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Non-Archimedean stabilities of multiplicative
inverse µ-functional inequalities

Hemen Dutta, B. V. Senthil Kumar and S. Suresh

Abstract

This study is motivated through the interesting non-Arcchimedean
stability results of ρ-inequalities and ρ-equations arising from linear,
second power, third power and fourth power mappings. The aim of
this paper is to determine the solutions of new multiplicative inverse µ-
inequalities and µ-equations arising from multiplicative inverse mapping.
Further, their stabilities involved with various superior limits are proved
in the context of non-Archimedean complete normed spaces.

1 Introduction & Preliminaries

In many physical problems, investigating correct solution to a mathematical
equation is complicated. In such cases, an approximate solution replaces the
exact solution of those equations without affecting the nature of the problem.
This is an essence to focus on finding approximate solution of an equation.
When a mathematical equation has an approximate solution near to its exact
solution, then the equation is said to be stable. There are many interesting
applications of functional equations in different disciplines such as Economics,
Utility theory, Aggregation problems, Tax functions, Electrical engineering,
Optics, Electromagnetism, Physics, Medicine, etc.

The investigation of finding approximate mappings is developed through
a famous query posed in [30] referring to the approximate homomorphisms
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arising in the theory of groups. The foremost response is provided in [12]
with a partial answer to Ulam’s query in the setting of Banach spaces. If
a functional equation is shown to satisfy the proof provided in [12], then an
approximation exists that is close to its exact solution and hence it is said
to have stability. This result is acclaimed as Ulam-Hyers (U-H) stability or
approximation of functional equation. Further, U-H stability is extended as a
general version for additive mappings in [2] and by taking sum of exponents
of norms as an upper bound in [22]. Later, Ulam stability is obtained as a
general outcome by reinstating the sum of exponents of norms with a generic
control function in [8]. The Jensen functional equation

J(u+ v) =
1

2
[J(u) + J(v)], (1)

has been extensively investigated and was dealt by many mathematicians to
find the solution of (1) in [1, 13]. A solution of equation (1) is of the form
J(u) = ku+ c.

The functional equation

g(p1 + p2) =
g(p1)g(p2)

g(p1) + g(p2)
, (2)

is introduced to find its stabilities in [24]. The geometrical interpretation
and an application of (2) related with electric circuits are discussed in [25].
It is proved that a multiplciative inverse mapping or a reciprocal mapping
satisfies equation (2). Hence equation (2) is referred as a multiplicative inverse
functional equation or a reciprocal functional equation. The following equation

Jr

(
u+ v

2

)
=

2Jr(u)Jr(v)

Jr(u) + Jr(v)
, (3)

is motivated through Jensen’s functional equation (1) which has a solution of
the form Jr(u) = 1

u + c. The stability of equation (3) is investigated in [27].
Several other functional equations of rational type and cubic form are studied
to determine their non-Archimedean stabilities in ([6, 9, 28]). It is proved in
[10] that if a mapping g satisfies the ensuing inequality∥∥2g(p) + 2g(q)− g(pq−1)

∥∥ ≤ ‖g(pq)‖ , (4)

then g satisfies the equation

2g(p) + 2g(q) = g(pq) + g(pq−1).

Further, the stabilty results of inequality (4) are obtained in [7, 11]. The Ulam
stabilities of additive functional inequalities are available in [20]. Besides, ρ-
inequalities and ρ-equations arising from additive functions are defined and
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determined their stabilities in Archimedean Banach spaces in [18, 19], in non-
Archimedean 2-normed spaces in [32]. The stabilities of Cauchy-Jensen kind
additive ρ-functional inequalities are studied in [29]. Also, the stabilities of ρ-
inequalities and ρ- equations arising from quadratic functions are investigated
in [4, 16]. The ρ-inequalities arising from cubic and quartic functions are dealt
in [21] to prove their Ulam stabilities.

For instance, there are many functional inequalities having interest-
ing applications in the quotients of geometric functions [3], probability [5],
parabolic stochastic partial differential equations containing rotation [14], log
convex and reverse log convex properties of several unknown functions [31].
The method of Maggi’s equations is applied to realize the assembly of the equa-
tions of motion for a planar mechanical systems using finite two-dimensional
elements [26]. The inequalities associated with the Jordan-von Neuman func-
tional equation were dealt in [23].

Motivated by the interesting applications of several functional inequal-
ities and additive ρ-functional inequalities in [17], in this article, we propose
the upcoming multiplicative inverse µ-functional inequalities∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥ ≤ ∥∥∥∥µ(1

2
g

(
p+ q

2

)
− g(p)g(q)

g(p) + g(q)

)∥∥∥∥ , (5)

and ∥∥∥∥∥ 2

g
(
p+q
2

) − 1

g(p)
− 1

g(q)

∥∥∥∥∥ ≤
∥∥∥∥µ( 1

g(p+ q)
− 1

g(p)
− 1

g(q)

)∥∥∥∥ , (6)

where µ is a fixed non-Archimedean number with |µ| < 1. We determine the
solution of inequalities (5) and (6) and also investigate their non-Archimedean
stabilities.

