. In other words, any element x ∈ R can be

uniquely expressed as x =
∑4
ι=1 µιaι, where aι ∈ F4 for ι ∈ {1, . . . , 4}. Now,

the Gray map is defined as follows:

φ : R −→ F4
4

a+ ub+ vd+ we 7−→ (a, b, a+ d, d+ e) (1)

µ1a1 + µ2a2 + µ3a3 + µ4a4 7−→ (a1, a1 + a2, a3, a3 + a4) (2)

The Lee weight of x ∈ R is defined as the Hamming weight of φ(x) denoted
as wtL(x) = wtH(φ(x)), where wtL and wtH denote the Lee weight and the
Hamming weight, respectively. We can extend φ componentwise to Rn as
follows:

φ : Rn −→ F4n
4

Let x = (x1, x2, . . . , xn) ∈ Rn, then φ(x) = (φ(x1), φ(x2), . . . , φ(xn)) ∈ F4n
4 .

Furthermore, wtL(x) =
∑n
ι=1 wtL(xι) =

∑n
ι=1 wtH(φ(xι)). The map φ serves

as an isometry from (Rn, dL) to (F4n
4 , dH). In other words, for any x, y ∈

Rn, dL(x, y) = dH(φ(x), φ(y)).

Throughout this article, the ring homomorphism θ on R is defined as fol-
lows:

θ : R −→ R

θ(a+ ub+ vd+ we) = a2 + ub2 + vd2 + we2 (3)

θ(µ1a1 + µ2a2 + µ3a3 + µ4a4) = µ1θ(a1) + µ2θ(a2) + µ3θ(a3) + µ4θ(a4) (4)

Note that, the order of the homomorphism θ is two and the subring
F2 + uF2 + vF2 + wF2 remains fixed under θ.
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Definition 2.1. Let Aι(ι = 1, 2) be codes over R. Then, its direct sum and
the Plotkin sum are defined as follows:

A1 ⊕A2 = {(u1 + u2) : u1 ∈ A1, u2 ∈ A2} and

A1 ⊕p A2 = {(u1, u1 + u2) : uι ∈ Aι, ι = 1, 2}.

Definition 2.2. Let C be a linear code of length n over R. Then we define

Cι = {aι ∈ Fn4 | ∃ a ∈ Fn4 ,  6= ι | µ1a1 + µ2a2 + µ3a3 + µ4a4 ∈ C},

for ι,  = 1, 2, 3, 4. Clearly, Cι for ι ∈ {1, . . . , 4} is a linear code over F4,
C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 and |C| = |C1||C2||C3||C4|.

Lemma 2.1. [20] Let C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 be a linear code of
length n over R and Gι be the generator matrices of Cι for ι ∈ {1, . . . , 4},
respectively. Then, the generator matrix of C is

G =


µ1G1

µ2G2

µ3G3

µ4G4

 .

Lemma 2.2. Let C be a linear code of length n over R with generator matrix
G as given in Lemma 2.1. Then, the generator matrix of φ(C) is

φ(G) =


φ(µ1G1)
φ(µ2G2)
φ(µ3G3)
φ(µ4G4)

 =


G1 G1 0 0
0 G2 0 0
0 0 G3 G3

0 0 0 G4

 .

Moreover, φ(C) = (C1 ⊕p C2)⊗ (C3 ⊕p C4), where ⊗ and ⊕p stand for direct
product and the Plotkin sum, respectively.

3 Skew Cyclic Codes Over R

Definition 3.1. The set R[x, θ] = {a0 + a1x+ . . .+ an−1x
n−1 : aι ∈ R, 0 ≤

ι ≤ n − 1, n ∈ N} of polynomials constitutes a ring referred to as a skew
polynomial ring with the usual addition of polynomials and the multiplication
is defined as follows: (axr)(bxs) = aθr(b)xr+s, where θr is the composition of
θ(repeated r-times).

For an element x = (x1, x2, . . . , xn) ∈ Rn, the cyclic shift T (x) and the
skew cyclic shift Tθ(x) of x are defined by T (x) = (xn, x1, x2, . . . , xn−1) and
Tθ(x) = (θ(xn), θ(x1), . . . , θ(xn−1)), respectively.



SKEW CYCLIC CODES OVER F4R AND THEIR APPLICATIONS TO DNA
CODES CONSTRUCTION 161

Definition 3.2. A linear code C ⊆ Rn is said to be cyclic over R if for any
x = (x1, x2, . . . , xn) ∈ C, the cyclic shift T (x) = (xn, x1, x2, . . . , xn−1) ∈ C
and C is called a skew cyclic code over R if for any x = (x1, x2, . . . , xn) ∈ C,
the skew cyclic shift Tθ(x) = (θ(xn), θ(x1), . . . , θ(xn−1)) ∈ C.

Theorem 3.3. Let C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 be a linear code over
R, where Cι is a linear code over F4 for each ι ∈ {1, . . . , 4}. Then, C is a
skew cyclic code over R if and only if Cι is a skew cyclic code over F4 for
ι ∈ {1, . . . , 4}.

Proof. Suppose that C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 is a linear code over
R and Cι is a linear code over F4 for ι ∈ {1, . . . , 4}. Let x = (x1, x2, . . . , xn)
be any codeword in C, where xι = µ1aι + µ2bι + µ3dι + µ4eι ∈ R, aι, bι,
cι, and dι belongs to F4 for 1 ≤ ι ≤ n. Let a = (a1, a2, . . . , an) ∈ C1, b =
(b1, b2, . . . , bn) ∈ C2, d = (d1, d2, . . . , dn) ∈ C3 and e = (e1, e2, . . . , en) ∈ C4.
Then, we have x = µ1a+µ2b+µ3d+µ4e. If Cι for ι ∈ {1, . . . , 4} is a skew cyclic
code over F4, then skew cyclic shifts Tθ(a) = (θ(an), θ(a1), . . . , θ(an−1)) ∈ C1,
Tθ(b) = (θ(bn), θ(b1), . . . , θ(bn−1)) ∈ C2, Tθ(d) = (θ(dn), θ(d1), . . . , θ(dn−1)) ∈
C3 and Tθ(e) = (θ(en), θ(e1), . . . , θ(en−1)) ∈ C4. Therefore, we have Tθ(x) =
(θ(xn), θ(x1), . . . , θ(xn−1)) = µ1Tθ(a) + µ2Tθ(b) + µ3Tθ(d) + µ4Tθ(e) ∈ C.
Hence, C is a skew cyclic code over R.

