Skew cyclic codes over $\mathbb{F}_{4} R$ and their applications to DNA codes construction

Nadeem ur Rehman, Mohammad Fareed Ahmad and Mohd Azmi

Abstract

The fundamental aim of this research is to analyze the configuration of $\mathbb{F}_{4} R$ submodules, skew cyclic codes over $\mathbb{F}_{4} R$ and establish their connection with DNA codes, where \mathbb{F}_{4} is a field of order 4 and $R=\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}+w \mathbb{F}_{4}$ with $u^{2}=u, v^{2}=v, w^{2}=w, u v=v u=$ $0, v w=w v=0, w u=u w=0$ is a finite ring. This is achieved by examining particular subclasses like reversible codes. Ultimately, this study aims to utilize Gray maps to derive codes that possess the characteristics of DNA structures. At the end of this paper, we have provided the necessary and sufficient condition for skew cyclic codes to be reversible complement.

1 Introduction

Cyclic codes, a significant category of block codes have been researched for over fifty years. Various rings, including those referenced as [10, 14, 16, 19], have been used to investigate cyclic codes. Apart from cyclic and negacyclic codes, constacyclic and quasi-cyclic codes are generalizations within this field. Many coding theory articles employ the non-commutative ring, also known as the skew polynomial ring. One particular generalization of cyclic codes is the skew cyclic code, introduced by Boucher et al. in [8] using the skew polynomial ring. In addition, Ulmer et al. [9] focused on studying skew constacyclic codes utilizing the Galois ring. Irfan Siap et al. [18] examined the structure

[^0]of skew cyclic codes of arbitrary length.
Furthermore, San Ling et al. [13] investigated skew constacyclic codes over the finite chain ring. Many authors studied skew cyclic codes over the rings $\mathbb{F}_{2}+v \mathbb{F}_{2}, \mathbb{F}_{q}+v \mathbb{F}_{q}, \mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, where $u^{2}=u, v^{2}=v, u v=v u=0$ and $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$, where $u^{2}=u, v^{2}=v, u v=v u$ in $[2,4,12,20]$. In the beginning, specifically in 1997, Rifa et al. [17] established the concept of codes using a mixed alphabet. Subsequently, Borges et al. $[6,7]$ explored additive codes and additive cyclic codes over $\mathbb{Z}_{2} \mathbb{Z}_{4}$.

In [3], Adleman studies on DNA computing by solving an instance of an NP-complete problem over DNA molecules. A single DNA strand is a sequence of four possible nucleotides: adenine (A), guanine (G), cytosine (C) and thymine (T). DNA has two strands governed by the rule called Watson Crick complement (WCC), i.e., A pairs with T and G pairs with C. We denote the WCC as $\bar{A}=T, \bar{T}=A, \bar{C}=G, \bar{G}=C$. The structure of DNA is used as a model for constructing good error-correcting codes. Conversely, errorcorrecting codes with similar properties to DNA structure are also used to understand DNA. Several papers have proposed different techniques to construct a set of DNA codeword. Several authors have also extensively used linear and cyclic codes to construct DNA codes.

There are various constraints that a DNA code must satisfy, such as the Hamming constraint for minimum distance, the reverse constraint, the reversecomplement constraint, the GC-content constraint, the melting temperature constraint, the thermodynamic constraint, and the uncorrelated-correlated constraint. The challenge for DNA code design is constructing a DNA code of a given length, size, and distance that satisfies the maximum set of constraints. Classical algebraic block codes have been extensively used to construct DNA codes. In this approach, a block code that satisfies the reverse-complement constraint is usually called a DNA code [15]. Among many methods of constructing DNA codes from classical codes is using skew cyclic codes over various fields and rings [5, 15]. In [5], the authors show how to construct DNA codes from skew cyclic codes over the mixed alphabet $\mathbb{F}_{4}\left(\mathbb{F}_{4}+v \mathbb{F}_{4}\right)$, where $v^{2}=v$. They state a condition on the associated generator polynomial of a skew cyclic code that guarantees the code to be a reversible complement. Further, Dertli et al. [11] investigated the utilization of skew cyclic codes for DNA codes over the mixed alphabet $\mathbb{F}_{4}\left(\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}\right)$, where $u^{2}=u, v^{2}=v$. Motivated by this work, In this research article, we examine the application of skew cyclic codes over $\mathbb{F}_{4}\left(\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}+w \mathbb{F}_{4}\right)$, where $u^{2}=u, v^{2}=v, w^{2}=w$ to construct DNA codes.

2 Preliminaries

Let \mathbb{F}_{4} be defined as the set $\left\{0,1, \hbar, \hbar^{2}=\hbar+1\right\}$ be the field with order 4 and let $R=\left\{a+u b+v d+w e: a, b, d, e \in \mathbb{F}_{4}\right\}$, where $u^{2}=u, v^{2}=v, w^{2}=w$, $u v=v u=0, v w=w v=0, w u=u w=0$ be the finite commutative ring with ideals $\langle 1+u\rangle,\langle 1+v\rangle,\langle 1+w\rangle$ and $\langle u+v+w\rangle$. Let $\mu_{1}=u, \mu_{2}=v, \mu_{3}=w$ and $\mu_{4}=1+u+v+w$. Then, we can show that

$$
\mu_{\iota} \mu_{\jmath}= \begin{cases}\mu_{\iota} ; & \text { if } \iota=\jmath \\ 0 ; & \text { if } \iota \neq \jmath\end{cases}
$$

and $\sum_{\iota=1}^{4} \mu_{\iota}=1$. Therefore, we have $R=\mu_{1} R \oplus \mu_{2} R \oplus \mu_{3} R \oplus \mu_{4} R$ and $\mu_{\iota} R \cong \mu_{\iota} \mathbb{F}_{4}$ for $\iota \in\{1, \ldots, 4\}$. In other words, any element $x \in R$ can be uniquely expressed as $x=\sum_{\iota=1}^{4} \mu_{\iota} a_{\iota}$, where $a_{\iota} \in \mathbb{F}_{4}$ for $\iota \in\{1, \ldots, 4\}$. Now, the Gray map is defined as follows:

$$
\begin{align*}
\phi: R & \longrightarrow \mathbb{F}_{4}^{4} \\
a+u b+v d+w e & \longmapsto(a, b, a+d, d+e) \tag{1}\\
\mu_{1} a_{1}+\mu_{2} a_{2}+\mu_{3} a_{3}+\mu_{4} a_{4} & \longmapsto\left(a_{1}, a_{1}+a_{2}, a_{3}, a_{3}+a_{4}\right) \tag{2}
\end{align*}
$$

The Lee weight of $x \in R$ is defined as the Hamming weight of $\phi(x)$ denoted as $w t_{L}(x)=w t_{H}(\phi(x))$, where $w t_{L}$ and $w t_{H}$ denote the Lee weight and the Hamming weight, respectively. We can extend ϕ componentwise to R^{n} as follows:

$$
\phi: R^{n} \longrightarrow \mathbb{F}_{4}^{4 n}
$$

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$, then $\phi(x)=\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{n}\right)\right) \in \mathbb{F}_{4}^{4 n}$. Furthermore, $w t_{L}(x)=\sum_{\iota=1}^{n} w t_{L}\left(x_{\iota}\right)=\sum_{\iota=1}^{n} w t_{H}\left(\phi\left(x_{\iota}\right)\right)$. The map ϕ serves as an isometry from $\left(R^{n}, \bar{d}_{L}\right)$ to $\left(\mathbb{F}_{4}^{4 n}, d_{H}\right)$. In other words, for any $x, y \in$ $R^{n}, d_{L}(x, y)=d_{H}(\phi(x), \phi(y))$.

Throughout this article, the ring homomorphism θ on R is defined as follows:

$$
\begin{gather*}
\theta: R \longrightarrow R \\
\theta(a+u b+v d+w e)=a^{2}+u b^{2}+v d^{2}+w e^{2} \tag{3}\\
\theta\left(\mu_{1} a_{1}+\mu_{2} a_{2}+\mu_{3} a_{3}+\mu_{4} a_{4}\right)=\mu_{1} \theta\left(a_{1}\right)+\mu_{2} \theta\left(a_{2}\right)+\mu_{3} \theta\left(a_{3}\right)+\mu_{4} \theta\left(a_{4}\right) \tag{4}
\end{gather*}
$$

Note that, the order of the homomorphism θ is two and the subring $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+w \mathbb{F}_{2}$ remains fixed under θ.

Definition 2.1. Let $\mathcal{A}_{\iota}(\iota=1,2)$ be codes over R. Then, its direct sum and the Plotkin sum are defined as follows:

$$
\begin{aligned}
& \mathcal{A}_{1} \oplus \mathcal{A}_{2}=\left\{\left(u_{1}+u_{2}\right): u_{1} \in \mathcal{A}_{1}, u_{2} \in \mathcal{A}_{2}\right\} \text { and } \\
& \mathcal{A}_{1} \oplus_{p} \mathcal{A}_{2}=\left\{\left(u_{1}, u_{1}+u_{2}\right): u_{\iota} \in \mathcal{A}_{\iota}, \iota=1,2\right\} .
\end{aligned}
$$

Definition 2.2. Let C be a linear code of length n over R. Then we define

$$
C_{\iota}=\left\{a_{\iota} \in \mathbb{F}_{4}^{n}\left|\exists a_{\jmath} \in \mathbb{F}_{4}^{n}, \jmath \neq \iota\right| \mu_{1} a_{1}+\mu_{2} a_{2}+\mu_{3} a_{3}+\mu_{4} a_{4} \in C\right\}
$$

for $\iota, \jmath=1,2,3,4$. Clearly, C_{ι} for $\iota \in\{1, \ldots, 4\}$ is a linear code over \mathbb{F}_{4}, $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ and $|C|=\left|C_{1}\right|\left|C_{2}\right|\left|C_{3}\right|\left|C_{4}\right|$.

