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Several new aspects on ¢-Horn and related
triple functions in the spirit of Karlsson

Thomas Ernst

Abstract

We first introduce a notation for multiple (n > 3) ¢-hypergeometric
functions, where negative values of summation indices are allowed. Then
we extend the notation for ¢g-Horn functions to include tilde values cor-
responding to powers of 2. Karlssons reduction formulas are correspond-
ingly g-deformed by using these notations. A formula for sums of inverse
g-shifted factorials is used to find further formulas. The second part of
the paper is devoted to convergence aspects for ¢g-Horn functions and
’abnormal’ ¢-Horn functions. It turns out that some simple estimates
for convergence can be made in the g-case, these are then supplemented
with tables of numerical values. It is shown that the convergence regions
are significantly increased in the g-case, and we compare with conver-
gence regions in the ordinary case.

1 Introduction

This paper is the second in a series of two papers on ¢g-Horn functions, the
first one was [6], where several ¢g-Horn functions were first defined.

The purpose of this paper is also to ¢-deform the very interesting Karlsson
paper [11], with a very useful notation for triple hypergeometric functions.
With our notation, the g-analogues are very similar to the original.

Multiple hypergeometric functions have many applications as was outlined
in [7]. There are even hypergeometric functions over finite fields. Since Horn
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functions are solutions to systems of partial differential equations [6], this sub-
ject has some practical importance. Similarly, g-Horn functions are solutions
to systems of ¢-difference equations [6]. However, our systems of operator g¢-
difference equations for double functions are totally different from the systems
of partial differential equations in [2, p. 233 ff.].

2 Definitions

We now repeat some notation from [3].

Definition 2.1. Let 6 > 0 be an arbitrary small number. We will always
use the following branch of the logarithm: —m +§ < Im (logq) < 7w+ 0. This
defines a simply connected space in the complex plane.

The power function is defined by

¢ = etlosl@), (2.1)

The following notation is often used when we have long exponents.

QE(x) = ¢°. (2.2)
The g-shifted factorial [3] is defined by

n—1

(aiq)n = [] 0 —a"m). (2.3)

m=0

With this notation, q-hypergeometric function- and hypergeometric function
equations become very similar.
Sometimes we also use

n—1

(@q)n = [] (0 ag™). (2.4)

m=0

There are three other types of q-shifted factorials [3]: in the equations (2.8) to
(2.13) we assume that (m,l) = 1.

C
Definition 2.2. In the following, 7 will denote the space of complex numbers

271
logq -

mod This is isomorphic to the cylinder R x €™ 9 € R. The operator

.CccC

'7277Z
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is defined by the 2-torsion .
i

a—a+ logq’ (2.5)
By (2.5) it follows that
n—1
(@g)n =[] (1 +¢*"™), (2.6)
m=0

where this time the tilde denotes an involution which changes a minus sign to
a plus sign in all the n factors of (a;q),. Furthermore we define

—_~

(a;q)n = (a5 @)n- (2.7)
The generalized tilde operator
~ C C
T ———
1s defined by
2mim
. 2.8
a—a+ oz q (2.8)
We also need another generalization of the tilde operator.
n—1 k—1
n= 1O gtm™). (2.9)
m=0 =0
Formula (2.9) is used in (2.14).
The following, simple congruence rules [3] follow from (2.8).
Theorem 2.1.
Fatb= 1 “(a£b) (mod 2mi (2.10)
- logq /)’ '
2 1 _ - 211
Z w4 ay :Ziak (mod 10gq> , (2.11)
k=1 k=1
~ _mam 2mi
Moa=52"" (mod , (2.12)
l l log q
Q ( ) QE( ) 27r17n (2.13)

27t
logq*

where the second equation is a consequence of the fact that we work mod
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Definition 2.3.

k—1 —
(5 hn = (D@ B Nsa) = [ 5hnx (O (210

m=0

We also use the notation AN(g; k; \) as a parameter in qg-hypergeometric func-
tions.

If \ is a vector, we mean the corresponding product of vector elements. If
A is replaced by a sequence of numbers, separated by commas, we mean the
corresponding product, as in the case of q-factorials.

The last factor in (2.14) corresponds to k™.

The following definition, like in the one-varible case [8], allows easy limits
for parameters to oo.

Definition 2.4. [3, p. 367 f]. The vectors

(a), (b), (g:) (i), (@), (¥), (g5), (;)

have dimensions
A7 B? Giv Hi7 Alv Blv G;a Hzl

Let
1+B+B +H,+H —-A-A -G, -G, >0,i=1,...,n.