Conversely, assume that C is a skew cyclic code, then for any codeword x =
(x1, x2, . . . xn) in C, its skew cyclic shift is Tθ(x) = (θ(xn), θ(x1), . . . , θ(xn−1)) =
µ1Tθ(a) + µ2Tθ(b) + µ3Tθ(d) + µ4Tθ(e) ∈ C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4.
This implies that, Tθ(a) ∈ C1, Tθ(b) ∈ C2, Tθ(d) ∈ C3 and Tθ(e) ∈ C4. Hence,
Cι is a skew cyclic code over F4 for ι ∈ {1, . . . , 4}.

Theorem 3.4. [20] Let C = µ1C1⊕µ2C2⊕µ3C3⊕µ4C4 be a skew cyclic code
of length n over R. If gι(x) is a generator polynomial of skew cyclic code Cι
for ι ∈ {1, . . . , 4} over F4, respectively. Then, C = 〈µ1g1(x), µ2g2(x), µ3g3(x),

µ4g4(x)〉 and |C| = 44n−
∑4
ι=1 deg(gι(x)). Furthermore, C = 〈g(x)〉, where

g(x) =
∑4
ι=1 µιgι(x) ∈ R[x, θ] is unique and g(x)|(xn − 1).

Theorem 3.5. Let C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 be a skew cyclic code of
length n over R, where Cι is a skew cyclic code with parameters [n, kι, dι] for
ι ∈ {1, . . . , 4}, respectively. Then, Φ(C) = (C1⊕pC2)⊗(C3⊕pC4). Moreover,
Φ(C) is a code with parameters [4n, k1 + k2 + k3 + k4,min{2d1, d2, 2d3, d4}].

Proof. Assume that C = µ1C1 ⊕ µ2C2 ⊕ µ3C3 ⊕ µ4C4 is a skew cyclic code
over R. Additionally, let Φ : R −→ F4

4 be a Gray map defined as Φ(µ1a1 +
µ2a2+µ3a3+µ4a4) = (a1, a1+a2, a3, a3+a4). To establish the result, consider
x ∈ Φ(C). Then x = Φ(y) for some y = µ1a1 +µ2a2 +µ3a3 +µ4a4 ∈ C, where
aι ∈ Cι for ι ∈ {1, . . . , 4}. Thus, we have x = (a1, a1 + a2, a3, a3 + a4) ∈
(C1 ⊕p C2)⊗ (C3 ⊕p C4). Consequently, Φ(C) ⊆ (C1 ⊕p C2)⊗ (C3 ⊕p C4).
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Conversely, assume that x = (b1, b1 +b2, b3, b3 +b4) is an element in (C1⊕p
C2) ⊗ (C3 ⊕p C4), where bι ∈ Cι for ι ∈ {1, . . . , 4}. Then, there exist a
y = µ1b1 + µ2b2 + µ3b3 + µ4b4 ∈ C such that Φ(y) = x. Thus, we have
(C1⊕pC2)⊗(C3⊕pC4) ⊆ Φ(C). Moreover, by the definition of direct product
and the Plotkin sum if Cι is a code with parameters [n, kι, dι] for ι ∈ {1, . . . , 4}
over F4, respectively. Then Φ(C) is a code with parameters [4n, k1 +k2 +k3 +
k4,min{2d1, d2, 2d3, d4}].

Example 3.1. Suppose that n = 6 then x6− 1 = (x2 + 1)(x2 + ~)(x2 + ~2) ∈
F4[x, θ]. Let C1 = 〈x2+1〉, and C2 = C3 = C4 = 〈x2+~2〉 be skew cyclic codes
with parameters [6, 4, 2] over F4. Assume that g(x) = µ1g1(x) + µ2g2(x) +
µ3g3(x) + µ4g4(x) = x2 + 1 + ~(u + v + w), then C = 〈g(x)〉 is a skew cyclic
code, and the Gray image Φ(C) is a code with parameters [24, 16, 2] over F4.

4 Generator polynomials of skew cyclic codes over F4R

The polynomial representation of an element p = (a0, a1, . . . , aγ−1, b0, b1, . . . ,
bδ−1) ∈ Fγ4Rδ is p(x) = (a(x), b(x)), also denoted as (a(x)|b(x)), where a(x) =

a0 + a1x + · · · + aγ−1x
γ−1 ∈ F4[x]

(xγ−1) , and b(x) = b0 + b1x + · · · + bδ−1x
δ−1 ∈

R[x,θ]
(xδ−1)

. Consequently, there is a one-to-one correspondence between Fγ4Rδ and

Rγ,δ = F4[x]
(xγ−1) ×

R[x,θ]
(xδ−1)

.

Let F4R = {(a, b) : a ∈ F4, b ∈ R}. Define a ring homomorphism

η : R −→ F4

a+ ub+ vc+ wd 7−→ a (5)

Under the multiplication operation defined as r · (a, b) = (η(r)a, rb), the set
F4R is an R-module, where r ∈ R, η(r)a represents multiplication in F4 and
rb signifies multiplication in R.

Consider the set Fγ4Rδ = {(a1, a2, . . . , aγ |b1, b2, . . . , bδ) : aι ∈ F4, b ∈
R, 1 ≤ ι ≤ γ, 1 ≤  ≤ δ}. Then, for any r ∈ R and p = (a1, a2, . . . , aγ |b1, b2,
. . . , bδ) ∈ Fγ4Rδ, we can extend the multiplication operation as follows:

r · p = (η(r)a1, η(r)a2, . . . , η(r)aγ |rb1, rb2, . . . , rbδ). (6)

With this operation, the set Fγ4Rδ is an R-module. The γδ-cyclic shift of an
element p ∈ Fγ4Rδ is defined as γδT (p) = (aγ , a1, . . . , aγ−1|bδ, b1, . . . , bδ−1).
The γδ-skew cyclic shift of an element p ∈ Fγ4Rδ is defined as γδTθ(p) =
(aγ , a1, . . . , aγ−1|θ(bδ), θ(b1), . . . , θ(bδ−1)).

Definition 4.1. Let C ⊆ Fγ4Rδ. Then



SKEW CYCLIC CODES OVER F4R AND THEIR APPLICATIONS TO DNA
CODES CONSTRUCTION 163

(i) C is said to be an F4R-linear code with a block length (γ, δ), if it is an
R-submodule of Fγ4Rδ.

(ii) C is said to be an F4R-cyclic code with a block length (γ, δ), if γδT (C) =
C, where γδT is a γδ-cyclic shift.

(iii) C is said to be an F4R-skew cyclic code with a block length (γ, δ), if
γδTθ(C) = C, where γδTθ is a γδ skew cyclic shift.