Lemma 2.1. [20] Let $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ be a linear code of length n over R and G_{ι} be the generator matrices of C_{ι} for $\iota \in\{1, \ldots, 4\}$, respectively. Then, the generator matrix of C is

$$
G=\left(\begin{array}{l}
\mu_{1} G_{1} \\
\mu_{2} G_{2} \\
\mu_{3} G_{3} \\
\mu_{4} G_{4}
\end{array}\right)
$$

Lemma 2.2. Let C be a linear code of length n over R with generator matrix G as given in Lemma 2.1. Then, the generator matrix of $\phi(C)$ is

$$
\phi(G)=\left(\begin{array}{l}
\phi\left(\mu_{1} G_{1}\right) \\
\phi\left(\mu_{2} G_{2}\right) \\
\phi\left(\mu_{3} G_{3}\right) \\
\phi\left(\mu_{4} G_{4}\right)
\end{array}\right)=\left(\begin{array}{cccc}
G_{1} & G_{1} & 0 & 0 \\
0 & G_{2} & 0 & 0 \\
0 & 0 & G_{3} & G_{3} \\
0 & 0 & 0 & G_{4}
\end{array}\right)
$$

Moreover, $\phi(C)=\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$, where \otimes and \oplus_{p} stand for direct product and the Plotkin sum, respectively.

3 Skew Cyclic Codes Over R

Definition 3.1. The set $R[x, \theta]=\left\{a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}: a_{\iota} \in R, 0 \leq\right.$ $\iota \leq n-1, n \in \mathbb{N}\}$ of polynomials constitutes a ring referred to as a skew polynomial ring with the usual addition of polynomials and the multiplication is defined as follows: $\left(a x^{r}\right)\left(b x^{s}\right)=a \theta^{r}(b) x^{r+s}$, where θ^{r} is the composition of θ (repeated r-times).

For an element $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$, the cyclic shift $T(x)$ and the skew cyclic shift $T_{\theta}(x)$ of x are defined by $T(x)=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and $T_{\theta}(x)=\left(\theta\left(x_{n}\right), \theta\left(x_{1}\right), \ldots, \theta\left(x_{n-1}\right)\right)$, respectively.

Definition 3.2. A linear code $C \subseteq R^{n}$ is said to be cyclic over R if for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C$, the cyclic shift $T(x)=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right) \in C$ and C is called a skew cyclic code over R if for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C$, the skew cyclic shift $T_{\theta}(x)=\left(\theta\left(x_{n}\right), \theta\left(x_{1}\right), \ldots, \theta\left(x_{n-1}\right)\right) \in C$.
Theorem 3.3. Let $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ be a linear code over R, where C_{ι} is a linear code over \mathbb{F}_{4} for each $\iota \in\{1, \ldots, 4\}$. Then, C is a skew cyclic code over R if and only if C_{ι} is a skew cyclic code over \mathbb{F}_{4} for $\iota \in\{1, \ldots, 4\}$.
Proof. Suppose that $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ is a linear code over R and C_{ι} is a linear code over \mathbb{F}_{4} for $\iota \in\{1, \ldots, 4\}$. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be any codeword in C, where $x_{\iota}=\mu_{1} a_{\iota}+\mu_{2} b_{\iota}+\mu_{3} d_{\iota}+\mu_{4} e_{\iota} \in R, a_{\iota}, b_{\iota}$, c_{ι}, and d_{ι} belongs to \mathbb{F}_{4} for $1 \leq \iota \leq n$. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in C_{1}, b=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in C_{2}, d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in C_{3}$ and $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in C_{4}$. Then, we have $x=\mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e$. If C_{ι} for $\iota \in\{1, \ldots, 4\}$ is a skew cyclic code over \mathbb{F}_{4}, then skew cyclic shifts $T_{\theta}(a)=\left(\theta\left(a_{n}\right), \theta\left(a_{1}\right), \ldots, \theta\left(a_{n-1}\right)\right) \in C_{1}$, $T_{\theta}(b)=\left(\theta\left(b_{n}\right), \theta\left(b_{1}\right), \ldots, \theta\left(b_{n-1}\right)\right) \in C_{2}, T_{\theta}(d)=\left(\theta\left(d_{n}\right), \theta\left(d_{1}\right), \ldots, \theta\left(d_{n-1}\right)\right) \in$ C_{3} and $T_{\theta}(e)=\left(\theta\left(e_{n}\right), \theta\left(e_{1}\right), \ldots, \theta\left(e_{n-1}\right)\right) \in C_{4}$. Therefore, we have $T_{\theta}(x)=$ $\left(\theta\left(x_{n}\right), \theta\left(x_{1}\right), \ldots, \theta\left(x_{n-1}\right)\right)=\mu_{1} T_{\theta}(a)+\mu_{2} T_{\theta}(b)+\mu_{3} T_{\theta}(d)+\mu_{4} T_{\theta}(e) \in C$. Hence, C is a skew cyclic code over R.

Conversely, assume that C is a skew cyclic code, then for any codeword $x=$ $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ in C, its skew cyclic shift is $T_{\theta}(x)=\left(\theta\left(x_{n}\right), \theta\left(x_{1}\right), \ldots, \theta\left(x_{n-1}\right)\right)=$ $\mu_{1} T_{\theta}(a)+\mu_{2} T_{\theta}(b)+\mu_{3} T_{\theta}(d)+\mu_{4} T_{\theta}(e) \in C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$. This implies that, $T_{\theta}(a) \in C_{1}, T_{\theta}(b) \in C_{2}, T_{\theta}(d) \in C_{3}$ and $T_{\theta}(e) \in C_{4}$. Hence, C_{ι} is a skew cyclic code over \mathbb{F}_{4} for $\iota \in\{1, \ldots, 4\}$.

Theorem 3.4. [20] Let $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ be a skew cyclic code of length n over R. If $g_{\iota}(x)$ is a generator polynomial of skew cyclic code C_{ι} for $\iota \in\{1, \ldots, 4\}$ over \mathbb{F}_{4}, respectively. Then, $C=\left\langle\mu_{1} g_{1}(x), \mu_{2} g_{2}(x), \mu_{3} g_{3}(x)\right.$, $\left.\mu_{4} g_{4}(x)\right\rangle$ and $|C|=4^{4 n-\sum_{\iota=1}^{4} \operatorname{deg}\left(g_{\iota}(x)\right)}$. Furthermore, $C=\langle g(x)\rangle$, where $g(x)=\sum_{\iota=1}^{4} \mu_{\iota} g_{\iota}(x) \in R[x, \theta]$ is unique and $g(x) \mid\left(x^{n}-1\right)$.
Theorem 3.5. Let $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ be a skew cyclic code of length n over R, where C_{ι} is a skew cyclic code with parameters $\left[n, k_{\iota}, d_{\iota}\right]$ for $\iota \in\{1, \ldots, 4\}$, respectively. Then, $\Phi(C)=\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$. Moreover, $\Phi(C)$ is a code with parameters $\left[4 n, k_{1}+k_{2}+k_{3}+k_{4}\right.$, $\left.\min \left\{2 d_{1}, d_{2}, 2 d_{3}, d_{4}\right\}\right]$.
Proof. Assume that $C=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ is a skew cyclic code over R. Additionally, let $\Phi: R \longrightarrow \mathbb{F}_{4}^{4}$ be a Gray map defined as $\Phi\left(\mu_{1} a_{1}+\right.$ $\left.\mu_{2} a_{2}+\mu_{3} a_{3}+\mu_{4} a_{4}\right)=\left(a_{1}, a_{1}+a_{2}, a_{3}, a_{3}+a_{4}\right)$. To establish the result, consider $x \in \Phi(C)$. Then $x=\Phi(y)$ for some $y=\mu_{1} a_{1}+\mu_{2} a_{2}+\mu_{3} a_{3}+\mu_{4} a_{4} \in C$, where $a_{\iota} \in C_{\iota}$ for $\iota \in\{1, \ldots, 4\}$. Thus, we have $x=\left(a_{1}, a_{1}+a_{2}, a_{3}, a_{3}+a_{4}\right) \in$ $\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$. Consequently, $\Phi(C) \subseteq\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$.

Conversely, assume that $x=\left(b_{1}, b_{1}+b_{2}, b_{3}, b_{3}+b_{4}\right)$ is an element in $\left(C_{1} \oplus_{p}\right.$ $\left.C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$, where $b_{\iota} \in C_{\iota}$ for $\iota \in\{1, \ldots, 4\}$. Then, there exist a $y=\mu_{1} b_{1}+\mu_{2} b_{2}+\mu_{3} b_{3}+\mu_{4} b_{4} \in C$ such that $\Phi(y)=x$. Thus, we have $\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right) \subseteq \Phi(C)$. Moreover, by the definition of direct product and the Plotkin sum if C_{ι} is a code with parameters $\left[n, k_{\iota}, d_{\iota}\right]$ for $\iota \in\{1, \ldots, 4\}$ over \mathbb{F}_{4}, respectively. Then $\Phi(C)$ is a code with parameters $\left[4 n, k_{1}+k_{2}+k_{3}+\right.$ $\left.k_{4}, \min \left\{2 d_{1}, d_{2}, 2 d_{3}, d_{4}\right\}\right]$.

Example 3.1. Suppose that $n=6$ then $x^{6}-1=\left(x^{2}+1\right)\left(x^{2}+\hbar\right)\left(x^{2}+\hbar^{2}\right) \in$ $\mathbb{F}_{4}[x, \theta]$. Let $C_{1}=\left\langle x^{2}+1\right\rangle$, and $C_{2}=C_{3}=C_{4}=\left\langle x^{2}+\hbar^{2}\right\rangle$ be skew cyclic codes with parameters $[6,4,2]$ over \mathbb{F}_{4}. Assume that $g(x)=\mu_{1} g_{1}(x)+\mu_{2} g_{2}(x)+$ $\mu_{3} g_{3}(x)+\mu_{4} g_{4}(x)=x^{2}+1+\hbar(u+v+w)$, then $C=\langle g(x)\rangle$ is a skew cyclic code, and the Gray image $\Phi(C)$ is a code with parameters $[24,16,2]$ over \mathbb{F}_{4}.

4 Generator polynomials of skew cyclic codes over $\mathbb{F}_{4} R$

The polynomial representation of an element $p=\left(a_{0}, a_{1}, \ldots, a_{\gamma-1}, b_{0}, b_{1}, \ldots\right.$, $\left.b_{\delta-1}\right) \in \mathbb{F}_{4}^{\gamma} R^{\delta}$ is $p(x)=(a(x), b(x))$, also denoted as $(a(x) \mid b(x))$, where $a(x)=$ $a_{0}+a_{1} x+\cdots+a_{\gamma-1} x^{\gamma-1} \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$, and $b(x)=b_{0}+b_{1} x+\cdots+b_{\delta-1} x^{\delta-1} \in$ $\frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$. Consequently, there is a one-to-one correspondence between $\mathbb{F}_{4}^{\gamma} R^{\delta}$ and $R_{\gamma, \delta}=\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)} \times \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$.