Then the generalized q-Kampé de Fériet function is defined by

GGG GGl | (@)5 (9155 0n) oz (05 (9153 0n) |
B BUH A H b B (B) 2 (B ); s (hy) 0 (0) 2 (R)s- 5 (hyy)
)

3 ((a); go)m (@) (g0, m) TT—y (((9): 45)m, ((9) (a5, my)2]™)

= (0); 00)m (V) (g0, ) Ty (((y); @3)m, () (@5, m5) (15 0 ), )
(_1)2?:1 mj(1+Hj+H}7G]‘7G.,7>+B+B/7A7A/) «

QE ((B+B’—A—A’)<T;),q0) f[lQE ((1+Hj +H, — G —G;)(”;j>’qj> ’
(2.15)

X

where ~
a=aVvaV TaVigaVA(glN). (2.16)

It is assumed that there are no zero factors in the denominator. We as-

sume that (a’)(qo,m), (95)(g5,m;), (b)(q0, m), (h})(g;,m;) contain factors of
the form
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(a(k); @k, (83Dk (s(k); @i or QE (f ().

The numbers before colon denote the number of q-shifted factorials with index
m in numerator and denominator. The numbers after colon denote the num-
ber of q-shifted factorials with index m; in numerator and denominator. The
numbers after semicolon denote the number of q-shifted factorials with index

n in numerator and denominator. Fvery oo corresponds to multiplication with
1.

In our previous definition of ¢-Kampé de Fériet functions [3, p. 368],
only sums of summation indices and summation indices were allowed for ¢-
Pochhammer symbols. In order to define more general triple functions, Karls-
son [11] introduced the notation

Pl

with nine blank spaces for the parameters. Each parameter is now written
in the space(s) corresponding to its Pochhammer symbol subscript. When a
parameter occurs with sums of summation indices, it is written in both places
above. When a minus summation index occurs, it is written below. Thus,
only + signs of summation indices are allowed. In case a parameter occurs
as a product, like (b),,(b),, the last parameter is written in brackets. For the
g-case, a similar notation is used. The following reduction formula for triple
g-functions [3, (10.174)] will be used.

T3 y; z} (2.17)

Theorem 2.2. If {Cpn}i% =0 5 a sequence of bounded complex numbers,
then

oo

Crnntp(D; @)n(b; @) pr ' ah (—ao)P
2 (L) m (L q)n(L; q)p a

f: Cm,2k<b75; Q) ok
m, k=0 (L;)m (L, 15 q)k

m,n,p=0

(2.18)

The Horn functions were studied in a period over fifty years from 1889 to
1939 by their inventor, who determined their convergence regions in terms of
cartesian curves in the plane. The Horn method applies to multiple hypergeo-
metric functions of any number of variables. It gives a parametric equation for
the convergence region by a limit process for the rational function of the sum-
mation indices. This method is more blunt than the standard convergence test
by Stirlings formula, which works well for Appell and Lauricella functions. In
the whole paper, we give tables of numerical values for ¢ = .9; sometimes the
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function values are large, but the series still converges. This is in accordance
with previous investigations of ¢-Appell functions. We want to point out that
similar convergence criteria for multiple g-series were given in [5]. In [3, p. 366]
we pointed out that for the four so-called abnormal g-Appell functions,
x5 qk(néz) replaces 252 in the general term. We will see that normal functions
(in a broader sense) correspond to the Ward—AlSalam g-addition and abnormal
functions, with ¥ = 1, (in a broader sense) correspond to the Jackson-Hahn
g-addition.

Hopefully, the abnormal functions will have slightly greater convergence
region because of the extra g-power.

We define 10 g-analogues of two-variable Horn series.

Definition 2.5.

> 5 m m b; mo —Mm bl; mq1—m m m
Gi(a;b; b |q; 1, 20) = Z (a5 @hma + <21<_ q>q> (21‘q>1< @i 2 tey?. (2.19)
) my ) m2

m1,ma=0

o0 / /
sq)m Q) mo (b; q>m —m <b 'q>m —m
G a;a/;b,b/ @1, 40) = (a5 @)my (a”; @) ms (b3 2—m1\V; 1—m my My
2( ‘q ! 2) Z <1§Q>M1<1§Q>m2 b

m1,mo=0

(2.20)

e . /.
s (a:d|g: = Y (s @emam @ @amimma s 2.21
3(a,a|q,a:1,a:2) <1§q>m1<1;q>m2 Ty Lo ( )

mi,mo=0

> a;q)m;—m b; m14+ma{C;q)ma _mq _m
Hi(a;b;c;dlg o, m2) = Y (a9 21 Cﬁf]) q)<11.;> 2{ci4) 2l (2.22)
y Wy d/my \ Ly 4/mo

m1,m2=0

Z <a;q>mrm2<b;q>m1<c,d;q>m2xm1xm2. (2.23)