Theorem 4.2. An F4R-linear code C with a block length (γ, δ) is an F4R-skew

cyclic code, if and only if it is a left R[x, θ]-submodule of F4[x]
(xγ−1) ×

R[x,θ]
(xδ−1)

.

Proof. Suppose that C is an F4R-skew cyclic code. Assume that p(x) =
(p1(x)|p2(x)) is an element in C, where p1(x) = a0 + a1x+ · · ·+ aγ−1x

γ−1 ∈
F4[x]

(xγ−1) , and p2(x) = b0 + b1x + · · · + bδ−1x
δ−1 ∈ R[x,θ]

(xδ−1)
. Here p(x)

is identified with the codeword p = (a0, a1, . . . , aγ−1|b0, b1, . . . , bδ−1) ∈ C.
Now, for any positive integer , the polynomial xp(x) = (aγ−+aγ−+1x+· · ·+
aγ−−1x

γ−1|θ(bδ−)+θ(bδ−+1)x+ · · ·+θ(bδ−−1)xδ−1) belongs to C, which
can be identified with the vector (aγ−, aγ−+1, . . . , aγ−−1|θ(bδ−), θ(bδ−+1),
. . . , θ(bδ−−1)) ∈ C. Let r(x) be any polynomial in R[x, θ] and p(x) be any
codeword in C. Then, by the F4R-linearity of C, we have r(x) · p(x) ∈ C.

Thus, C is a left R[x, θ]-submodule of F4[x]
(xγ−1) ×

R[x,θ]
(xδ−1)

.

Conversely, assume that C is a left R[x, θ]-submodule of Rγ,δ. Then r(x) ·
p(x) ∈ C for any polynomial r(x) ∈ R[x, θ] and a codeword p(x) ∈ C. In
particular, x ·p(x) ∈ C, where x ·p(x) = (aγ−1+a0x+ · · ·+aγ−2x

γ−1|θ(bδ−1)+
θ(b0)x+ · · ·+θ(bδ−2)xδ−1), can be identified with the codeword (aγ−1, a0, . . . ,
aγ−2|θ(bδ−1), θ(b0), . . . , θ(bδ−2)) ∈ C. Hence, C is an F4R-skew cyclic code.

Assume that C is an F4R-skew cyclic code with a block length (γ, δ) and
let p(x) = (p1(x)|p2(x)) represent any codeword within C. Consequently, we
proceed to define the projection maps Π1 and Π2 on Rγ,δ as follows:

Π1 : Rγ,δ −→
F4[x]

(xγ − 1)
,

(p1(x)|p2(x)) 7−→ p1(x) and

Π2 : Rγ,δ −→
R[x, θ]

(xδ − 1)
,

(p1(x)|p2(x)) 7−→ p2(x).

The set Cγ = {a(x) ∈ F4[x]
(xγ−1) | (a(x), 0) ∈ C} is an ideal of F4[x]

(xγ−1) .

Therefore, a cyclic code of length γ over F4 is generated by f(x) (say) such
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that f(x)|(xγ−1). Similarly, the set Cδ = {b(x) ∈ R[x,θ]
(xδ−1)

: there exists h(x) ∈
F4[x]

(xγ−1) , (h(x), b(x)) ∈ C} is a left R[x, θ]-submodule of R[x,θ]
(xδ−1)

is generated by

g(x) (say) such that g(x)|(xδ − 1). Therefore, Cδ is a skew cyclic code over R.

By Theorem 3.4, g(x) =
∑4
ι=1 µιgι(x). Thus, we have the following result.

Lemma 4.1. [11] Let C be an F4R-skew cyclic code with a block length (γ, δ).
Then, Π1(C) is a cyclic code of length γ over F4 and Π2(C) is a skew cyclic
code of length δ over R.

Theorem 4.3. Let C be an F4R-skew cyclic code with a block length (γ, δ)
and Cδ has a non-zero polynomial g(x) of the lowest degree with a unit leading

coefficient. Then C = 〈(f(x), 0), (h(x), g(x))〉, where h(x) ∈ F4[x]
(xγ−1) , Cγ =

〈f(x)〉, where f(x)|(xγ − 1) and Cδ = 〈g(x)〉, where g(x)|(xδ − 1).

Proof. Suppose that C is an F4R-skew cyclic code with a block length of
(γ, δ), such that Cγ = 〈f(x)〉, where f(x)|(xγ − 1) and Cδ = 〈g(x)〉, where
g(x)|(xδ−1) and g(x) is a non-zero polynomial of the lowest degree with a unit
leading coefficient. Now, consider an arbitrary codeword p(x) = (p1(x)|p2(x)) ∈
C. It can be expressed as

p(x) = (p1(x), 0) + (0, p2(x)) = (q(x)f(x), 0) + (0, r(x)g(x)),

for some q(x) ∈ F4[x]
(xγ−1) and r(x) ∈ R[x,θ]

(xδ−1)
. Let h(x) be a member of F4[x]

(xγ−1)

such that (η(r(x))h(x)|r(x)g(x)) ∈ C, then

p(x) = (q(x)f(x), 0) + (η(r(x))h(x)|r(x)g(x)) + (η(r(x))h(x), 0)

= (q(x)f(x) + η(r(x))h(x), 0) + (η(r(x))h(x)|r(x)g(x))

= t(x)(f(x), 0) + r(x)(h(x)|g(x)),

where t(x) ∈ F4[x]
(xγ−1) and q(x)f(x) + η(r(x))h(x) is a member of Cγ . There-

fore, C ⊆
〈
(f(x), 0), (h(x)|b(x))

〉
. Conversely, as (f(x), 0) and (h(x)|b(x))

belongs to C. So, we have 〈(f(x), 0), (h(x)|b(x))〉 ⊆ C. Hence, C = 〈(f(x), 0),
(h(x)|b(x))〉.

Two outcomes concerning skew cyclic codes over the ring F4(F4+uF4+vF4)
hold valid in the expanded ring F4(F4 + uF4 + vF4 + wF4) as well.

Theorem 4.4. An F4R-skew cyclic code C with a block length (γ, δ) is
equivalent to an F4R-cyclic code, provided both γ and δ are odd integers.

Theorem 4.5. An F4R-skew cyclic code C with a block length (γ, δ) is equiv-
alent to an F4R-quasi-cyclic code of index 2 provided both γ and δ are even
integers.
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Theorem 4.6. An F4R-skew cyclic code C with a block length (γ, δ), where
γ and δ are multiple of some positive integer k is equivalent to an F4R-quasi-
cyclic code with index k.