Let $\mathbb{F}_{4} R=\left\{(a, b): a \in \mathbb{F}_{4}, b \in R\right\}$. Define a ring homomorphism

$$
\begin{gather*}
\eta: R \longrightarrow \mathbb{F}_{4} \\
a+u b+v c+w d \longmapsto a \tag{5}
\end{gather*}
$$

Under the multiplication operation defined as $r \cdot(a, b)=(\eta(r) a, r b)$, the set $\mathbb{F}_{4} R$ is an R-module, where $r \in R, \eta(r) a$ represents multiplication in \mathbb{F}_{4} and $r b$ signifies multiplication in R.

Consider the set $\mathbb{F}_{4}^{\gamma} R^{\delta}=\left\{\left(a_{1}, a_{2}, \ldots, a_{\gamma} \mid b_{1}, b_{2}, \ldots, b_{\delta}\right): a_{\iota} \in \mathbb{F}_{4}, b_{j} \in\right.$ $R, 1 \leq \iota \leq \gamma, 1 \leq \jmath \leq \delta\}$. Then, for any $r \in R$ and $p=\left(a_{1}, a_{2}, \ldots, a_{\gamma} \mid b_{1}, b_{2}\right.$, $\left.\ldots, b_{\delta}\right) \in \mathbb{F}_{4}^{\gamma} R^{\delta}$, we can extend the multiplication operation as follows:

$$
\begin{equation*}
r \cdot p=\left(\eta(r) a_{1}, \eta(r) a_{2}, \ldots, \eta(r) a_{\gamma} \mid r b_{1}, r b_{2}, \ldots, r b_{\delta}\right) \tag{6}
\end{equation*}
$$

With this operation, the set $\mathbb{F}_{4}^{\gamma} R^{\delta}$ is an R-module. The $\gamma \delta$-cyclic shift of an element $p \in \mathbb{F}_{4}^{\gamma} R^{\delta}$ is defined as ${ }^{\gamma} T(p)=\left(a_{\gamma}, a_{1}, \ldots, a_{\gamma-1} \mid b_{\delta}, b_{1}, \ldots, b_{\delta-1}\right)$. The $\gamma \delta$-skew cyclic shift of an element $p \in \mathbb{F}_{4}^{\gamma} R^{\delta}$ is defined as ${ }^{\gamma \delta} T_{\theta}(p)=$ $\left(a_{\gamma}, a_{1}, \ldots, a_{\gamma-1} \mid \theta\left(b_{\delta}\right), \theta\left(b_{1}\right), \ldots, \theta\left(b_{\delta-1}\right)\right)$.
Definition 4.1. Let $C \subseteq \mathbb{F}_{4}^{\gamma} R^{\delta}$. Then
(i) C is said to be an $\mathbb{F}_{4} R$-linear code with a block length (γ, δ), if it is an R-submodule of $\mathbb{F}_{4}^{\gamma} R^{\delta}$.
(ii) C is said to be an $\mathbb{F}_{4} R$-cyclic code with a block length (γ, δ), if ${ }^{\gamma} \delta T(C)=$ C, where ${ }^{\gamma \delta} T$ is a $\gamma \delta$-cyclic shift.
(iii) C is said to be an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ), if ${ }^{\gamma \delta} T_{\theta}(C)=C$, where ${ }^{\gamma \delta} T_{\theta}$ is a $\gamma \delta$ skew cyclic shift.

Theorem 4.2. An $\mathbb{F}_{4} R$-linear code C with a block length (γ, δ) is an $\mathbb{F}_{4} R$-skew cyclic code, if and only if it is a left $R[x, \theta]$-submodule of $\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)} \times \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$.
Proof. Suppose that C is an $\mathbb{F}_{4} R$-skew cyclic code. Assume that $p(x)=$ $\left(p_{1}(x) \mid p_{2}(x)\right)$ is an element in C, where $p_{1}(x)=a_{0}+a_{1} x+\cdots+a_{\gamma-1} x^{\gamma-1} \in$ $\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$, and $p_{2}(x)=b_{0}+b_{1} x+\cdots+b_{\delta-1} x^{\delta-1} \in \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$. Here $p(x)$ is identified with the codeword $p=\left(a_{0}, a_{1}, \ldots, a_{\gamma-1} \mid b_{0}, b_{1}, \ldots, b_{\delta-1}\right) \in C$. Now, for any positive integer \jmath, the polynomial $x^{\jmath} p(x)=\left(a_{\gamma-\jmath}+a_{\gamma-\jmath+1} x+\cdots+\right.$ $\left.a_{\gamma-\jmath-1} x^{\gamma-1} \mid \theta^{\jmath}\left(b_{\delta-\jmath}\right)+\theta^{\jmath}\left(b_{\delta-\jmath+1}\right) x+\cdots+\theta^{\jmath}\left(b_{\delta-\jmath-1}\right) x^{\delta-1}\right)$ belongs to C, which can be identified with the vector $\left(a_{\gamma-\jmath}, a_{\gamma-\jmath+1}, \ldots, a_{\gamma-\jmath-1} \mid \theta^{\jmath}\left(b_{\delta-\jmath}\right), \theta^{\jmath}\left(b_{\delta-\jmath+1}\right)\right.$, $\left.\ldots, \theta^{\jmath}\left(b_{\delta-\jmath-1}\right)\right) \in C$. Let $r(x)$ be any polynomial in $R[x, \theta]$ and $p(x)$ be any codeword in C. Then, by the $\mathbb{F}_{4} R$-linearity of C, we have $r(x) \cdot p(x) \in C$. Thus, C is a left $R[x, \theta]$-submodule of $\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)} \times \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$.

Conversely, assume that C is a left $R[x, \theta]$-submodule of $R_{\gamma, \delta}$. Then $r(x)$. $p(x) \in C$ for any polynomial $r(x) \in R[x, \theta]$ and a codeword $p(x) \in C$. In particular, $x \cdot p(x) \in C$, where $x \cdot p(x)=\left(a_{\gamma-1}+a_{0} x+\cdots+a_{\gamma-2} x^{\gamma-1} \mid \theta\left(b_{\delta-1}\right)+\right.$ $\left.\theta\left(b_{0}\right) x+\cdots+\theta\left(b_{\delta-2}\right) x^{\delta-1}\right)$, can be identified with the codeword $\left(a_{\gamma-1}, a_{0}, \ldots\right.$, $\left.a_{\gamma-2} \mid \theta\left(b_{\delta-1}\right), \theta\left(b_{0}\right), \ldots, \theta\left(b_{\delta-2}\right)\right) \in C$. Hence, C is an $\mathbb{F}_{4} R$-skew cyclic code.

Assume that C is an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ) and let $p(x)=\left(p_{1}(x) \mid p_{2}(x)\right)$ represent any codeword within C. Consequently, we proceed to define the projection maps Π_{1} and Π_{2} on $R_{\gamma, \delta}$ as follows:

$$
\begin{aligned}
\Pi_{1}: R_{\gamma, \delta} & \longrightarrow \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}, \\
\left(p_{1}(x) \mid p_{2}(x)\right) & \longmapsto p_{1}(x) \text { and } \\
\Pi_{2}: R_{\gamma, \delta} & \longrightarrow \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}, \\
\left(p_{1}(x) \mid p_{2}(x)\right) & \longmapsto p_{2}(x) .
\end{aligned}
$$

The set $C_{\gamma}=\left\{\left.a(x) \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)} \right\rvert\,(a(x), 0) \in C\right\}$ is an ideal of $\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$. Therefore, a cyclic code of length γ over \mathbb{F}_{4} is generated by $f(x)$ (say) such
that $f(x) \mid\left(x^{\gamma}-1\right)$. Similarly, the set $C_{\delta}=\left\{b(x) \in \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}\right.$: there exists $h(x) \in$ $\left.\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)},(h(x), b(x)) \in C\right\}$ is a left $R[x, \theta]$-submodule of $\frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$ is generated by $g(x)$ (say) such that $g(x) \mid\left(x^{\delta}-1\right)$. Therefore, C_{δ} is a skew cyclic code over R. By Theorem 3.4, $g(x)=\sum_{\iota=1}^{4} \mu_{\iota} g_{\iota}(x)$. Thus, we have the following result.
Lemma 4.1. [11] Let C be an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ). Then, $\Pi_{1}(C)$ is a cyclic code of length γ over \mathbb{F}_{4} and $\Pi_{2}(C)$ is a skew cyclic code of length δ over R.

Theorem 4.3. Let C be an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ) and C_{δ} has a non-zero polynomial $g(x)$ of the lowest degree with a unit leading coefficient. Then $C=\langle(f(x), 0),(h(x), g(x))\rangle$, where $h(x) \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}, C_{\gamma}=$ $\langle f(x)\rangle$, where $f(x) \mid\left(x^{\gamma}-1\right)$ and $C_{\delta}=\langle g(x)\rangle$, where $g(x) \mid\left(x^{\delta}-1\right)$.
Proof. Suppose that C is an $\mathbb{F}_{4} R$-skew cyclic code with a block length of (γ, δ), such that $C_{\gamma}=\langle f(x)\rangle$, where $f(x) \mid\left(x^{\gamma}-1\right)$ and $C_{\delta}=\langle g(x)\rangle$, where $g(x) \mid\left(x^{\delta}-1\right)$ and $g(x)$ is a non-zero polynomial of the lowest degree with a unit leading coefficient. Now, consider an arbitrary codeword $p(x)=\left(p_{1}(x) \mid p_{2}(x)\right) \in$ C. It can be expressed as

$$
p(x)=\left(p_{1}(x), 0\right)+\left(0, p_{2}(x)\right)=(q(x) f(x), 0)+(0, r(x) g(x))
$$

for some $q(x) \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$ and $r(x) \in \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$. Let $h(x)$ be a member of $\frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$ such that $(\eta(r(x)) h(x) \mid r(x) g(x)) \in C$, then

$$
\begin{aligned}
p(x) & =(q(x) f(x), 0)+(\eta(r(x)) h(x) \mid r(x) g(x))+(\eta(r(x)) h(x), 0) \\
& =(q(x) f(x)+\eta(r(x)) h(x), 0)+(\eta(r(x)) h(x) \mid r(x) g(x)) \\
& =t(x)(f(x), 0)+r(x)(h(x) \mid g(x))
\end{aligned}
$$

where $t(x) \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$ and $q(x) f(x)+\eta(r(x)) h(x)$ is a member of C_{γ}. Therefore, $C \subseteq\langle(f(x), 0),(h(x) \mid b(x))\rangle$. Conversely, as $(f(x), 0)$ and $(h(x) \mid b(x))$ belongs to C. So, we have $\langle(f(x), 0),(h(x) \mid b(x))\rangle \subseteq C$. Hence, $C=\langle(f(x), 0)$, $(h(x) \mid b(x))\rangle$.