HQ(G,I), & d;elq;xlva) = <1 e: q> <1q> 1 2
Ee] mi ) m2

m1,mg=0

oo

<a§ q>2m1 +mao <b§ Q>m2 my, mo
A 2.24
2 (L@)my (L@ ma (G QD mytms 2 (224)

Hi(a; b; clg; w1, 2) =

m1,mo=0

Ha(a; b; ¢; dlg; 21, 22) = E <<(i (?Qq) 1+<12 <d ;I>> 2y, (2.25)
) mi s oy m2

m1,m2=0

(oo}
a; mi1+m b; mo—mi _mi_m
Hs(a; b; c|q; x1,x2) = E { (?12 q)1+ <21< C'qq>) 22T T g2 (2.26)
) mi g m2

m1,mo2=0

He(a; b; clgq; w1, 22) = Z (a; Q>2m1<717.n;><b§ q<>17.n;>7m1 (¢ Qms a™Mg?(2.27)
’ mi ? m2

mi,mo=0

Z (5 Q) 2my —my (b, Q) 2T T2 (2.28)

Hz(a; b; ¢; d|g; x1, 22) = T, d @y (L )
b b mi b mo

mi,mo=0
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We have the following alternative definitions with an extra quadratic q-factor;
note that these fuctions are different from those in [6].
oo mi
- (05 @)y —p (05 @iy mg (65 D 2)
Hi(a;b;c;d|q; x1,20) = Sl 1T 2 PR A
(@hedganm) = 3 (L, d; @)y (15 @) s b

mi,ma=0

(2.29)

—— 43 q) iy —ma (05 @) (0 Qmag(Z)

Ha(a; b c; dselgs oy, w2) = lo9) 1<126<.q;1> 2i.q> Uma oy wy?.
3 & mi bl m2

my,mo=0

(2.30)

X0 {3 0)2mytma (05 @mgg( )
Hs(a; b; c|q; = L mplt2, 2.31
3(a7 7C|Q7x17$2) Z <17 q>m1 <17 q>m2 <C; q>m1+m2 ) ( )

ml,mgzo

i . <U,‘ Q>2m +m <b q>m q(";l)
Hy(a;bscid|gsa,20) = Y ’<1 C}q> 2<1’ " q; Ml (2.32)
P g) my s Yy mo

ml,m2:0

o0 mq
@3 @)2ms 4z (0 @) U2 my,m
Hs(a; by ol g a1, 22) = Y < >2<11_Z>2<<1 >C;> - T, (2.33)
bl mq b ) mao

For the explanation of the importance of multiple g-Horn functions, see the
previous explanation of dual q-additions.

ml,mz:()

3 Reduction formulas for triple ¢g-functions

The notation will be illustrated by extensive proofs of the formulas, where
extra tildes are inserted for g-Horn and multiple functions.

Theorem 3.1. A g-analogue of [11, (3)].

¢, dya,bya,b] | B a;c;d L,
Proof. Put
(@ Q) ntp-m{c, di @)m

Crntp = 3.35
’ﬂ) (203 @) n+p (3.35)

in (2.18). Then we have

LHS bY(ilg) Z (a; @)ar—m{c, d; Q>m<§v b; )k $my2k
mizo  (L@)m(2b;q)2k (1, 13 q)

(3.36)

by[3, (6.33-30)] - (@5 Qo (€ di Do m, 2k _ ppg

mb=0 (1 @) (L, 1,0+ 3,6+ 31 q)n
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Theorem 3.2. A g-analogue of [11, (4)].

a,a;a,b;a, [b]
¢ [ d: 2b: 2b

:T,Y, _y}

_ . - (3.37)
_(1)4:2;3 aaa+§,a+§'200;3oo . 2
— 4.1;2 1 1 q7$7y *
4oo : d;b+ 5 b+ 3
Proof. Put
(a; Q>2m+n+p
Conmsp = B d2mintp 3.38
= TG (25 s (3:3%)
Then we have
LS e i (a; q)2m+2k (D, b; @)k 2k
wio (1,d; @) (265 )2k (1,15 q)
by[3, (6.33-34)] a; q)2am+2k 1 m, 2k
= 7151719—’— b+ S5 kT Y = RHS.
2 g, | 37!
O
Theorem 3.3. A g-analogue of [11, (5)].
sa, [0] 4 e

a,c;a,b 2
(I) s &y Uy ’ 1T, Y, — :H . — ) , T . 3.40
[ d; 2b; 2 ‘q v y] bbbt ba (MY ] (340)