Proof. Suppose that C is an F4R-skew cyclic code with a block length (γ, δ),
where γ = km and δ = kn for k,m, n ∈ Z+. Assume that α = lcm(γ, δ), then
α is a multiple of positive integer k with gcd(α, k) = k. Consequently, there
exist integers l1 and l2, such that αl1 + kl2 = k =⇒ kl2 = k + αD for some
D ≥ 0 and D ≡ −l1(modα).
Let c = (a1,1, . . . , a1,k, . . . , an,1, . . . , an,k|b1,1, . . . , b1,k, . . . , bm,1, . . . , bm,k) be
any codeword in C. If γδTθ(c) represents the γδ-skew cyclic shift of c, then
γδTθα(c) = c and γδTθαD (c) = c for any c ∈ C. Consider

γδTθk+αD (c) =γδTθαD (an,1, . . . , an,k, a1,1, . . . , a1,k, . . . , an−1,1, . . . , an−1,k|
bm,1, . . . , bm,k, b1,1, . . . , b1,k, . . . , bm−1,1, . . . , bm−1,k)

=(an,1, . . . , an,k, a1,1, . . . , a1,k, . . . , an−1,1, . . . , an−1,k|
bm,1, . . . , bm,k, b1,1, . . . , b1,k, . . . , bm−1,1, . . . , bm−1,k).

Since γδTθk+αD (c) = γδTθk(c) for arbitrary c ∈ Fγ4Rδ. Consequently, C is
equivalent to an F4R-quasi-cyclic code with a block length (γ, δ) and index
k.

Example 4.1. For n = 4, we have x4 − 1 = (x+ 1)4 ∈ F4[x, θ]. Assume that
f(x) = (x+1) and C0 = 〈f(x)〉 be the skew cyclic code with parameter [4, 3, 2]
over F4. Also, for n = 6, we have x6−1 = (x+ 1)2(x+~)2(x+~2)2 ∈ F4[x, θ].
Let C1 = 〈x + 1〉, C2 = C3 = C4 = 〈x + ~2〉 be skew cyclic codes with
parameters [6, 5, 2] over F4. Let g(x) = µ1g1(x)+µ2g2(x)+µ3g3(x)+µ4g4(x) =
x+ 1 + ~(u+ v+w), then the code C = 〈g(x)〉 is a skew cyclic code of length
6 over R. Therefore, the code C = 〈(f(x, 0)), (0, g(x))〉 is an F4R-skew cyclic
code with a block length (4, 6), equivalent to an F4R-quasi-cyclic code of block
length (4, 6) with index 2. Moreover, the Gray image Φ(C) is a code with
parameters [28, 23, 2].

5 The Gray Map

The map φ : R −→ F4
4 defined as φ(a + ub + vd + we) = (a, b, a + d, d + e)

can be extended to a map φ∗ : F4R −→ F5
4, where φ∗(x, y) = (x, φ(y)) =

(x, a, b, a + d, d + e). Here, x ∈ F4 and y = a + ub + vd + we ∈ R. This
extended map φ∗ further can be expanded to Fγ4Rδ as follows:

Φ : Fγ4R
δ −→ Fγ+4δ

4
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(X,Y ) 7−→ (X,φ(Y )),

where X = (x0, x1, . . . , xγ−1) ∈ Fγ4 and Y = µ1a+ µ2b+ µ3d+ µ4e = (µ1a0 +
µ2b0 + µ3d0 + µ4e0, . . . , µ1aδ−1 + µ2bδ−1 + µ3dδ−1 + µ4eδ−1) ∈ Rδ. For any
(X,Y ) ∈ Fγ4Rδ, its Gray weight is defined as wtG(X,Y ) = wtH(X) +wtL(Y ),
where wtH(X) represents the Hamming weight of X and wtL(Y ) represents
the Lee weight of Y.

Assume that C is an F4R-skew cyclic code with a block length (γ, δ).
Consider

C0 = {X ∈ Fγ4 | (X,µ1a+ µ2b+ µ3d+ µ4e) ∈ C | a, b, d, e ∈ Fδ4},
C1 = {a ∈ Fδ4 | (X,µ1a+ µ2b+ µ3d+ µ4e) ∈ C | X ∈ Fγ4 , b, d, e ∈ Fδ4},
C2 = {b ∈ Fδ4 | (X,µ1a+ µ2b+ µ3d+ µ4e) ∈ C | X ∈ Fγ4 , a, d, e ∈ Fδ4},
C3 = {d ∈ Fδ4 | (X,µ1a+ µ2b+ µ3d+ µ4e) ∈ C | X ∈ Fγ4 , a, b, e ∈ Fδ4},
C4 = {e ∈ Fδ4 | (X,µ1a+ µ2b+ µ3d+ µ4e) ∈ C | X ∈ Fγ4 , a, b, d ∈ Fδ4}.

Lemma 5.1. Let C be an F4R-skew cyclic code of block length (γ, δ). Then,

Φ(C) = C0 ⊗ (C1 ⊕p C2)⊗ (C3 ⊕p C4) and |Φ(C)| =
∏4
ι=0 |Cι|.

Proof. Suppose that C is an F4R-skew cyclic code of block length (γ, δ) and the

Gray map Φ : Fγ4Rδ −→ Fγ+4δ
4 as defined above. Let u ∈ Φ(C), then u = Φ(v)

for some v = (X,µ1a + µ2b + µ3d + µ4e) ∈ C. So u = (X, a, a + b, d, d + e),
which implies that u ∈ C0 ⊗ (C1 ⊕p C2) ⊗ (C3 ⊕p C4). Therefore, Φ(C) ⊆
C0 ⊗ (C1 ⊕p C2)⊗ (C3 ⊕p C4).

Conversely, for any u ∈ C0⊗(C1⊕pC2)⊗(C3⊕pC4), we have u = (X, a, a+
b, d, d + e) = Φ(X,µ1a + µ2b + µ3d + µ4e), where X ∈ C0, a ∈ C1, b ∈ C2,
d ∈ C3, e ∈ C4. Hence, u ∈ Φ(C) implies that C0⊗ (C1⊕pC2)⊗ (C3⊕pC4) ⊆
Φ(C). Finally, we conclude that Φ(C) = C0 ⊗ (C1 ⊕p C2) ⊗ (C3 ⊕p C4) and

|Φ(C)| =
∏4
ι=0 |Cι|.

Theorem 5.1. Let C be an F4R-skew cyclic code of block length (γ, δ) over
R. Then, C0 is a cyclic code of length γ over F4 and Cι for ι ∈ {1, . . . , 4} is
a skew cyclic code of length δ over F4.