Two outcomes concerning skew cyclic codes over the ring $\mathbb{F}_{4}\left(\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}\right)$ hold valid in the expanded ring $\mathbb{F}_{4}\left(\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}+w \mathbb{F}_{4}\right)$ as well.

Theorem 4.4. An $\mathbb{F}_{4} R$-skew cyclic code C with a block length (γ, δ) is equivalent to an $\mathbb{F}_{4} R$-cyclic code, provided both γ and δ are odd integers.

Theorem 4.5. An $\mathbb{F}_{4} R$-skew cyclic code C with a block length (γ, δ) is equivalent to an $\mathbb{F}_{4} R$-quasi-cyclic code of index 2 provided both γ and δ are even integers.

Theorem 4.6. An $\mathbb{F}_{4} R$-skew cyclic code C with a block length (γ, δ), where γ and δ are multiple of some positive integer k is equivalent to an $\mathbb{F}_{4} R$-quasicyclic code with index k.

Proof. Suppose that C is an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ), where $\gamma=k m$ and $\delta=k n$ for $k, m, n \in \mathbb{Z}^{+}$. Assume that $\alpha=\operatorname{lcm}(\gamma, \delta)$, then α is a multiple of positive integer k with $\operatorname{gcd}(\alpha, k)=k$. Consequently, there exist integers l_{1} and l_{2}, such that $\alpha l_{1}+k l_{2}=k \Longrightarrow k l_{2}=k+\alpha D$ for some $D \quad \geq \quad 0 \quad$ and $\quad D \quad \equiv \quad-l_{1}(\bmod \alpha)$. Let $c=\left(a_{1,1}, \ldots, a_{1, k}, \ldots, a_{n, 1}, \ldots, a_{n, k} \mid b_{1,1}, \ldots, b_{1, k}, \ldots, b_{m, 1}, \ldots, b_{m, k}\right)$ be any codeword in C. If ${ }^{\delta} T_{\theta}(c)$ represents the $\gamma \delta$-skew cyclic shift of c, then ${ }^{\gamma \delta} T_{\theta^{\alpha}}(c)=c$ and ${ }^{\gamma} T_{\theta^{\alpha D}}(c)=c$ for any $c \in C$. Consider

$$
\begin{aligned}
{ }^{\gamma \delta} T_{\theta^{k+\alpha D}}(c)= & { }^{\gamma \delta} T_{\theta^{\alpha D}}\left(a_{n, 1}, \ldots, a_{n, k}, a_{1,1}, \ldots, a_{1, k}, \ldots, a_{n-1,1}, \ldots, a_{n-1, k} \mid\right. \\
& \left.b_{m, 1}, \ldots, b_{m, k}, b_{1,1}, \ldots, b_{1, k}, \ldots, b_{m-1,1}, \ldots, b_{m-1, k}\right) \\
= & \left(a_{n, 1}, \ldots, a_{n, k}, a_{1,1}, \ldots, a_{1, k}, \ldots, a_{n-1,1}, \ldots, a_{n-1, k}\right. \\
& \left.b_{m, 1}, \ldots, b_{m, k}, b_{1,1}, \ldots, b_{1, k}, \ldots, b_{m-1,1}, \ldots, b_{m-1, k}\right) .
\end{aligned}
$$

Since ${ }^{\gamma} T_{\theta^{k+\alpha D}}(c)={ }^{\gamma \delta} T_{\theta^{k}}(c)$ for arbitrary $c \in \mathbb{F}_{4}^{\gamma} R^{\delta}$. Consequently, C is equivalent to an $\mathbb{F}_{4} R$-quasi-cyclic code with a block length (γ, δ) and index k.

Example 4.1. For $n=4$, we have $x^{4}-1=(x+1)^{4} \in \mathbb{F}_{4}[x, \theta]$. Assume that $f(x)=(x+1)$ and $C_{0}=\langle f(x)\rangle$ be the skew cyclic code with parameter $[4,3,2]$ over \mathbb{F}_{4}. Also, for $n=6$, we have $x^{6}-1=(x+1)^{2}(x+\hbar)^{2}\left(x+\hbar^{2}\right)^{2} \in \mathbb{F}_{4}[x, \theta]$. Let $C_{1}=\langle x+1\rangle, C_{2}=C_{3}=C_{4}=\left\langle x+\hbar^{2}\right\rangle$ be skew cyclic codes with parameters $[6,5,2]$ over \mathbb{F}_{4}. Let $g(x)=\mu_{1} g_{1}(x)+\mu_{2} g_{2}(x)+\mu_{3} g_{3}(x)+\mu_{4} g_{4}(x)=$ $x+1+\hbar(u+v+w)$, then the code $C=\langle g(x)\rangle$ is a skew cyclic code of length 6 over R. Therefore, the code $C=\langle(f(x, 0)),(0, g(x))\rangle$ is an $\mathbb{F}_{4} R$-skew cyclic code with a block length $(4,6)$, equivalent to an $\mathbb{F}_{4} R$-quasi-cyclic code of block length $(4,6)$ with index 2 . Moreover, the Gray image $\Phi(C)$ is a code with parameters $[28,23,2]$.

5 The Gray Map

The map $\phi: R \longrightarrow \mathbb{F}_{4}^{4}$ defined as $\phi(a+u b+v d+w e)=(a, b, a+d, d+e)$ can be extended to a map $\phi^{*}: \mathbb{F}_{4} R \longrightarrow \mathbb{F}_{4}^{5}$, where $\phi^{*}(x, y)=(x, \phi(y))=$ $(x, a, b, a+d, d+e)$. Here, $x \in \mathbb{F}_{4}$ and $y=a+u b+v d+w e \in R$. This extended map ϕ^{*} further can be expanded to $\mathbb{F}_{4}^{\gamma} R^{\delta}$ as follows:

$$
\Phi: \mathbb{F}_{4}^{\gamma} R^{\delta} \longrightarrow \mathbb{F}_{4}^{\gamma+4 \delta}
$$

$$
(X, Y) \longmapsto(X, \phi(Y)),
$$

where $X=\left(x_{0}, x_{1}, \ldots, x_{\gamma-1}\right) \in \mathbb{F}_{4}^{\gamma}$ and $Y=\mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e=\left(\mu_{1} a_{0}+\right.$ $\left.\mu_{2} b_{0}+\mu_{3} d_{0}+\mu_{4} e_{0}, \ldots, \mu_{1} a_{\delta-1}+\mu_{2} b_{\delta-1}+\mu_{3} d_{\delta-1}+\mu_{4} e_{\delta-1}\right) \in R^{\delta}$. For any $(X, Y) \in \mathbb{F}_{4}^{\gamma} R^{\delta}$, its Gray weight is defined as $w t_{G}(X, Y)=w t_{H}(X)+w t_{L}(Y)$, where $w t_{H}(X)$ represents the Hamming weight of X and $w t_{L}(Y)$ represents the Lee weight of Y.

Assume that C is an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ). Consider

$$
\begin{aligned}
& C_{0}=\left\{X \in \mathbb{F}_{4}^{\gamma}\left|\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C\right| a, b, d, e \in \mathbb{F}_{4}^{\delta}\right\} \\
& C_{1}=\left\{a \in \mathbb{F}_{4}^{\delta}\left|\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C\right| X \in \mathbb{F}_{4}^{\gamma}, b, d, e \in \mathbb{F}_{4}^{\delta}\right\} \\
& C_{2}=\left\{b \in \mathbb{F}_{4}^{\delta}\left|\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C\right| X \in \mathbb{F}_{4}^{\gamma}, a, d, e \in \mathbb{F}_{4}^{\delta}\right\}, \\
& C_{3}=\left\{d \in \mathbb{F}_{4}^{\delta}\left|\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C\right| X \in \mathbb{F}_{4}^{\gamma}, a, b, e \in \mathbb{F}_{4}^{\delta}\right\}, \\
& C_{4}=\left\{e \in \mathbb{F}_{4}^{\delta}\left|\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C\right| X \in \mathbb{F}_{4}^{\gamma}, a, b, d \in \mathbb{F}_{4}^{\delta}\right\}
\end{aligned}
$$

Lemma 5.1. Let C be an $\mathbb{F}_{4} R$-skew cyclic code of block length (γ, δ). Then, $\Phi(C)=C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$ and $|\Phi(C)|=\prod_{\iota=0}^{4}\left|C_{\iota}\right|$.

Proof. Suppose that C is an $\mathbb{F}_{4} R$-skew cyclic code of block length (γ, δ) and the Gray map $\Phi: \mathbb{F}_{4}^{\gamma} R^{\delta} \longrightarrow \mathbb{F}_{4}^{\gamma+4 \delta}$ as defined above. Let $u \in \Phi(C)$, then $u=\Phi(v)$ for some $v=\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right) \in C$. So $u=(X, a, a+b, d, d+e)$, which implies that $u \in C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$. Therefore, $\Phi(C) \subseteq$ $C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$.

Conversely, for any $u \in C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$, we have $u=(X, a, a+$ $b, d, d+e)=\Phi\left(X, \mu_{1} a+\mu_{2} b+\mu_{3} d+\mu_{4} e\right)$, where $X \in C_{0}, a \in C_{1}, b \in C_{2}$, $d \in C_{3}, e \in C_{4}$. Hence, $u \in \Phi(C)$ implies that $C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right) \subseteq$ $\Phi(C)$. Finally, we conclude that $\Phi(C)=C_{0} \otimes\left(C_{1} \oplus_{p} C_{2}\right) \otimes\left(C_{3} \oplus_{p} C_{4}\right)$ and $|\Phi(C)|=\prod_{\iota=0}^{4}\left|C_{\iota}\right|$.
Theorem 5.1. Let C be an $\mathbb{F}_{4} R$-skew cyclic code of block length (γ, δ) over R. Then, C_{0} is a cyclic code of length γ over \mathbb{F}_{4} and C_{ι} for $\iota \in\{1, \ldots, 4\}$ is a skew cyclic code of length δ over \mathbb{F}_{4}.