Proof. Put
<a§ q>m+n+p <C; q>m

Connan = . 3.41
P <d, q>m<2b; Q>n+p ( )

Then we find

by(2 18) Z +2k C; Q>m<b E; Q>k xrny2k
o § 1dq> (265 @)ar (L, 1; @)
- (3.42)
by[3. (6:33-34) (@; @)m2k{c; (J> 2™y = RHS,

m,k=0 <17d’q> <]‘ 1 b+ 3 b+ 2’q>
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Lemma 3.1. A g-analogue of [2, §2.8(5)]
1 1 1 Alg;2a
STt 4¢3 f T T) q;Z] : (3.43)
(225¢9)a  (—=22;9)a 202
1 1 1 1 A(g;2;a+1
B T — T =z2{a}q 4¢3 ( 3 3 i ) QJZ] - (3.44)
(22;9)a  (—2259)q 22

Proof. In both cases, use the g-binomial theorem and add or subtract the

corresponding contributions.

Theorem 3.4. A g-analogue of [11, (7)].

$%,Y, —y]

200, Ag; 2; @), b, b

2
= —— s8¢ = qYy
227 q) l A(g; 2;d), 1

1 200, A(q; 2;a),b, b 2
- 897 Neooom |Gy 1
2(—x%,q) A(g;2;d),1 (—229% q)an
Proof. Put
Cm,ner - 1 1<~ >2m+"+l7
(3,3 Li@)m(d; Q>n+p
Then we find
LHs e i (ﬁl;q>2m+2k<b7 b; @) 2y

m,k=0 <1,;,27 > <daq>2k<1aIvQ>k

:iM 2k, b Alg;2;a) ¢ by (3.43)
—o (& @)21(1, L5 g) 1

11
202

RHS.

O

(3.45)

(3.46)

(3.47)



SEVERAL NEW ASPECTS ON Q-HORN AND RELATED TRIPLE
FUNCTIONS IN THE SPIRIT OF KARLSSON 164

Theorem 3.5. A g-analogue of [11, (8)].

(I)laadbd[b]

1
§§laa

q;%,Y, _y‘|
1 200,A(q;2;d),b7g
= —F— 3¢7 2
2(22:q)a [ A(g; 21 —a), 1
1
+——F— 897
2(7x§;q)a

Proof. Put

@y’

(miq(f;(J)mc ] (3.48)

200, A(q; 2;d), bb

L2
Alg21—-a),1 |77

<Q;Q>2m n— p<d q>n+p.
<23231 q>
¥(2.18) (@5 @)am—21(b,b; Q)i (d; @)or
Z 2m—2k G 2
m,k=0 <17132327q> <1a1aq>k
f:q F)+2R(=a) (3, T (s q)on o, [A(q, ;a — 2k)

k=0 170’ Q>2k<1alaQ> ’%’1

Crntp = (3.49)

N

by(3.43) 1 o g2 2RO (b B ) (i ok o 1 1

T 1
2 k=0 <1 _a;Q>2k<1a1;Q>k (x§§Q)a—2k (—xi;q)a,gk
by[3, (6.13)]

RHS.

This section contained both ¢-Horn functions and general ¢-hypergeometric
functions on the right-hand side. The Srivastava A notation, the tilde and the
infinity symbol have been extensively used. We hope that our new notations
will be suitable for other functions too, since this subject is far from fully
exploited.

4 Convergence regions and numerical values

4.1 Convergence regions for Horn functions

Figures (1)-(6) show convergence regions in the first quadrant for the six Horn
functions Hy, Ho, H3, Hy, Hg and H;. The convergence region for Hs is more
complicated, see [2]. We remind that convergence regions are independent of
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1)
(1,3-242)
H
(0, 0) (1,0)

Figure 1: Convergence region for H;

0,1)

(1,0.5)

(0,0) (1,0)

Figure 2: Convergence region for Hy

the parameters. We illustrate convergence region computations with the
g-Stirling formula in one example. Later we show that Horns method leads
to the same result. We adhere to the terminology in Horn [9]. In the whole
paper, A, m, denotes the coeflicient of z]"* 25" for the respective function.

For the function G; we have

a+my+ma,b—mq +mo, b +my —mo,1,1

a,b,b/,1+mq,1+ms (4.51)

Aml,mz = Fq

We will use the following equivalent approximation for the ¢—Stirling formula
[4]:
Py(2) ~ {2} 2. (4.52)

Then we find lim,, m,— oo
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0, 1)
b, |©25.05)
(0, 0) (0.25, 0)

Figure 3: Convergence region for Hg

mi,Mmo—>00

Aml,m.g ~ Fq |: a ;b/ :| lim
o (4.53)

{ml + m2}¢qul{ml}Zl+m17m271{m2}gfm1+m271 <m17: ’ITLQ) )
1 q

The series converges for (|z1| @y |z2])” < 1 and G; converges in the same
region.