Proof. Suppose that C is an F4R-skew cyclic code with a block length (γ, δ)
and Πι(ι = 1, 2) are projection maps as defined above. Then, by Lemma 4.1,
Π1(C) = C0 is a cyclic code over F4 and Π2(C) = µ1C1⊕µ2C2⊕µ3C3⊕µ4C4

is a skew cyclic code over R. So by Theorem 3.3 Cι for ι ∈ {1, 2, 3, 4} is a
skew cyclic code over F4.
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6 DNA (Deoxyribonucleic acid) Codes Over F4R

DNA has emerged as a potential medium for data storage and computation in
recent years due to its remarkable properties, such as high storage capacity,
longevity, and data density. These properties have sparked interest in develop-
ing DNA code encoding schemes that allow digital data representation using
DNA sequences. Moreover, the concept of DNA codes is not limited to data
storage but extends to error-correction coding and cryptography. Beyond its
role in biology, DNA has also inspired researchers in various fields, including
computer science and information theory.

Here, skew cyclic codes over R and F4R are provided with necessary and
sufficient conditions to be a reversible complement. Let C be a DNA code and
x = (x1, x2, . . . , xn) be any codeword in C. Then, xr = (xn, xn−1, . . . , x1),
is the reverse of x, xc = (x1, x2, . . . , xn) is the complement of x and xrc =
(xn, xn−1, . . . , x1) is the reverse complement of x. The fundamental building
blocks of DNA structure are the set of nucleotides Σ = {A, T,C,G}, which
satisfies the Watson-Crick complement rule (A = T, C = G) and vice-versa.
For example, ACCTAG is connected with TGGATC.

Let C be a DNA code with parameters [n,M, d], then the constraints on
the Hamming distance wtH(x, y) ≥ d and wtH(xr, yc) ≥ d for all x, y ∈ C
are put in place. When constructing DNA codes using algebraic techniques,
rings and fields of order 4 and 4k are utilised because the DNA alphabet has
a size of 4. Abualrub et al. [1] examined the F4-DNA codes by employing the
bijection between the set of DNA alphabets Σ and F4, such as A, T,C and G
are mapped to 0, 1, ~ and ~2, respectively. Benbelkacem et al. [5] extended
this bijection to a bijection from F4 +vF4 to the DNA codons in Σ2 and Dertli
et al. [11] from F4 + uF4 + vF4 to the DNA codons in Σ3.

Now we define a bijection between the elements of R = F4+uF4+vF4+wF4

to the DNA codons in Σ4 = {A, T,C,G}4 by φ(a+ ub+ vd+we) = (a, b, a+
d, d+ e). This bijection is defined in the table below.
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r ∈ R codon r ∈ R codon r ∈ R codon r ∈ R codon
0 AAAA v AATT v~ AACC v~2 AAGG
1 TATA 1 + v TAAT 1 + v~ TAGC 1 + v~2 TACG
~ CACA ~ + v CAGT ~ + v~ CAAC ~ + v~2 CATG
~2 GAGA ~2 + v GACT ~2 + v~ GATC ~2 + v~2 GAAG
u ATAA u+ v ATTT u+ v~ ATCC u+ v~2 ATGG

1 + u TTTA 1 + u+ v TTAT 1 + u+ v~ TTGC 1 + u+ v~2 TTCG
~ + u CTCA ~ + u+ v CTGT ~ + u+ v~ CTAC ~ + u+ v~2 CTTG
~2 + u GTGA ~2 + u+ v GTCT ~2 + u+ v~ GTTC ~2 + u+ v~2 GTAG
u~ ACAA u~ + v ACTT u~ + v~ ACCC u~ + v~2 ACGG

1 + u~ TCTA 1 + u~ + v TCAT 1 + u~ + v~ TCGC 1 + u~ + v~2 TCCG
~ + u~ CCCA ~ + u~ + v CCGT ~ + u~ + v~ CCAC ~ + u~ + v~2 CCTG
~2 + u~ GCGA ~2 + u~ + v GCCT ~2 + u~ + v~ GCTC ~2 + u~ + v~2 GCAG
u~2 AGAA u~2 + v AGTT u~2 + v~ AGCC u~2 + v~2 AGGG

1 + u~2 TGTA 1 + u~2 + v TGAT 1 + u~2 + v~ TGGC 1 + u~2 + v~2 TGCG
~ + u~2 CGCA ~ + u~2 + v CGGT ~ + u~2 + v~ CGAC ~ + u~2 + v~2 CGTG
~2 + u~2 GGGA ~2 + u~2 + v GGCT ~2 + u~2 + v~ GGTC ~2 + u~2 + v~2 GGAG

w AAAT v + w AATA v~ + w AACG v~2 + w AAGC
1 + w TATT 1 + v + w TAAA 1 + v~ + w TAGG 1 + v~2 + w TACC
~ + w CACT ~ + v + w CAGA ~ + v~ + w CAAG ~ + v~2 + w CATC
~2 + w GAGT ~2 + v + w GACA ~2 + v~ + w GATG ~2 + v~2 + w GAAC
u+ w ATAT u+ v + w ATTA u+ v~ + w ATCG u+ v~2 + w ATGC

1 + u+ w TTTT 1 + u+ v + w TTAA 1 + u+ v~ + w TTGG 1 + u+ v~2 + w TTCC
~ + u+ w CTCT ~ + u+ v + w CTGA ~ + u+ v~ + w CTAG ~ + u+ v~2 + w CTTC
~2 + u+ w GTGT ~2 + u+ v + w GTCA ~2 + u+ v~ + w GTTG ~2 + u+ v~2 + w GTAC
u~ + w ACAT u~ + v + w ACTA u~ + v~ + w ACCG u~ + v~2 + w ACGC

1 + u~ + w TCTT 1 + u~ + v + w TCAA 1 + u~ + v~ + w TCGG 1 + u~ + v~2 + w TCCC
~ + u~ + w CCCT ~ + u~ + v + w CCGA ~ + u~ + v~ + w CCAG ~ + u~ + v~2 + w CCTC
~2 + u~ + w GCGT ~2 + u~ + v + w GCCA ~2 + u~ + v~ + w GCTG ~2 + u~ + v~2 + w GCAC
u~2 + w AGAT u~2 + v + w AGTA u~2 + v~ + w AGCG u~2 + v~2 + w AGGC