Proof. Suppose that C is an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ) and $\Pi_{\iota}(\iota=1,2)$ are projection maps as defined above. Then, by Lemma 4.1, $\Pi_{1}(C)=C_{0}$ is a cyclic code over \mathbb{F}_{4} and $\Pi_{2}(C)=\mu_{1} C_{1} \oplus \mu_{2} C_{2} \oplus \mu_{3} C_{3} \oplus \mu_{4} C_{4}$ is a skew cyclic code over R. So by Theorem $3.3 C_{\iota}$ for $\iota \in\{1,2,3,4\}$ is a skew cyclic code over \mathbb{F}_{4}.

6 DNA (Deoxyribonucleic acid) Codes Over $\mathbb{F}_{4} R$

DNA has emerged as a potential medium for data storage and computation in recent years due to its remarkable properties, such as high storage capacity, longevity, and data density. These properties have sparked interest in developing DNA code encoding schemes that allow digital data representation using DNA sequences. Moreover, the concept of DNA codes is not limited to data storage but extends to error-correction coding and cryptography. Beyond its role in biology, DNA has also inspired researchers in various fields, including computer science and information theory.

Here, skew cyclic codes over R and $\mathbb{F}_{4} R$ are provided with necessary and sufficient conditions to be a reversible complement. Let C be a DNA code and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be any codeword in C. Then, $x^{r}=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$, is the reverse of $x, x^{c}=\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}\right)$ is the complement of x and $x^{r c}=$ $\left(\overline{x_{n}}, \overline{x_{n-1}}, \ldots, \overline{x_{1}}\right)$ is the reverse complement of x. The fundamental building blocks of DNA structure are the set of nucleotides $\Sigma=\{A, T, C, G\}$, which satisfies the Watson-Crick complement rule ($\bar{A}=T, \bar{C}=G$) and vice-versa. For example, $A C C T A G$ is connected with $T G G A T C$.

Let C be a DNA code with parameters $[n, M, d]$, then the constraints on the Hamming distance $w t_{H}(x, y) \geq d$ and $w t_{H}\left(x^{r}, y^{c}\right) \geq d$ for all $x, y \in C$ are put in place. When constructing DNA codes using algebraic techniques, rings and fields of order 4 and 4^{k} are utilised because the DNA alphabet has a size of 4 . Abualrub et al. [1] examined the \mathbb{F}_{4}-DNA codes by employing the bijection between the set of DNA alphabets Σ and \mathbb{F}_{4}, such as A, T, C and G are mapped to $0,1, \hbar$ and \hbar^{2}, respectively. Benbelkacem et al. [5] extended this bijection to a bijection from $\mathbb{F}_{4}+v \mathbb{F}_{4}$ to the DNA codons in Σ^{2} and Dertli et al. [11] from $\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}$ to the DNA codons in Σ^{3}.

Now we define a bijection between the elements of $R=\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}+w \mathbb{F}_{4}$ to the DNA codons in $\Sigma^{4}=\{A, T, C, G\}^{4}$ by $\phi(a+u b+v d+w e)=(a, b, a+$ $d, d+e)$. This bijection is defined in the table below.