Definition 4.1. Let lim denote that all parameters and 1—0.

Am m
®(my, ms) = lim —2utlme (4.54)
Am17m2
Am m
U (my,my) = lim —2um2tl (4.55)

my,Mmsa

The positive quantities {r;}?_; are called the associated radii of conver-
gence for the double series
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1.0 .

0.8 .

0.6 .

0.4 .

0.2 H, .

0.0 ‘
0.00

0.05 0.10 0.15 0.20 0.25

Figure 4: Convergence region for Hy
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0, 1)

\(0.25, 242 -2)

(0, 0) (0.25, 0)

Figure 5: Convergence region for Hg

(0,1)

(0.25, 0.5)

Hz7

(0, 0) (0.25, 0)

Figure 6: Convergence region for Hy;
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> Ay ol (4.56)

mi,ma

The convergence region, a ¢-deformed hypersurface in R2, has the para-
metric representation

1= [@(ma,ma)| 7 e = [ (my, ma)| T (4.57)
In the following, we follow the notation in [7, p. 37-39]. Let £ = |z1| and

n= |zal.
The convergence curve C has the parametric equations

£ =[(®(m1,ma)) ", = |(®(m1,ma)) . (4.58)
Consider the function H;. We have

Ay t1m, (@ —ma+mi,b+my +ma; g

Aml,mg <d+m171+m1;Q>1 (459)
. {mi +ma}e{mi —ma}, ’
@(ml,m2) = 2 .
{mi}3

On the other hand,

Apymar1 _ (e ma b+ my +maig) ’ \Ij(mth):m.

Ay msa (1+mo,a—mg+mi —1;9)01 {m1 —ma},
(4.60)

The convergence border C has the parametric equations
2
m _
= bty L= Amazmabg (4.61)
{m1 +ma}te{mi —ma}, {m1 +ma},

For ¢ = 1, the convergence region is bounded by the curve 4&n = (n + 1)2.
All the numerical values were computed by Mathematica.
The following table exemplifies the largely extended convergence region for
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Hq(.7;.66; —.88;.44].9; 1, x2)

1 xo | Hi(.7;.66; —.88;.44|.9; 1, 22)
.6 .28 0.574532
.25 | .45 0.70123
.25 .5 0.666567
.25 | .55 0.63151
.25 .6 0.596016
.25 7 0.523497
.25 .8 0.448412
.25 .9 0.369667
.25 1 0.95 0.328091
4 .99 —0.484385
.6 .96 —7.71041
.8 1.999 ~ —59299.8
9 .99 —116622.
95 | .99 —845949.
.99 .8 —340.604
995 | .8 —378.912
999 | 8 —412.902
1. .19 0.524829
9 1.01 0
1.01 .8 —524.518
1.05| .8 —1304.2
1.05| .9 —108294.
1.1 .8 —4550.01
1.1 .85 —46646.7
1.15| .85 —463725.
117 | .85 —3.24 x 10°
1.18 | .85 00

We remark that 1.17 x .85 ~ 0.9945, 1.18 x .85 =~ 1.003.
The following table exemplifies the largely extended convergence region for
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Hi(].9; 21, 22).
1 2 | H1(.7;.66; —.88;.44|.9; x1, x2)
.6 .28 0.577146
.25 .45 0.702179
.25 .5 0.667825
.25 .55 0.633152
.25 .6 0.598134
.25 7 0.526937
.25 .8 0.453923
.25 .9 0.378612
.25 1 0.95 0.339816
1. .19 0.528465
4 .99 —0.161551
.6 .96 —0.979853
.8 1999 ~ —20.4
9 .99 —10.339
.95 .99 —15.1764
9 9 —3.45471
.99 .8 —2.785
.995 .8 —2.84405
.999 .8 —2.89225
1. .19 0.528465
1. .22 0.449196
9 1.01 00
1.01 .8 —3.02941
1.05 .8 —3.59088
1.05 9 —7.6383
1.1 .8 —4.45941
1.1 .85 —6.51831
1.15 | .85 —8.3796
1.17 | .85 —3.24 x 10°
1.18 | .85 00
Consider the function Hy. We have
Ami41,my _ (@ —my +ma, b+ my; q>17 B(my, my) = {m; — mQ}q’ (4.62)
Am17m2 <€ +my, 1 +my; Q>1 {ml}q
On the other hand,
Am1,m2+1 _ <C+m27d+m2;Q>l \I/(m m )_ {mQ}q
Am,l,mQ <1+m2;a*m2+m1*1;Q>1’ b {mlme}q-