1 + u~2 + w TGTT 1 + u~2 + v + w TGAA 1 + u~2 + v~ + w TGGG 1 + u~2 + v~2 + w TGCC
~ + u~2 + w CGCT ~ + u~2 + v + w CGGA ~ + u~2 + v~ + w CGAG ~ + u~2 + v~2 + w CGTC
~2 + u~2 + w GGGT ~2 + u~2 + v + w GGCA ~2 + u~2 + v~ + w GGTG ~2 + u~2 + v~2 + w GGAC

w~ AAAC v + w~ AATG v~ + w~ AACA v~2 + w~ AAGT
1 + w~ TATC 1 + v + w~ TAAG 1 + v~ + w~ TAGA 1 + v~2 + w~ TACT
~ + w~ CACC ~ + v + w~ CAGG ~ + v~ + w~ CAAA ~ + v~2 + w~ CATT
~2 + w~ GAGC ~2 + v + w~ GACG ~2 + v~ + w~ GATA ~2 + v~2 + w~ GAAT
u+ w~ ATAC u+ v + w~ ATTG u+ v~ + w~ ATCA u+ v~2 + w~ ATGT

1 + u+ w~ TTTC 1 + u+ v + w~ TTAG 1 + u+ v~ + w~ TTGA 1 + u+ v~2 + w~ TTCT
~ + u+ w~ CTCC ~ + u+ v + w~ CTGG ~ + u+ v~ + w~ CTAA ~ + u+ v~2 + w~ CTTT
~2 + u+ w~ GTGC ~2 + u+ v + w~ GTCG ~2 + u+ v~ + w~ GTTA ~2 + u+ v~2 + w~ GTAT
u~ + w~ ACAC u~ + v + w~ ACTG u~ + v~ + w~ ACCA u~ + v~2 + w~ ACGT

1 + u~ + w~ TCTC 1 + u~ + v + w~ TCAG 1 + u~ + v~ + w~ TCGA 1 + u~ + v~2 + w~ TCCT
~ + u~ + w~ CCCC ~ + u~ + v + w~ CCGG ~ + u~ + v~ + w~ CCAA ~ + u~ + v~2 + w~ CCTT
~2 + u~ + w~ GCGC ~2 + u~ + v + w~ GCCG ~2 + u~ + v~ + w~ GCTA ~2 + u~ + v~2 + w~ GCAT
u~2 + w~ AGAC u~2 + v + w~ AGTG u~2 + v~ + w~ AGCA u~2 + v~2 + w~ AGGT

1 + u~2 + w~ TGTC 1 + u~2 + v + w~ TGAG 1 + u~2 + v~ + w~ TGGA 1 + u~2 + v~2 + w~ TGCT
~ + u~2 + w~ CGCC ~ + u~2 + v + w~ CGGG ~ + u~2 + v~ + w~ CGAA ~ + u~2 + v~2 + w~ CGTT
~2 + u~2 + w~ GGGC ~2 + u~2 + v + w~ GGCG ~2 + u~2 + v~ + w~ GGTA ~2 + u~2 + v~2 + w~ GGAT

w~2 AAAG v + w~2 AATC v~ + w~2 AACT v~2 + w~2 AAGA
1 + w~2 TATG 1 + v + w~2 TAAC 1 + v~ + w~2 TAGT 1 + v~2 + w~2 TACA
~ + w~2 CACG ~ + v + w~2 CAGC ~ + v~ + w~2 CAAT ~ + v~2 + w~2 CATA
~2 + w~2 GAGG ~2 + v + w~2 GACC ~2 + v~ + w~2 GATT ~2 + v~2 + w~2 GAAA
u+ w~2 ATAG u+ v + w~2 ATTC u+ v~ + w~2 ATCT u+ v~2 + w~2 ATGA

1 + u+ w~2 TTTG 1 + u+ v + w~2 TTAC 1 + u+ v~ + w~2 TTGT 1 + u+ v~2 + w~2 TTCA
~ + u+ w~2 CTCG ~ + u+ v + w~2 CTGC ~ + u+ v~ + w~2 CTAT ~ + u+ v~2 + w~2 CTTA
~2 + u+ w~2 GTGG ~2 + u+ v + w~2 GTCC ~2 + u+ v~ + w~2 GTTT ~2 + u+ v~2 + w~2 GTAA
u~ + w~2 ACAG u~ + v + w~2 ACTC u~ + v~ + w~2 ACCT u~ + v~2 + w~2 ACGA

1 + u~ + w~2 TCTG 1 + u~ + v + w~2 TCAC 1 + u~ + v~ + w~2 TCGT 1 + u~ + v~2 + w~2 TCCA
~ + u~ + w~2 CCCG ~ + u~ + v + w~2 CCGC ~ + u~ + v~ + w~2 CCAT ~ + u~ + v~2 + w~2 CCTA
~2 + u~ + w~2 GCGG ~2 + u~ + v + w~2 GCCC ~2 + u~ + v~ + w~2 GCTT ~2 + u~ + v~2 + w~2 GCAA
u~2 + w~2 AGAG u~2 + v + w~2 AGTC u~2 + v~ + w~2 AGCT u~2 + v~2 + w~2 AGGA

1 + u~2 + w~2 TGTG 1 + u~2 + v + w~2 TGAC 1 + u~2 + v~ + w~2 TGGT 1 + u~2 + v~2 + w~2 TGCA
~ + u~2 + w~2 CGCG ~ + u~2 + v + w~2 CGGC ~ + u~2 + v~ + w~2 CGAT ~ + u~2 + v~2 + w~2 CGTA
~2 + u~2 + w~2 GGGG ~2 + u~2 + v + w~2 GGCC ~2 + u~2 + v~ + w~2 GGTT ~2 + u~2 + v~2 + w~2 GGAA
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An element y ∈ R is referred to as the complement of x ∈ R if φ(y) is the
complement of φ(x) in F4

4. Let x = a+ ub+ vd+ we ∈ R with a, b, d, e ∈ F4.
Then xc is given by

x = x+ 1 + u+ w = a+ 1 + u(b+ 1) + vd+ w(e+ 1).

Lemma 6.1. If r, r1, r2 ∈ R, then the following results hold:

1. r1 + r2 = r1 + r2 + 1 + u+ w = r1 + r2 + 1 + u+ w,

2. ru = ru+ 1 + u+ w = ru+ 1 + u+ w,

3. rv = rv + 1 + u+ w = rv + 1 + u+ w,

4. rw = rw + 1 + u+ w = rw + 1 + u+ w,

5. r(1 + u+ v + w) = r(1 + u+ v+w) + 1 + u+w = r(1 + u+ v+w) + v.

Definition 6.1. An R-linear code C of length δ over R is said to be a DNA-
skew cyclic code if C is an R skew cyclic code of length δ, and for any codeword
x ∈ C, x 6= xrc with the reverse complement xrc ∈ C. A code C is called a
reversible complement code if xrc ∈ C, for any codeword x ∈ C.