SKEW CYCLIC CODES OVER $\mathbb{F}_{4} R$ AND THEIR APPLICATIONS TO DNA CODES CONSTRUCTION

$r \in R$	codon						
0	AAAA	v	AATT	$v \hbar$	AACC	$v \hbar^{2}$	AAGG
1	TATA	$1+v$	TAAT	$1+v \hbar$	TAGC	$1+v \hbar^{2}$	TACG
\hbar	CACA	$\hbar+v$	CAGT	$\hbar+v \hbar$	CAAC	$\hbar+v \hbar^{2}$	CATG
\hbar^{2}	GAGA	$\hbar^{2}+v$	GACT	$\hbar^{2}+v \hbar$	GATC	$\hbar^{2}+v \hbar^{2}$	GAAG
u	ATAA	u	ATTT	$u+v \hbar$	ATCC	$u+v \hbar^{2}$	ATGG
$1+u$	TTTA	$1+u+v$	TTAT	$1+u+v \hbar$	TTGC	$1+u+v \hbar^{2}$	TTCG
$\hbar+u$	CTCA	$\hbar+u+v$	CTGT	$\hbar+u+v \hbar$	CTAC	$\hbar+u+v \hbar^{2}$	CTTG
$\hbar^{2}+u$	GTGA	$\hbar^{2}+u+v$	GTCT	$\hbar^{2}+u+v \hbar$	GTTC	$\hbar^{2}+u+v \hbar^{2}$	GTAG
uћ	ACAA	$u \hbar+v$	ACTT	$u \hbar+v \hbar$	ACCC	$u \hbar+v \hbar^{2}$	ACGG
$1+u \hbar$	TCTA	$1+u \hbar+v$	TCAT	$1+u \hbar+v \hbar$	TCGC	$1+u \hbar+v \hbar^{2}$	TCCG
$\hbar+u \hbar$	CCCA	$\hbar+u \hbar+v$	CCGT	$\hbar+u \hbar+v \hbar$	CCAC	$\hbar+u \hbar+v \hbar^{2}$	CCTG
$\hbar^{2}+u \hbar$	GCGA	$\hbar^{2}+u \hbar+v$	GCCT	$\hbar^{2}+u \hbar+v \hbar$	GCTC	$\hbar^{2}+u \hbar+v \hbar^{2}$	GCAG
$u \hbar^{2}$	AGAA	$u \hbar^{2}+v$	AGTT	$u \hbar^{2}+v \hbar$	AGCC	$u \hbar^{2}+v \hbar^{2}$	AGGG
$1+u \hbar^{2}$	TGTA	$1+u \hbar^{2}+v$	TGAT	$1+u \hbar^{2}+v \hbar$	TGGC	$1+u \hbar^{2}+v \hbar^{2}$	TGCG
$\hbar+u \hbar^{2}$	CGCA	$\hbar+u \hbar^{2}+v$	CGGT	$\hbar+u \hbar^{2}+v \hbar$	CGAC	$\hbar+u \hbar^{2}+v \hbar^{2}$	CGTG
$\hbar^{2}+u \hbar^{2}$	GGGA	$\hbar^{2}+u \hbar^{2}+v$	GGCT	$\hbar^{2}+u \hbar^{2}+v \hbar$	GGTC	$\hbar^{2}+u \hbar^{2}+v \hbar^{2}$	GGAG
w	AAAT	$v+w$	AATA	$v \hbar+w$	AACG	$v \hbar^{2}+w$	AAGC
$1+w$	TATT	$1+v+w$	TAAA	$1+v \hbar+w$	TAGG	$1+v \hbar^{2}+w$	TACC
$\hbar+w$	CACT	$\hbar+v+w$	CAGA	$\hbar+v \hbar+w$	CAAG	$\hbar+v \hbar^{2}+w$	CATC
$\hbar^{2}+w$	GAGT	$\hbar^{2}+v+w$	GACA	$\hbar^{2}+v \hbar+w$	GATG	$\hbar^{2}+v \hbar^{2}+w$	GAAC
$u+w$	ATAT	$u+v+w$	ATTA	$u+v \hbar+w$	ATCG	$u+v \hbar^{2}+w$	ATGC
$1+u+w$	TTTT	$1+u+v+w$	TTAA	$1+u+v \hbar+w$	TTGG	$1+u+v \hbar^{2}+w$	TTCC
$\hbar+u+w$	CTCT	$\hbar+u+v+w$	CTGA	$\hbar+u+v \hbar+w$	CTAG	$\hbar+u+v \hbar^{2}+w$	CTTC
$\hbar^{2}+u+w$	GTGT	$\hbar^{2}+u+v+w$	GTCA	$\hbar^{2}+u+v \hbar+w$	GTTG	$\hbar^{2}+u+v \hbar^{2}+w$	GTAC
$u \hbar+w$	ACAT	$u \hbar+v+w$	ACTA	$u \hbar+v \hbar+w$	ACCG	$u \hbar+v \hbar^{2}+w$	ACGC
$1+u \hbar+w$	TCTT	$1+u \hbar+v+w$	TCAA	$1+u \hbar+v \hbar+w$	TCGG	$1+u \hbar+v \hbar^{2}+w$	TCCC
$\hbar+u \hbar+w$	CCCT	$\hbar+u \hbar+v+w$	CCGA	$\hbar+u \hbar+v \hbar+w$	CCAG	$\hbar+u \hbar+v \hbar^{2}+w$	CCTC
$\hbar^{2}+u \hbar+w$	GCGT	$\hbar^{2}+u \hbar+v+w$	GCCA	$\hbar^{2}+u \hbar+v \hbar+w$	GCTG	$\hbar^{2}+u \hbar+v \hbar^{2}+w$	GCAC
$u \hbar^{2}+w$	AGAT	$u \hbar^{2}+v+w$	AGTA	$u \hbar^{2}+v \hbar+w$	AGCG	$u \hbar^{2}+v \hbar^{2}+w$	AGGC
$1+u \hbar^{2}+w$	TGTT	$1+u \hbar^{2}+v+w$	TGAA	$1+u \hbar^{2}+v \hbar+w$	TGGG	$1+u \hbar^{2}+v \hbar^{2}+w$	TGCC
$\hbar+u \hbar^{2}+w$	CGCT	$\hbar+u \hbar^{2}+v+w$	CGGA	$\hbar+u \hbar^{2}+v \hbar+w$	CGAG	$\hbar+u \hbar^{2}+v \hbar^{2}+w$	CGTC
$\hbar^{2}+u \hbar^{2}+w$	GGGT	$\hbar^{2}+u \hbar^{2}+v+w$	GGCA	$\hbar^{2}+u \hbar^{2}+v \hbar+w$	GGTG	$\hbar^{2}+u \hbar^{2}+v \hbar^{2}+w$	GGAC
w \hbar	AAAC	$v+w \hbar$	AATG	$v \hbar+w \hbar$	AACA	$v \hbar^{2}+w \hbar$	AAGT
$1+w \hbar$	TATC	$1+v+w \hbar$	TAAG	$1+v \hbar+w \hbar$	TAGA	$1+v \hbar^{2}+w \hbar$	TACT
$\hbar+w \hbar$	CACC	$\hbar+v+w \hbar$	CAGG	$\hbar+v \hbar+w \hbar$	CAAA	$\hbar+v \hbar^{2}+w \hbar$	CATT
$\hbar^{2}+w \hbar$	GAGC	$\hbar^{2}+v+w \hbar$	GACG	$\hbar^{2}+v \hbar+w \hbar$	GATA	$\hbar^{2}+v \hbar^{2}+w \hbar$	GAAT
$u+w \hbar$	ATAC	$u+v+w \hbar$	ATTG	$u+v \hbar+w \hbar$	ATCA	$u+v \hbar^{2}+w \hbar$	ATGT
$1+u+w \hbar$	TTTC	$1+u+v+w \hbar$	TTAG	$1+u+v \hbar+w \hbar$	TTGA	$1+u+v \hbar^{2}+w \hbar$	TTCT
$\hbar+u+w \hbar$	CTCC	$\hbar+u+v+w \hbar$	CTGG	$\hbar+u+v \hbar+w \hbar$	CTAA	$\hbar+u+v \hbar^{2}+w \hbar$	CTTT
$\hbar^{2}+u+w \hbar$	GTGC	$\hbar^{2}+u+v+w \hbar$	GTCG	$\hbar^{2}+u+v \hbar+w \hbar$	GTTA	$\hbar^{2}+u+v \hbar^{2}+w \hbar$	GTAT
$u \hbar+w \hbar$	ACAC	$u \hbar+v+w \hbar$	ACTG	$u \hbar+v \hbar+w \hbar$	ACCA	$u \hbar+v \hbar^{2}+w \hbar$	ACGT
$1+u \hbar+w \hbar$	TCTC	$1+u \hbar+v+w \hbar$	TCAG	$1+u \hbar+v \hbar+w \hbar$	TCGA	$1+u \hbar+v \hbar^{2}+w \hbar$	TCCT
$\hbar+u \hbar+w \hbar$	CCCC	$\hbar+u \hbar+v+w \hbar$	CCGG	$\hbar+u \hbar+v \hbar+w \hbar$	CCAA	$\hbar+u \hbar+v \hbar^{2}+w \hbar$	CCTT
$\hbar^{2}+u \hbar+w \hbar$	GCGC	$\hbar^{2}+u \hbar+v+w \hbar$	GCCG	$\hbar^{2}+u \hbar+v \hbar+w \hbar$	GCTA	$\hbar^{2}+u \hbar+v \hbar^{2}+w \hbar$	GCAT
$u \hbar^{2}+w \hbar$	AGAC	$u \hbar^{2}+v+w \hbar$	AGTG	$u \hbar^{2}+v \hbar+w \hbar$	AGCA	$u \hbar^{2}+v \hbar^{2}+w \hbar$	AGGT
$1+u \hbar^{2}+w \hbar$	TGTC	$1+u \hbar^{2}+v+w \hbar$	TGAG	$1+u \hbar^{2}+v \hbar+w \hbar$	TGGA	$1+u \hbar^{2}+v \hbar^{2}+w \hbar$	TGCT
$\hbar+u \hbar^{2}+w \hbar$	CGCC	$\hbar+u \hbar^{2}+v+w \hbar$	CGGG	$\hbar+u \hbar^{2}+v \hbar+w \hbar$	CGAA	$\hbar+u \hbar^{2}+v \hbar^{2}+w \hbar$	CGTT
$\hbar^{2}+u \hbar^{2}+w \hbar$	GGGC	$\hbar^{2}+u \hbar^{2}+v+w \hbar$	GGCG	$\hbar^{2}+u \hbar^{2}+v \hbar+w \hbar$	GGTA	$\hbar^{2}+u \hbar^{2}+v \hbar^{2}+w \hbar$	GGAT
$w \hbar^{2}$	AAAG	$v+w \hbar^{2}$	AATC	$v \hbar+w \hbar^{2}$	AACT	$v \hbar^{2}+w \hbar^{2}$	AAGA
$1+w \hbar^{2}$	TATG	$1+v+w \hbar^{2}$	TAAC	$1+v \hbar+w \hbar^{2}$	TAGT	$1+v \hbar^{2}+w \hbar^{2}$	TACA
$\hbar+w \hbar^{2}$	CACG	$\hbar+v+w \hbar^{2}$	CAGC	$\hbar+v \hbar+w \hbar^{2}$	CAAT	$\hbar+v \hbar^{2}+w \hbar^{2}$	CATA
$\hbar^{2}+w \hbar^{2}$	GAGG	$\hbar^{2}+v+w \hbar^{2}$	GACC	$\hbar^{2}+v \hbar+w \hbar^{2}$	GATT	$\hbar^{2}+v \hbar^{2}+w \hbar^{2}$	GAAA
$u+w \hbar^{2}$	ATAG	$u+v+w \hbar^{2}$	ATTC	$u+v \hbar+w \hbar^{2}$	ATCT	$u+v \hbar^{2}+w \hbar^{2}$	ATGA
$1+u+w \hbar^{2}$	TTTG	$1+u+v+w \hbar^{2}$	TTAC	$1+u+v \hbar+w \hbar^{2}$	TTGT	$1+u+v \hbar^{2}+w \hbar^{2}$	TTCA
$\hbar+u+w \hbar^{2}$	CTCG	$\hbar+u+v+w \hbar^{2}$	CTGC	$\hbar+u+v \hbar+w \hbar^{2}$	CTAT	$\hbar+u+v \hbar^{2}+w \hbar^{2}$	CTTA
$\hbar^{2}+u+w \hbar^{2}$	GTGG	$\hbar^{2}+u+v+w \hbar^{2}$	GTCC	$\hbar^{2}+u+v \hbar+w \hbar^{2}$	GTTT	$\hbar^{2}+u+v \hbar^{2}+w \hbar^{2}$	GTAA
$u \hbar+w \hbar^{2}$	ACAG	$u \hbar+v+w \hbar^{2}$	ACTC	$u \hbar+v \hbar+w \hbar^{2}$	ACCT	$u \hbar+v \hbar^{2}+w \hbar^{2}$	ACGA
$1+u \hbar+w \hbar^{2}$	TCTG	$1+u \hbar+v+w \hbar^{2}$	TCAC	$1+u \hbar+v \hbar+w \hbar^{2}$	TCGT	$1+u \hbar+v \hbar^{2}+w \hbar^{2}$	TCCA
$\hbar+u \hbar+w \hbar^{2}$	CCCG	$\hbar+u \hbar+v+w \hbar^{2}$	CCGC	$\hbar+u \hbar+v \hbar+w \hbar^{2}$	CCAT	$\hbar+u \hbar+v \hbar^{2}+w \hbar^{2}$	CCTA
$\hbar^{2}+u \hbar+w \hbar^{2}$	GCGG	$\hbar^{2}+u \hbar+v+w \hbar^{2}$	GCCC	$\hbar^{2}+u \hbar+v \hbar+w \hbar^{2}$	GCTT	$\hbar^{2}+u \hbar+v \hbar^{2}+w \hbar^{2}$	GCAA
$u \hbar^{2}+w \hbar^{2}$	AGAG	$u \hbar^{2}+v+w \hbar^{2}$	AGTC	$u \hbar^{2}+v \hbar+w \hbar^{2}$	AGCT	$u \hbar^{2}+v \hbar^{2}+w \hbar^{2}$	AGGA
$1+u \hbar^{2}+w \hbar^{2}$	TGTG	$1+u \hbar^{2}+v+w \hbar^{2}$	TGAC	$1+u \hbar^{2}+v \hbar+w \hbar^{2}$	TGGT	$1+u \hbar^{2}+v \hbar^{2}+w \hbar^{2}$	TGCA
$\hbar+u \hbar^{2}+w \hbar^{2}$	CGCG	$\hbar+u \hbar^{2}+v+w \hbar^{2}$	CGGC	$\hbar+u \hbar^{2}+v \hbar+w \hbar^{2}$	CGAT	$\hbar+u \hbar^{2}+v \hbar^{2}+w \hbar^{2}$	CGTA
$\hbar^{2}+u \hbar^{2}+w \hbar^{2}$	GGGG	$\hbar^{2}+u \hbar^{2}+v+w \hbar^{2}$	GGCC	$\hbar^{2}+u \hbar^{2}+v \hbar+w \hbar^{2}$	GGTT	$\hbar^{2}+u \hbar^{2}+v \hbar^{2}+w \hbar^{2}$	GGAA

An element $y \in R$ is referred to as the complement of $x \in R$ if $\phi(y)$ is the complement of $\phi(x)$ in \mathbb{F}_{4}^{4}. Let $x=a+u b+v d+w e \in R$ with $a, b, d, e \in \mathbb{F}_{4}$. Then x^{c} is given by

$$
\bar{x}=x+1+u+w=a+1+u(b+1)+v d+w(e+1) .
$$

Lemma 6.1. If $r, r_{1}, r_{2} \in R$, then the following results hold:

1. $\overline{r_{1}+r_{2}}=r_{1}+r_{2}+1+u+w=\overline{r_{1}}+\overline{r_{2}}+1+u+w$,
2. $\overline{r u}=r u+1+u+w=\bar{r} u+1+u+w$,
3. $\overline{r v}=r v+1+u+w=\bar{r} v+1+u+w$,
4. $\overline{r w}=r w+1+u+w=\bar{r} w+1+u+w$,
5. $\overline{r(1+u+v+w)}=r(1+u+v+w)+1+u+w=\bar{r}(1+u+v+w)+v$.

Definition 6.1. An R-linear code C of length δ over R is said to be a DNAskew cyclic code if C is an R skew cyclic code of length δ, and for any codeword $x \in C, x \neq x^{r c}$ with the reverse complement $x^{r c} \in C$. A code C is called a reversible complement code if $x^{r c} \in C$, for any codeword $x \in C$.

For any polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ with non-zero leading coefficient, its reciprocal is defined as $f^{*}(x)=x^{n-1} f(1 / x)=a_{n-1}+a_{n-2} x+$ $\cdots+a_{1} x^{n-2}+a_{0} x^{n-1}$. Note that, $\operatorname{deg}\left(f^{*}(x)\right) \leq \operatorname{deg}(f(x))$ depend on the constant term of $f(x)$. The polynomial $f(x)$ is referred to as self-reciprocal provided $f^{*}(x)=f(x)$.
Lemma 6.2. Let $p_{1}(x)$ and $p_{2}(x)$ be any two polynomials over R satisfying the condition $\operatorname{deg}\left(p_{1}(x)\right) \geq \operatorname{deg}\left(p_{2}(x)\right)$. Then,

1. $\left(p_{1}(x) \cdot p_{2}(x)\right)^{*}=p_{1}^{*}(x) \cdot p_{2}^{*}(x)$,
2. $\left(p_{1}(x)+p_{2}(x)\right)^{*}=p_{1}^{*}(x)+x^{\operatorname{deg}\left(p_{1}(x)\right)-\operatorname{deg}\left(p_{2}(x)\right)} p_{2}^{*}(x)$.