(4.63)
The boundary of the convergence region C has the parametric equations
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f — {ml}q ; — {ml — mQ}q . (464)
{m1 —ma}y {ma}q

For ¢ = 1, the convergence region is bounded by the curve —¢ + 71 = 1.
The following table exemplifies the divergence values for
Ho(.7;.66;.22; —.88; .44; x1, x2):

Iy ) H2(7, 66, 22, 788, 44, T, 1’2)
1.17| .85 o0
1.10 | .85 00
.85 | 1.05 00
25 | 1.1 00
7 1. 00
92 1 .99 o0

The following table exemplifies the largely extended convergence region for
Ha(].9]g; 21, 72).

T xo | Ho(.7;.66;.22; —.88;.44|.9; 1, x2)
1.17| .85 0.766257
1.10 | .85 0.943808
.85 | 1.05 0
25 | 1.1 0
.7 1. 0.960477
.92 1 .99 0.934475

The following table exemplifies the largely extended convergence region for
H2(|9, Z1, %2).

1 xo | Ha(.7;.66;.22; —.88; .44|.9; 21, 22)
1.17 | .85 0.944452
1.10 | .85 0.947817
.85 | 1.05 00
25 | 1.1 00
e 1. 0.960676
92 | .99 0.948944

Consider the function Hz. We have

Ay +1.ms _ (a+ 2my + ma; q)s Dy, ma) = {2m; + mz}g .
Ay s (c+mi+mo, 1+ mq;9) {mi +ma}e{mi},

(4.65)
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On the other hand,

Aml,m2+1 . <a+2m1 +m2,b—|—m2;q>1 . {2m1+m2}q
= ; U(my,mg) = ————.
Aml,mg <C+m1 —|—m2,1—|—m2;q)1 {ml —|—m2}q
(4.66)
The convergence border C has the parametric equations
€= {1 + m2}q{m21}q’ n= {m1 +maty . (4.67)
{2m1 +mo}? {2m1 +ma},

For ¢ = 1, the convergence region is bounded by the curve

2
(-3

The following table exemplifies values where H3(.7;.66; —.88; x1, x2) diverges :

x1 | o | H3(.7;.66; —.88; 21, x2)
25| .8 00
.25 | .95 00
41 .6 00
81 .3 o0

The following table exemplifies the largely extended convergence region for
H3(|.9; 21, x2):

21 | xo | Ha(.7;.66; —.88].9; 21, z2)
251 .8 —782.114

.25 | .95 —11550.8

4 | .6 —1270.47

81 .3 —4.41834 x 108

The following table exemplifies the largely extended convergence region for
H3(|9, 1, 2132).

T T2 Hg(.?; .66; —.88|.9;$1,$L’2)
25| .8 —565.037
25 .95 —8356.2
4] .6 —375.945
8.3 —4810.81

We infer that the only important variables are ¢, x1,z3. We also computed
some function values with other parameters, which are listed below (the pa-
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rameters are the same when 1,z are the same):

T X9 H3(|.9; 1, Ig)

85 .3 [ —2.93996 x 107
87| .3 | —9.36162 x 107
87| .8 | —3.28457 x 108
87| .95 | —1.61249 x 10°
95| .95 | —2.67052 x 1010
96 | .96 | —5.39639 x 10'°
98 | .98 | —3.6039 x 10'!
.99 | .99 | —1.85456 x 10'2

xy | wo | H3(|.9;21,22)

85| .3 —10895.3
87| .3 —20906.1
87| .8 —276763.

.87 .95 | —4.16117 x 109
95 | .95 | —7.34531 x 108
96 |.96 | —1.11771 x 107
.98 | .98 | —3.38574 x 107
.99 | .99 | —8.44023 x 107

Consider the function Hy. We have

A 2 : 2my + mo }2
mitlmy _ (a4 2my + ma; q)2 Dy, ms) = w. (4.68)
Ay ms (I+m,c+mi;qh {m1}2

On the other hand,

Ay mat1 _ (a + 2my JrTrLQ,berz;(;{h7 U(my, my) = M.
Aml’mZ <1+m27d+m2;Q>1 {mg}q
(4.69)
The convergence border C has the parametric equations
2
m
e - Ama, (4.70)

o {Zml —|—m2}§’ = {2m1 +m2}q'

For ¢ = 1, the convergence region is bounded by the curve
46 = (n—1)2 (4.71)

The following table exemplifies the largely extended convergence region for
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H4(|9, Z1, $2).

x1 | wo | Hy(.T;.66; —.88;.34|.9; 21, 22)
36| .1 —497.01

371 1 —609.267
38| .11 —838.891
39| .12 —1157.09
45| .13 —4605.76
45| .18 —8299.61
A7 | .20 —16276.2
49 | .23 —36273.9
521 .25 —91169.9
541 .15 —42621.8
55 .13 —41678.5
56| .18 —97537.7
56| .2 —124725.
56 | .22 —159401.
56 | .32 —549200.