The fundamental definition and other notions related to non-Archimedean
field and non-Archimedean space are recalled here to demonostrate our major
outcomes.

Definition 1.1. Let us assume that M as a field. A mapping | · | : K −→
R+ ∪ {0} is called a valuation. Then M is known as a non-Archimedean field
if the mapping | · | fulfills the ensuing prerequisites:

(NA1) |p1| = 0 if and only if p1 = 0,

(NA2) |p1p2| = |p1| · |p2|, and

(NA3) the triangle inequality: |p1 + p2| ≤ max{|p1|, |p2|}, for all p1, p2 ∈M.

If a field M is equipped with a valuation then it is called as a valued field. The
conventional absolute values of real and complex numbers are some instances
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where valuations are applicable. It is clear that | ± 1| = 1 and for all integers
k ≥ 0, |k| ≤ 1.

Definition 1.2. [15] Let a non-Archimedean field M be endowed with a valu-
ation |·|. Suppose U is a vector space over M. A mapping ‖·‖ : U −→ R+∪{0}
is referred to as a non-Archimedean norm if the following circumstances are
true:

(i) ‖p1‖ = 0 if and only if p1 = 0;

(ii) ‖kp1‖ = |k| ‖p1‖, for all k ∈M, p1 ∈ U ;

(iii) ‖p1 + p2‖ ≤ max {‖p‖ , ‖q‖}, for all p1, p2 ∈ U .

Under the above circumstances, the pair (U, ‖·‖) is designated as a non-
Archimedean normed space.
In the following definitions, let {up} be a sequence in a non-Archimedean
normed space U .

Definition 1.3. The sequence {up} is termed as Cauchy sequence if for a
given δ > 0 there exists an integer K > 0 such that ‖uk − u`‖ ≤ δ for all
k, ` ≥ K.

Definition 1.4. If for a given δ > 0, there exists an integer P > 0 and
an element u ∈ U such that ‖up − u‖ ≤ δ for all p ≥ P for all p ≥ P , then the
sequence {up} converges to u. If the sequence {up} converges to u ∈ U , then
it is called as its limit and it is symbolized as lim

p→∞
up = u.

Definition 1.5. If every Cauchy sequence {up} is convergent to an element
u ∈ U , then U is called as a non-Archimedean Banach space.

In this entire paper, let us presume that A be a non-Archimedean normed
space and B be a non-Archimedean Banach space. Furthermore, we consider
|2| 6= 1. Also, we assume that µ be a non-Archimedean number such that
|µ| < 1.

2 Solution of multiplicative inverse µ-functional inequal-
ities (5) and (6)

In this section, we assume that P is a commutative semigroup with division by
2. Then, we solve the inequalities (5) and (6) over non-Archimedean normed
spaces. In the following results, we consider g : P −→ B to be a mapping.

Theorem 2.1. The mapping g satisfies the inequality (5) for all p, q ∈ P
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if and only if g is reciprocal.
Proof. Firstly, let us presume that (5) is satisfied by the mapping g. Now,
setting q = p in (5), we find that

∥∥g(2p)− 1
2g(p)

∥∥ ≤ 0, which inturn implies

g(2p) =
1

2
g(p), (7)

for all p ∈ P. Utilizing (5) and (7), we obtain that∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥ ≤ |µ| ∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥ ,
and as a consequence, we arrive at g(p + q) = g(p)g(q)

g(p)+g(q) , for all p, q ∈ P. On

the contrary, the proof is obvious.

Corollary 2.2. The following equation

g(p+ q)− g(p)g(q)

g(p) + g(q)
= µ

(
1

2
g

(
p+ q

2

)
− g(p)g(q)

g(p) + g(q)

)
, (8)

is satisfied by the mapping g for all p, q ∈ U if and only if g is reciprocal.

Theorem 2.3. The inequality (6) is satisfied by the mapping g with the
condition that 1

g(0) = 0, if and only if g is reciprocal.

Proof. Let (6) is satisfied by the mapping g. Letting q = 0 in (6), we

get

∥∥∥∥ 2

g( p
2 )
− 1

g(p)

∥∥∥∥ ≤ 0, which yields that

g
(p

2

)
= 2g(p), (9)

for all p ∈ P. Using (6) and (9), we arrive at∥∥∥∥ 1

g(p+ q)
− 1

g(p)
− 1

g(q)

∥∥∥∥ ≤
∥∥∥∥∥ 2

g
(
p+q
2

) − 1

g(p)
− 1

g(q)

∥∥∥∥∥
≤ |µ|

∥∥∥∥ 1

g(p+ q)
− 1

g(p)
− 1

g(q)

∥∥∥∥ ,
which induces g(p+ q) = g(p)g(q)

g(p)+g(q) , for all p, q ∈ P. On the contrary, the proof

is obvious.