Theorem 6.2. Let $C=\langle g(x)\rangle$ be an R-skew cyclic code of length δ. Then, C is reversible complement if and only if $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$ and $g(x)$ is a self-reciprocal polynomial.

Proof. Suppose that $C=\langle g(x)\rangle$ is an R-skew cyclic code of length δ, where $g(x)=u g_{1}(x)+v g_{2}(x)+w g_{3}(x)+(1+u+v+w) g_{4}(x)$. The monic polynomial $g_{\iota}(x)$ divides $\left(x^{\delta}-1\right)$ in $\mathbb{F}_{4}[x]$ for $\iota \in\{1, \ldots, 4\}$. Assume that C is a reversible
complement code, then $\mathbf{0}=(0,0, \ldots, 0) \in C$ implies that, its complement $\overline{\mathbf{0}}=(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C$. Thus, we have the corresponding polynomial

$$
\begin{aligned}
\overline{\mathbf{0}} & =(1+u+w, 1+u+w, \ldots, 1+u+w) \\
& =(1+u+w)(1,1, \ldots, 1) \\
& \equiv(1+u+w)\left(1+x+x^{2}+\cdots+x^{\delta-1}\right) \\
& \equiv(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C
\end{aligned}
$$

Let $g_{1}(x)=a_{0}+a_{1} x+\cdots+a_{r-1} x^{r-1}+x^{r}, g_{2}(x)=b_{0}+b_{1} x+\cdots+b_{s-1} x^{s-1}+$ $x^{s}, g_{3}(x)=c_{0}+c_{1} x+\cdots+c_{t-1} x^{t-1}+x^{t}$, and $g_{4}(x)=d_{0}+d_{1} x+\cdots+d_{k-1} x^{k-1}+$ x^{k}, where $r \leq s \leq t \leq k$. Assume that $A_{\iota}=u a_{\iota}+v b_{\iota}+w c_{\iota}+(1+u+v+w) d_{\iota}$ for $0 \leq \iota \leq r, B_{\iota}=v b_{\iota}+w c_{\iota}+(1+u+v+w) d_{\iota}$ for $r+1 \leq \iota \leq s$, $C_{\iota}=w c_{\iota}+(1+u+v+w) d_{\iota}$ for $s+1 \leq \iota \leq t$ and $D_{\iota}=(1+u+v+w) d_{\iota}$ for $t+1 \leq \iota \leq k$. Then

$$
\begin{aligned}
g(x) & =u g_{1}(x)+v g_{2}(x)+w g_{3}(x)+(1+u+v+w) g_{4}(x) \\
& =\sum_{\iota=0}^{r} A_{\iota} x^{\iota}+\sum_{\iota=r+1}^{s} B_{\iota} x^{\iota}+\sum_{\iota=s+1}^{t} C_{\iota} x^{\iota}+\sum_{\iota=t+1}^{k} D_{\iota} x^{\iota}+0 x^{k+1}+\ldots+0 x^{\delta-1}
\end{aligned}
$$

Since C is a reversible complement code and $g(x) \in C$. Thus the reverse complement $g(x)^{r c}$ becomes a member of C, where

$$
\begin{aligned}
g(x)^{r c}= & (1+u+w)\left(1+x+\cdots+x^{\delta-k-2}\right)+\sum_{\iota=t+1}^{k} \overline{D_{\iota}} x^{\delta-\iota-1}+\sum_{\iota=s+1}^{t} \overline{C_{\iota}} x^{\delta-\iota-1} \\
& +\sum_{\iota=r+1}^{s} \overline{B_{\iota}} x^{\delta-\iota-1}+\sum_{\iota=0}^{r} \overline{A_{\iota}} x^{\delta-\iota-1} \\
= & (1+u+w)\left(1+x+\cdots+x^{\delta-k-2}\right)+\sum_{\iota=t+1}^{k}\left(D_{\iota}+1+u+w\right) x^{\delta-\iota-1} \\
& +\sum_{\iota=s+1}^{t}\left(C_{\iota}+1+u+w\right) x^{\delta-\iota-1}+\sum_{\iota=r+1}^{s}\left(B_{\iota}+1+u+w\right) x^{\delta-\iota-1} \\
& +\sum_{\iota=0}^{r}\left(A_{\iota}+1+u+w\right) x^{\delta-\iota-1} .
\end{aligned}
$$

Since C is a linear code over $R, g(x)^{r c}$ and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right)$ are members of
C. Therefore, we can deduce that $g(x)^{r c}+(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$, where

$$
\begin{aligned}
g(x)^{r c}+(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right)= & \sum_{\iota=0}^{r} A_{\iota} x^{\delta-\iota-1}+\sum_{\iota=r+1}^{s} B_{\iota} x^{\delta-\iota-1} \\
& +\sum_{\iota=s+1}^{t} C_{\iota} x^{\delta-\iota-1}+\sum_{\iota=t+1}^{k} D_{\iota} x^{\delta-\iota-1}
\end{aligned}
$$

Since C is an R-skew cyclic code, the result of multiplying on the right by $x^{k+1-\delta}$ is

$$
\begin{aligned}
\left(g(x)^{r c}+(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right)\left(x^{k+1-\delta}\right)=\right. & \sum_{\iota=0}^{r} A_{\iota} x^{k-\iota}+\sum_{\iota=r+1}^{s} B_{\iota} x^{k-\iota} \\
& +\sum_{\iota=s+1}^{t} C_{\iota} x^{k-\iota}+\sum_{\iota=t+1}^{k} D_{\iota} x^{k-\iota} \\
= & g^{*}(x)
\end{aligned}
$$

Thus, $g^{*}(x)$ is an element of C and given that $C=\langle g(x)\rangle$, there exists a polynomial $p(x) \in R[x, \theta]$ such that $g^{*}(x)=p(x) g(x)$. However, since $\operatorname{deg}\left(g^{*}(x)\right) \leq \operatorname{deg}(g(x))$, we conclude that $p(x)=1$ leading to $g^{*}(x)=g(x)$. Consequently, $g(x)$ demonstrates a self-reciprocal property.

Conversely, assume that C is an R-skew cyclic code of length δ generated by a self-reciprocal polynomial $g(x)$ and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$. Then we show that C is a reversible complement code. For this, suppose that $c(x)=$ $c_{0}+c_{1} x+\cdots+c_{k} x^{k}$ is an arbitrary codeword in C. Then the reciprocal $c^{*}(x)=c_{k}+c_{k-1} x+\cdots+c_{0} x^{k} \in C$. Now, we have

$$
\begin{aligned}
\left(c^{*}(x)\right)^{r c} & =(1+u+w)\left(1+x+\cdots+x^{\delta-k-2}\right)+\overline{c_{0}} x^{\delta-k-1}+\overline{c_{1}} x^{\delta-k}+\cdots+\overline{c_{k}} x^{\delta-1} \\
& =(1+u+w)\left(1+x+\cdots+x^{\delta-1}\right)+c_{0} x^{\delta-k-1}+c_{1} x^{\delta-k}+\cdots+c_{k} x^{\delta-1} \\
& =(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right)+c(x) x^{\delta-k-1} .
\end{aligned}
$$

Since $c^{*}(x)=p^{*}(x) g(x) \in C$ for some polynomial $p(x) \in R[x, \theta]$ and given that C is a linear code, it follows that $\left(c^{*}(x)\right)^{r c}=(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right)+$ $c(x) x^{\delta-k-1} \in C$. Thus, we conclude that C is a reversible complement code.

Example 6.1. Suppose that $\delta=5$, then we have $x^{\delta}-1=(x+1)\left(x^{2}+\hbar x+\right.$ 1) $\left(x^{2}+\hbar^{2} x+1\right) \in \mathbb{F}_{4}[x, \theta]$. Let $g_{1}(x)=g_{2}(x)=g_{3}(x)=g_{4}(x)=x^{2}+\hbar x+1$
and define $g(x)=\mu_{1} g_{1}(x)+\mu_{2} g_{2}(x)+\mu_{3} g_{3}(x)+\mu_{4} g_{4}(x)=x^{2}+\hbar x+1$. Then, $C=\langle g(x)\rangle$ is skew cyclic over R. Since $g(x)$ exhibits self-reciprocal characteristics and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$ leads C to be a reversible complement code over R.
Example 6.2. Suppose that $\delta=7$ then, we have $x^{\delta}-1=(x+1)\left(x^{6}+\right.$ $\left.x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) \in \mathbb{F}_{4}[x, \theta]$. Now, let $g_{1}(x)=g_{2}(x)=g_{3}(x)=$ $g_{4}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ and define $g(x)=\mu_{1} g_{1}(x)+\mu_{2} g_{2}(x)+$ $\mu_{3} g_{3}(x)+\mu_{4} g_{4}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. Then, $C=\langle g(x)\rangle$ is a skew cyclic code over R. Since $g(x)$ exhibits self-reciprocal characteristics, and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$, leads C to be a reversible complement code over R.
Definition 6.3. An $\mathbb{F}_{4} R$-linear code C is a DNA-skew cyclic code if it satisfies the following conditions:

1. C is an $\mathbb{F}_{4} R$-skew cyclic code, and
2. If $c=\left(c_{1}, c_{2}\right)$ be any codeword in C, then the reverse complement $c^{r c}=$ $\left(c_{1}^{r c}, c_{2}^{r c}\right) \in C$ and $c \neq c^{r c}$.
Theorem 6.4. Let $C=\langle(f(x), 0),(h(x) \mid g(x))\rangle=C_{\gamma} \otimes C_{\delta}$ be an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ), where $h(x))=0$. Then, C is reversible complement if and only if $f(x)$ and $g(x)$ are both self-reciprocal polynomials, $\left(\frac{x^{\gamma}-1}{x-1}\right) \in C_{\gamma}$ and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C_{\delta}$.
Proof. Suppose that $C=\langle(f(x), 0),(0, g(x))\rangle=C_{\gamma} \otimes C_{\delta}$ be an $\mathbb{F}_{4} R$-skew cyclic code with a block length (γ, δ), where $f(x) \in \frac{\mathbb{F}_{4}[x]}{\left(x^{\gamma}-1\right)}$ and $g(x) \in \frac{R[x, \theta]}{\left(x^{\delta}-1\right)}$. Then, by Lemma $4.1 \Pi_{1}(C)=C_{\gamma}$ is cyclic over \mathbb{F}_{4} and $\Pi_{2}(C)=C_{\delta}$ is skew cyclic over R. Assume that C is a reversible complement code and $c=\left(c_{1}, c_{2}\right) \in$ $C=C_{\gamma} \otimes C_{\delta}$ is an arbitrary codeword. Then $c^{r c}=\left(c_{1}^{r c}, c_{2}^{r c}\right) \in C=C_{\gamma} \otimes C_{\delta}$. For any $c_{1} \in C_{\gamma}, c_{1}^{r c} \in C_{\gamma}$ and for any $c_{2} \in C_{\delta}, c_{2}^{r c} \in C_{\delta}$. Hence, C_{γ} (resp. C_{δ}) is a reversible complement code over \mathbb{F}_{4} (resp. R).