For any polynomial f(x) = a0+a1x+ · · ·+an−1x
n−1 with non-zero leading

coefficient, its reciprocal is defined as f∗(x) = xn−1f(1/x) = an−1 + an−2x+
· · · + a1x

n−2 + a0x
n−1. Note that, deg(f∗(x)) ≤ deg(f(x)) depend on the

constant term of f(x). The polynomial f(x) is referred to as self-reciprocal
provided f∗(x) = f(x).

Lemma 6.2. Let p1(x) and p2(x) be any two polynomials over R satisfying
the condition deg(p1(x)) ≥ deg(p2(x)). Then,

1. (p1(x) · p2(x))∗ = p∗1(x) · p∗2(x),

2. (p1(x) + p2(x))∗ = p∗1(x) + xdeg(p1(x))−deg(p2(x))p∗2(x).

Theorem 6.2. Let C = 〈g(x)〉 be an R-skew cyclic code of length δ. Then,

C is reversible complement if and only if (1 + u + w)(x
δ−1
x−1 ) ∈ C and g(x) is

a self-reciprocal polynomial.

Proof. Suppose that C = 〈g(x)〉 is an R-skew cyclic code of length δ, where
g(x) = ug1(x)+vg2(x)+wg3(x)+(1+u+v+w)g4(x). The monic polynomial
gι(x) divides (xδ−1) in F4[x] for ι ∈ {1, . . . , 4}. Assume that C is a reversible
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complement code, then 0 = (0, 0, . . . , 0) ∈ C implies that, its complement
0 = (0, 0, . . . , 0) ∈ C. Thus, we have the corresponding polynomial

0 = (1 + u+ w, 1 + u+ w, . . . , 1 + u+ w)

= (1 + u+ w)(1, 1, . . . , 1)

≡ (1 + u+ w)(1 + x+ x2 + · · ·+ xδ−1)

≡ (1 + u+ w)(
xδ − 1

x− 1
) ∈ C.

Let g1(x) = a0+a1x+· · ·+ar−1x
r−1+xr, g2(x) = b0+b1x+· · ·+bs−1x

s−1+
xs, g3(x) = c0+c1x+· · ·+ct−1x

t−1+xt, and g4(x) = d0+d1x+· · ·+dk−1x
k−1+

xk, where r ≤ s ≤ t ≤ k. Assume that Aι = uaι+vbι+wcι+(1+u+v+w)dι
for 0 ≤ ι ≤ r, Bι = vbι + wcι + (1 + u + v + w)dι for r + 1 ≤ ι ≤ s,
Cι = wcι + (1 + u+ v +w)dι for s+ 1 ≤ ι ≤ t and Dι = (1 + u+ v +w)dι for
t+ 1 ≤ ι ≤ k. Then

g(x) = ug1(x) + vg2(x) + wg3(x) + (1 + u+ v + w)g4(x)

=

r∑
ι=0

Aιx
ι +

s∑
ι=r+1

Bιx
ι +

t∑
ι=s+1

Cιx
ι +

k∑
ι=t+1

Dιx
ι + 0xk+1 + . . .+ 0xδ−1.

Since C is a reversible complement code and g(x) ∈ C. Thus the reverse
complement g(x)rc becomes a member of C, where

g(x)rc =(1 + u+ w)(1 + x+ · · ·+ xδ−k−2) +

k∑
ι=t+1

Dιx
δ−ι−1 +

t∑
ι=s+1

Cιx
δ−ι−1

+

s∑
ι=r+1

Bιx
δ−ι−1 +

r∑
ι=0

Aιx
δ−ι−1

=(1 + u+ w)(1 + x+ · · ·+ xδ−k−2) +

k∑
ι=t+1

(Dι + 1 + u+ w)xδ−ι−1

+

t∑
ι=s+1

(Cι + 1 + u+ w)xδ−ι−1 +

s∑
ι=r+1

(Bι + 1 + u+ w)xδ−ι−1

+

r∑
ι=0

(Aι + 1 + u+ w)xδ−ι−1.

Since C is a linear code over R, g(x)rc and (1 + u+w)(x
δ−1
x−1 ) are members of
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C. Therefore, we can deduce that g(x)rc + (1 + u+ w)(x
δ−1
x−1 ) ∈ C, where

g(x)rc + (1 + u+ w)(
xδ − 1

x− 1
) =

r∑
ι=0

Aιx
δ−ι−1 +

s∑
ι=r+1

Bιx
δ−ι−1

+

t∑
ι=s+1

Cιx
δ−ι−1 +

k∑
ι=t+1

Dιx
δ−ι−1.

Since C is an R-skew cyclic code, the result of multiplying on the right by
xk+1−δ is

(g(x)rc + (1 + u+ w)(
xδ − 1

x− 1
)(xk+1−δ) =

r∑
ι=0

Aιx
k−ι +

s∑
ι=r+1

Bιx
k−ι

+

t∑
ι=s+1

Cιx
k−ι +

k∑
ι=t+1

Dιx
k−ι

=g∗(x).

Thus, g∗(x) is an element of C and given that C = 〈g(x)〉, there exists
a polynomial p(x) ∈ R[x, θ] such that g∗(x) = p(x)g(x). However, since
deg(g∗(x)) ≤ deg(g(x)), we conclude that p(x) = 1 leading to g∗(x) = g(x).
Consequently, g(x) demonstrates a self-reciprocal property.

Conversely, assume that C is an R-skew cyclic code of length δ generated

by a self-reciprocal polynomial g(x) and (1 + u + w)(x
δ−1
x−1 ) ∈ C. Then we

show that C is a reversible complement code. For this, suppose that c(x) =
c0 + c1x + · · · + ckx

k is an arbitrary codeword in C. Then the reciprocal
c∗(x) = ck + ck−1x+ · · ·+ c0x

k ∈ C. Now, we have

(c∗(x))rc = (1 + u + w)(1 + x + · · · + xδ−k−2) + c̄0x
δ−k−1 + c̄1x

δ−k + · · · + c̄kx
δ−1

= (1 + u + w)(1 + x + · · · + xδ−1) + c0x
δ−k−1 + c1x

δ−k + · · · + ckx
δ−1

= (1 + u + w)(
xδ − 1

x− 1
) + c(x)xδ−k−1.

Since c∗(x) = p∗(x)g(x) ∈ C for some polynomial p(x) ∈ R[x, θ] and given

that C is a linear code, it follows that (c∗(x))rc = (1 + u + w)(x
δ−1
x−1 ) +

c(x)xδ−k−1 ∈ C. Thus, we conclude that C is a reversible complement
code.