6 1.32 —1.43368 x 106
66 | .32 —6.33515 x 10°
.66 | .34 —8.2101 x 108
7|34 —2.30365 x 107
7 ].37 —3.4246 x 107
75 | .36 —1.15495 x 108
8| .34 —3.70151 x 108
8| 4 —8.3214 x 108
8 | .44 —1.45112 x 10°
81 .5 —3.44418 x 10°
8 | .55 —7.31888 x 10?
85 | .45 —7.92947 x 10°
851 5 —1.63856 x 1010
85| .55 —3.49169 x 100
85| .6 —7.72059 x 1010
85| .7 —4.35934 x 10!
8] .8 —6.75591 x 10!
85| .85 —1.06145 x 103
91 .9 —2.45497 x 1014
95| .95 —1.24604 x 106
.96 | .96 —3.34707 x 1016
97| .97 —1.03729 x 10'7
98| .98 —4.13221 x 107
99 | .99 —2.978 x 10'8
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The following table exemplifies the largely extended convergence region for

H4(|.9; 1, 1‘2).

X1 ) H4(.7; .66; 7.88; .34|.9; x1, 1172)
36 .1 —99.7646
371 —113.209
38 | .11 —141.525
39 | .12 —176.748
45| .13 —402.489
45| .18 —661.881
A7 | .20 —1025.15
49 | .23 —1755.84
52| .25 —3059.3

54| .15 —1374.96
55| .13 —1245.31
.56 | .18 —2338.93
56| .2 —2877.25
56 | .22 —3539.46
.56 | .32 —10129.1

6 .32 —15949.1
66 | .32 —30771.7
.66 | .34 —38437.2
7.3 —58849.6

7 1.37 —82841.8
75 | .36 —124248.

8 |.34 —163178.

8| 4 —330246.

8 | .44 —537389.

81 .5 —1.15111 x 10°
8 | .55 —2.24811 x 10°
.85 | .45 —1.00264 x 10°
85| .5 —1.9063 x 10°
.85 | .55 —3.74115 x 10°
85| .6 —7.6255 x 10°
85| .7 —3.66905 x 107
8| 8 —1.38071 x 108
85| .85 —7.07608 x 108
91 .9 —4.385 x 10°
.95 | .95 —4.01401 x 10*°
.96 | .96 —6.91494 x 10'°
97 | .97 —1.27941 x 10!
.98 | .98 —2.68361 x 10'*
.99 | .99 —7.57045 x 101

We infer that the only important variables (within normal ranges) are
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q,T1,T2.
Consider the function H5. We have

{le +m2}2
@(ml,mg) = g ‘I’(ml,mg) =

_ {2ma +mae{ma —mu},

B {ma *ml}q{ml}q7 {mz}%

The convergence border C has the parametric equations

¢ = {ma —mi}o{mi}, {ma2}3 _
{2my +ma}2 7 {2m1 +ma}e{me —mi}g

The following table exemplifies the convergence region for Hs:

x1 | xo | H5(.7;.66; —.88; 21, x2)
02] 8 —184.354
021 9 —1441.68
021 .95 —14996.4
.02 | .96 —39258.3
021 97 —210261.
.02 ] .98 00

03| 91 —3078.93
03] .92 —4804.47
03] .93 —8281.86
.04 | .55 —14.8307
.04 | .58 —19.7882
04| 6 —24.0614
05| 4 —3.59709
.05 | .455 —6.38679
05| .5 00

11 1 .095 0.620182
13| .06 0.650251
A3 .07 o0

(4.72)

(4.73)

The following table exemplifies the largely extended convergence region for
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H5(|9, Z1, $2)I

The following table exemplifies

H5(|.9; x1, (EQ)Z

1 xz2 | Hs(.7;.66; —.88|.9; 21, x2)
6 .28 —4156.92
.25 6 —808.574
.25 7 —2291.71
.25 8 —6351.34
.25 9 —18336.
25 | .95 —35810.7
A 6 —32055.4
A4 7 —132590.
6 46 —218212.
7 3 —37480.4
.8 3 —261695.
.64 8 —4.44298 x 108
852 | .85 —1.36057 x 101°
872 | 87 —6.16019 x 10*°
.92 9 —7.29556 x 10'?
9252 | 925 —7.42529 x 10'?
952 | 95 —1.10175 x 10*4
972 | 97 —1.58031 x 10'°
.982 | .965 —4.41885 x 10'°

1 z2 | Hs(.7;.66; —.88|.9; x1, x2)

6 .28 —4156.92

.25 6 —228.492

.25 7 —530.859

.25 8 —1290.79

.25 9 —4074.42

25 | .95 —10745.