Since $C_{\gamma}=\langle f(x)\rangle$ is cyclic reversible complement code over \mathbb{F}_{4}, where $f(x)=f_{0}+f_{1} x+\cdots+f_{r} x^{r}$ and $\mathbf{0}=(0,0, \ldots, 0) \in C$. Complement of $a \in \mathbb{F}_{4}$ is defined as $\bar{a}=a+1$. So, we have $\overline{\mathbf{0}}=(1,1, \ldots, 1)=1+x+\cdots+x^{\gamma-1}=$ $\left(\frac{x^{\gamma}-1}{x-1}\right) \in C$ and

$$
(f(x))^{r c}=1+x+\cdots+x^{\gamma-r-2}+\overline{f_{r}} x^{\gamma-r-1}+\overline{f_{r-1}} x^{\gamma-r}+\cdots+\overline{f_{0}} x^{\gamma-1} \in C
$$

Since C_{γ} is an \mathbb{F}_{4}-linear code, so $(f(x))^{r c}+\left(\frac{x^{\gamma}-1}{x-1}\right) \in C$, where

$$
\begin{aligned}
(f(x))^{r c}+\left(\frac{x^{\gamma}-1}{x-1}\right) & =\left(\bar{f}_{r}+1\right) x^{\gamma-r-1}+\left(f_{r-1}^{-}+1\right) x^{\gamma-r}+\cdots+\left(\bar{f}_{0}+1\right) x^{\gamma-1} \\
& =f_{r} x^{\gamma-r-1}+f_{r-1} x^{\gamma-r}+\cdots+f_{0} x^{\gamma-1}
\end{aligned}
$$

Since C is a cyclic code, $\left((f(x))^{r c}+\left(\frac{x^{\gamma}-1}{x-1}\right)\right) x^{r+1-\gamma}=f_{r}+f_{r-1} x+\cdots+$ $f_{0} x^{r}=f^{*}(x) \in C$. Thus, we can find a polynomial $p(x) \in \mathbb{F}_{4}[x]$ that satisfies $f^{*}(x)=p(x) f(x)$. But $\operatorname{deg}\left(f^{*}(x)\right) \leq \operatorname{deg}(f(x))$ asserted that $p(x)=1$, leads $f(x)=f^{*}(x)$. Hence, $f(x)$ is a self-reciprocal polynomial.

Since $C_{\delta}=\langle g(x)\rangle$ is an R-skew cyclic code, which is also a reversible complement code. So, by Theorem $6.2 g(x)$ is self-reciprocal and $(1+u+$ $w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C$.

Conversely, suppose that $f(x)$ and $g(x)$ are both self-reciprocal polynomials with $\left(\frac{x^{\gamma}-1}{x-1}\right) \in C_{\gamma}$ and $(1+u+w)\left(\frac{x^{\delta}-1}{x-1}\right) \in C_{\delta}$. Then, by Theorem 6.2, it is evident that C_{γ} (resp. C_{δ}) is a reversible complement code over \mathbb{F}_{4} (resp. R). Now, assuming C_{γ} and C_{δ} are both reversible complement codes. For any $c_{1} \in C_{\gamma}$ and $c_{2} \in C_{\delta}$, we have $c_{1}^{r c} \in C_{\gamma}$ and $c_{2}^{r c} \in C_{\delta}$. Consequently, for any $c=\left(c_{1}, c_{2}\right) \in C=C_{\gamma} \otimes C_{\delta}$, we can deduce that $c^{r c}=\left(c_{1}^{r c}, c_{2}^{r c}\right) \in C=C_{\gamma} \otimes C_{\delta}$. Thus, it becomes apparent that C is a reversible complement code.

Example 6.3. For $\gamma=17$, consider the polynomial $f(x)=x^{4}+x^{3}+\hbar x^{2}+x+1$ then $f(x) \mid\left(x^{17}-1\right)$ over $\mathbb{F}_{4}[x, \theta]$ and $f(x)$ is self-reciprocal. So, $C_{1}=\langle f(x)\rangle$ is a reversible complement code with parameters $[17,13,5]$ over R. Next, for $\delta=13$, let $g(x)=x^{6}+\hbar^{2} x^{5}+\hbar x^{3}+\hbar^{2} x+1$, then $g(x) \mid\left(x^{13}-1\right)$ over $\mathbb{F}_{4}[x, \theta]$ and $g(x)$ is self-reciprocal. Hence, $C_{2}=\langle g(x)\rangle$ is a reversible complement code with parameters [13,7,5] over R. Therefore, $C=C_{1} \otimes C_{2}$ is an $\mathbb{F}_{4} R$-reversible complement code with parameters $[30,20,5]$.

7 Conclusion

The primary objective of this research is to analyze the configuration of $\mathbb{F}_{4} R$-submodule and establish their connection with DNA codes, where $R=$ $\mathbb{F}_{4}+u \mathbb{F}_{4}+v \mathbb{F}_{4}+w \mathbb{F}_{4}$ with $u^{2}=u, v^{2}=v, w^{2}=w, u v=v u=0, v w=$ $w v=0, w u=u w=0$. This is achieved by examining particular subclasses like reversible codes. Ultimately, the aim of this study is to utilize Gray maps to derive codes that possess the characteristics of DNA structures. At the end of this paper, we have provided the condition under which skew cyclic codes are reversible.

Acknowledgements: The authors are greatly indebted to the referee for their valuable suggestions and comments, which have immensely improved the article.

References

[1] Abualrub, T., Ghrayeb, A., Zeng, X, N.: Construction of cyclic codes over $G F(4)$ for DNA computing. Journal of the Franklin Institute, $\mathbf{3 4 3}(\mathbf{4} \mathbf{- 5})$, 448-457 (2006).
[2] Abualrub, T., Seneviratne, P.: Skew codes over rings. Proc. International MultiConference of Engineers and Computer Scientists, Hong Kong, II, (2010).
[3] Adleman, L, M.: Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024 (1994).
[4] Ashraf, M., Mohammad, G.: Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Asian-European Journal of Mathematics, 11(05), 1850072-11 (2018).
[5] Benbelkacem, N., Ezerman, M, F., Abualrub, T., Aydin, N., Batoul, A.: Skew cyclic codes over $\mathbb{F}_{4} R$. Journal of Algebra and Its Applications, 21(04), 2250065-16 (2022).
[6] Borges, J., Fernández-Córdoba, C., Pujol, J., Rifá, J., Villanueva, M.: $Z_{2} Z_{4}$-linear codes: generator matrices and duality. Designs, Codes and Cryptography, 54(2), 167-179 (2010).
[7] Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: $Z_{2} Z_{4}$-additive cyclic codes, generator polynomials and dual codes. IEEE Transactions on Information Theory, 62(11), 6348-6354 (2016).
[8] Boucher, D., Geiselmann, W., Ulmer, F.: Skew-cyclic codes. Applicable Algebra in Engineering, Communication and Computing, 18(4), 379-389 (2007).
[9] Boucher, D., Solé, P., Ulmer, F.: Skew constacyclic codes over Galois rings. Advances in mathematics of communications, 2(3), 273-292 (2008).
[10] Calderbank, A, R., Sloane, N, J.: Modular and p-adic cyclic codes. Designs, Codes and Cryptography, 6(1), 21-35 (1995).
[11] Dertli, A., Cengellenmis, Y., Aydin, N.: On skew cyclic codes over a mixed alphabet and their applications to DNA codes. Discrete Mathematics, Algorithms and Applications, 14(04), 2150143-12 (2022).
[12] Gao, J.: Skew cyclic codes over $F_{p}+v F_{p}$. Journal of Applied Mathematics and Informatics, 31(3-4), 337-342 (2013).
[13] Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. American Institute of Mathematical Science, 6(1), 3963 (2012).
[14] Kanwar, P., Lopez-Permouth, S, R.: Cyclic codes over the integers modulo p^{m}. Finite fields and their applications, 3(4), 334-352 (1997).
[15] Limbachiya, D., Rao, B., Gupta, M, K.: The art of DNA strings: Sixteen years of DNA coding theory. arXiv preprint arXiv:1607.00266 (2016).
[16] Pless, V, S., Qian, Z.: Cyclic codes and quadratic residue codes over Z_{4}. IEEE Transactions on Information Theory, 42(5), 1594-1600 (1996).
[17] Rifá, J., Pujol, J.: Translation-invariant propelinear codes. IEEE Transactions on Information Theory, 43(2), 590-598 (1997).
[18] Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory, 2(1), 10-20 (2011).
[19] Udaya, P., Bonnecaze, A.: Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inform. Theory, 45(4), 1250-1255 (1999).
[20] Yao, T., Shi, M., Solé, P.: Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$. Journal of Algebra Combinatorics Discrete Structures and Applications 2(3), 163-168 (2015).

Nadeem ur REHMAN,
Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002, India.
Email: nu.rehman.mm@amu.ac.in, rehman100@gmail.com
Mohammad Fareed AHMAD,
Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002, India.
Email: fareed3745@gmail.com
Mohd AZMI,
Department-SASH Mathematics,
Vignan's Foundation for Science, Technoligy and Research, India.
Email: waytoazmi40@gmail.com

[^0]: Key Words: Cyclic codes; skew polynomial ring; DNA codes; reversible complement. 2010 Mathematics Subject Classification: Primary 94B05; Secondary 94B15.
 Received: 24.06.2023
 Accepted: 30.10.2023