Example 6.1. Suppose that δ = 5, then we have xδ − 1 = (x+ 1)(x2 + ~x+
1)(x2 + ~2x+ 1) ∈ F4[x, θ]. Let g1(x) = g2(x) = g3(x) = g4(x) = x2 + ~x+ 1
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and define g(x) = µ1g1(x) + µ2g2(x) + µ3g3(x) + µ4g4(x) = x2 + ~x + 1.
Then, C = 〈g(x)〉 is skew cyclic over R. Since g(x) exhibits self-reciprocal

characteristics and (1+u+w)(x
δ−1
x−1 ) ∈ C leads C to be a reversible complement

code over R.

Example 6.2. Suppose that δ = 7 then, we have xδ − 1 = (x + 1)(x6 +
x5 + x4 + x3 + x2 + x + 1) ∈ F4[x, θ]. Now, let g1(x) = g2(x) = g3(x) =
g4(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 and define g(x) = µ1g1(x) + µ2g2(x) +
µ3g3(x) + µ4g4(x) = x6 + x5 + x4 + x3 + x2 + x + 1. Then, C = 〈g(x)〉 is
a skew cyclic code over R. Since g(x) exhibits self-reciprocal characteristics,

and (1 + u+ w)(x
δ−1
x−1 ) ∈ C, leads C to be a reversible complement code over

R.

Definition 6.3. An F4R-linear code C is a DNA-skew cyclic code if it satisfies
the following conditions:

1. C is an F4R-skew cyclic code, and

2. If c = (c1, c2) be any codeword in C, then the reverse complement crc =
(crc1 , c

rc
2 ) ∈ C and c 6= crc.

Theorem 6.4. Let C = 〈(f(x), 0), (h(x)|g(x))〉 = Cγ ⊗ Cδ be an F4R-skew
cyclic code with a block length (γ, δ), where h(x)) = 0. Then, C is reversible
complement if and only if f(x) and g(x) are both self-reciprocal polynomials,

(x
γ−1
x−1 ) ∈ Cγ and (1 + u+ w)(x

δ−1
x−1 ) ∈ Cδ.

Proof. Suppose that C = 〈(f(x), 0), (0, g(x))〉 = Cγ⊗Cδ be an F4R-skew cyclic

code with a block length (γ, δ), where f(x) ∈ F4[x]
(xγ−1) and g(x) ∈ R[x,θ]

(xδ−1)
. Then,

by Lemma 4.1 Π1(C) = Cγ is cyclic over F4 and Π2(C) = Cδ is skew cyclic
over R. Assume that C is a reversible complement code and c = (c1, c2) ∈
C = Cγ ⊗ Cδ is an arbitrary codeword. Then crc = (crc1 , c

rc
2 ) ∈ C = Cγ ⊗ Cδ.

For any c1 ∈ Cγ , crc1 ∈ Cγ and for any c2 ∈ Cδ, crc2 ∈ Cδ. Hence, Cγ (resp. Cδ)
is a reversible complement code over F4 (resp. R).

Since Cγ =
〈
f(x)

〉
is cyclic reversible complement code over F4, where

f(x) = f0 + f1x+ · · ·+ frx
r and 0 = (0, 0, . . . , 0) ∈ C. Complement of a ∈ F4

is defined as a = a + 1. So, we have 0 = (1, 1, . . . , 1) = 1 + x + · · · + xγ−1 =
(x

γ−1
x−1 ) ∈ C and

(f(x))rc = 1 + x+ · · ·+ xγ−r−2 + frx
γ−r−1 + fr−1x

γ−r + · · ·+ f0x
γ−1 ∈ C.

Since Cγ is an F4-linear code, so (f(x))rc + (x
γ−1
x−1 ) ∈ C, where

(f(x))rc + (
xγ − 1

x− 1
) = (f̄r + 1)xγ−r−1 + ( ¯fr−1 + 1)xγ−r + · · ·+ (f̄0 + 1)xγ−1

= frx
γ−r−1 + fr−1x

γ−r + · · ·+ f0x
γ−1.
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Since C is a cyclic code, ((f(x))rc + (x
γ−1
x−1 ))xr+1−γ = fr + fr−1x + · · · +

f0x
r = f∗(x) ∈ C. Thus, we can find a polynomial p(x) ∈ F4[x] that satisfies

f∗(x) = p(x)f(x). But deg(f∗(x)) ≤ deg(f(x)) asserted that p(x) = 1, leads
f(x) = f∗(x). Hence, f(x) is a self-reciprocal polynomial.

Since Cδ = 〈g(x)〉 is an R-skew cyclic code, which is also a reversible
complement code. So, by Theorem 6.2 g(x) is self-reciprocal and (1 + u +

w)(x
δ−1
x−1 ) ∈ C.

Conversely, suppose that f(x) and g(x) are both self-reciprocal polynomials

with (x
γ−1
x−1 ) ∈ Cγ and (1 + u + w)(x

δ−1
x−1 ) ∈ Cδ. Then, by Theorem 6.2, it is

evident that Cγ (resp. Cδ) is a reversible complement code over F4 (resp. R).
Now, assuming Cγ and Cδ are both reversible complement codes. For any
c1 ∈ Cγ and c2 ∈ Cδ, we have crc1 ∈ Cγ and crc2 ∈ Cδ. Consequently, for any
c = (c1, c2) ∈ C = Cγ⊗Cδ, we can deduce that crc = (crc1 , c

rc
2 ) ∈ C = Cγ⊗Cδ.

Thus, it becomes apparent that C is a reversible complement code.

Example 6.3. For γ = 17, consider the polynomial f(x) = x4+x3+~x2+x+1
then f(x)|(x17 − 1) over F4[x, θ] and f(x) is self-reciprocal. So, C1 = 〈f(x)〉
is a reversible complement code with parameters [17, 13, 5] over R. Next, for
δ = 13, let g(x) = x6 + ~2x5 + ~x3 + ~2x+ 1, then g(x)|(x13 − 1) over F4[x, θ]
and g(x) is self-reciprocal. Hence, C2 = 〈g(x)〉 is a reversible complement code
with parameters [13, 7, 5] over R. Therefore, C = C1⊗C2 is an F4R-reversible
complement code with parameters [30, 20, 5].

7 Conclusion

The primary objective of this research is to analyze the configuration of
F4R-submodule and establish their connection with DNA codes, where R =
F4 + uF4 + vF4 + wF4 with u2 = u, v2 = v, w2 = w, uv = vu = 0, vw =
wv = 0, wu = uw = 0. This is achieved by examining particular subclasses
like reversible codes. Ultimately, the aim of this study is to utilize Gray maps
to derive codes that possess the characteristics of DNA structures. At the end
of this paper, we have provided the condition under which skew cyclic codes
are reversible.
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