4 6 —2175.84

A4 7 —5660.8

6 46 —5299.9

7 3 —1233.93

8 3 —2845.42
.64 8 —442256.
.85% | .85 —2.14316 x 10°
872 | .87 —4.06241 x 10°
.92 9 —1.06891 x 107
9252 | 925 —2.41201 x 107
952 | .95 —5.4886 x 107
97 | 97 —1.07131 x 108

the largely extended convergence region for
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Consider the function Hg. We have

{2my — m2}3 . {mg — ml}q

®(mq,mq) = , U(my,me) = . 4.74
(ma,ma) {ma —m}e{mity (a1, ma2) {2m1 —maty ( )
The convergence border C has the parametric equations

£ — {m2 B ml}q{ml}q n= {2m1 B m2}q (475)

{2my —ma}2  ma—ma},

For g = 1, the convergence region is bounded by the curve &n? +n = 1.
The following table exemplifies the convergence region for Hg(z1, x2):

1 xo | Hg(.7;.66; —.88|q; x1, x2)
.22 .64 1.74196

.22 .8 2.02235

.23 7 1.83741

24 | .59 1.63362

.25 .25 1.14405
.251 | .251 00

The following table exemplifies the largely extended convergence region for
H6(|9, Z, fEQ)I

Iy ) H6(7,66,788|9,CE1,$2)
.6 | .28 0.942578
251 .6 0.878244
257 0.851269
251 .8 0.823884
2519 0.796053
251 .95 0.781956
25| 1. 0.76771
83| 1. 0.03

4] .6 0.824688
6 | .46 0.834755
7.3 0.931807
8.3 0.961308
851 .3 1.02644

Consider the function H7. We have

{277?,1 — m2}g

{mi}3

The convergence border C has the parametric equations

, \If(ml,mg) _ {mQ}q

iy - _ __\M2jg
(ml’ m2) {2m1 — mg}q

(4.76)
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my }2 2 —
_ { 1}q -, _ { mi mQ}q (477)
{2m1 —mo}2 {ma}q
For ¢ = 1, the convergence region is bounded by the curve

1 2

4¢€ = ( — 1) . (4.78)
Ui

The following table exemplifies the convergence region for Hy:

I1 To H7(.7; 66, —.88, .44; T, Ig)
251 .5 1.93661

25| .6 o0

.8 2 1.37966

6 | .28 1.52952

4199 00

.02 | .999 00

The following table exemplifies the largely extended convergence region for
H7|9, xq, $2)Z

Iy i) H7(7, 66,—88, 44|9,(E1,(E2)
25 5 0.956562
251 .6 0.944654
250 .7 0.931147
251 .8 0.915462
2509 0.896338
25 | 1. ~ 0.45
251 1.1 %)

4] .99 0.580361
D] .99 —1.51711
9] .99 —84046.1
.8 1.999 ~ —bT7768.

5 Conclusion

The convergence region has increased considerably, and we can expect an
even greater increment when the number of variables increases. Since the ¢-
Horn functions are more complicated than the g-Appell functions, the time to
compute numerical values near the convergence border increases and we have
only given approximate values in these cases. We have shown numerically
that if the ¢-Horn function contains a ¢-shifted factorial with index mi — mo
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in the numerator, we can only expect convergence in regions where |z1| > 1 if
|za] < 1. We have also shown that the tilde g-Horn functions converge slightly
faster than the corresponding ¢-Horn functions. We can summarize the results
of the convergence investigations as follows: Out of the seven H-functions, Hs
and Hy are best in class with parabolas as convergence region boundaries and
Hs|gq; 21, 22) and Hy|g; 21, 22) with simple convergence boundaries. We could
have seen this at once by looking at the g-shifted factorial indices of the two
functions, which contain no minuses.

6 Discussion

This investigation could be continued by considering higher order g-Horn func-
tions, even though the computations would take more time. The scientific
contribution of the paper is the g-analogues of Karlsson’s formulas and the
new notation for multiple g-series together with the knowledge that also Horn
functions can be g-deformed.
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