Corollary 2.4. The following equation

2

h
(
u+v
2

) − 1

h(u)
− 1

h(v)
= µ

(
1

h(u+ v)
− 1

h(u)
− 1

h(v)

)
, (10)
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is satisfied by the mapping g for all u, v ∈ U if and only if g is reciprocal.

3 Ulam stabilities of multiplicative inverse µ-functional
inequalities (5) and (6)

In the present section, we solve the stability problems concerning the mul-
tiplicative inverse µ-functional inequalities (5) and (6) in the framework of
non-Archimedean complete Banach spaces. Let us assume that g : A −→ B

be a mapping in the following results.

Theorem 3.1. Suppose a function ϕ : A × A −→ R+ satisfies the follow-
ing condition

lim
n→∞

1

|2|n
ϕ
( p

2n
,
q

2n

)
= 0, (11)

for all u, v ∈ A. If the mapping g satisfies∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥ ≤ ∥∥∥∥µ(1

2
g

(
p+ q

2

)
− g(p)g(q)

g(p) + g(q)

)∥∥∥∥+ ϕ(p, q),

(12)
for all p, q ∈ A, then a mapping G : A −→ B exists and defined by

G(p) = lim
n→∞

1

2n
g
( p

2n

)
, (13)

for all p ∈ A. The mapping defined in (13) is unique and satisfies (7) such
that

‖g(p)−G(p)‖ ≤ max

{
1

|2|k
ϕ
( p

2k+1
,

p

2k+1

)
: k ≥ 0 is an integer

}
, (14)

for all p ∈ A.

Proof. Initially, let us put q = p in (12) which yields∥∥∥∥g(2p)− 1

2
g(p)

∥∥∥∥ ≤ ϕ(p, p),

for all p ∈ A. Hence, we have∥∥∥∥g(p)− 1

2
g
(p

2

)∥∥∥∥ ≤ ϕ(p2 , p2) , (15)
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for all p ∈ A. Therefore using (15),we we have∥∥∥∥ 1

2r
g
( p

2r

)
− 1

2s
g
( p

2s

)∥∥∥∥
≤ max

{∥∥∥∥ 1

2r
g
( p

2r

)
− 1

2r+1
g
( p

2r+1

)∥∥∥∥ , . . . ,∥∥∥∥ 1

2s−1
g
( p

2s−1

)
− 1

2s
g
( p

2s

)∥∥∥∥}
= max

{
1

|2|r
∥∥∥∥g ( p2r )− 1

2
g
( p

2r+1

)∥∥∥∥ , . . . , 1

|2|s−1

∥∥∥∥g ( p

2s−1

)
− 1

2
g
( p

2s

)∥∥∥∥
}

≤ max

{
1

|2|r
ϕ
( p

2r+1
,
p

2r+1

)
, . . . ,

1

|2|s−1
ϕ
( p

2s
,
p

2s

)}

=
1

|2|r
ϕ
( p

2r+1
,
p

2r+1

)
→ 0 as r →∞. (16)

By (16), it is evident that the sequence
{

1
2n g

(
p
2n

)}
transforms into a Cauchy

sequence. Owing to the completeness of B, the sequence
{

1
2n g

(
p
2n

)}
converges

to a mapping G : A −→ B defined by(13). Moreover, putting r = 0 and letting
the limit s→∞ in (16), we arrive at (14). Next is to show that G is the unique
reciprocal mapping satisfying (14). For this, let us assume that there occurs
an additional mapping H : A −→ B which satisfies (7) and (14). Then, we
obtain

‖G(p)−H(p)‖

=

∥∥∥∥ 1

2m
G
( p

2m

)
− 1

2m
H
( p

2m

)∥∥∥∥
≤ max

{∥∥∥∥ 1

2m
G
( p

2m

)
− 1

2m
g
( p

2m

)∥∥∥∥ ,∥∥∥∥ 1

2m
g
( p

2m

)
− 1

2m
H
( p

2m

)∥∥∥∥}
≤ 1

|2|m
ϕ
( p

2m+1
,

p

2m+1

)
→ 0 as m→∞,

for all p ∈ A. Hence, we arrive at G(p) = H(p) for all p ∈ A, which completes
the uniquess of G. Therefore, using (12), one can obtain that∥∥∥∥G(p+ q)− G(p)G(q)

G(p) +G(q)

∥∥∥∥ = lim
n→∞

∥∥∥∥∥ 1

2n

(
g

(
p+ q

2n

)
−

g
(
p
2n

)
g
(
q
2n

)
g
(
p
2n

)
+ g

(
q
2n

))∥∥∥∥∥
≤ lim
n→∞

∥∥∥∥∥ 1

2n
µ

(
1

2
g

(
p+ q

2n+1

))
−

g
(
p
2n

)
g
(
q
2n

)
g
(
p
2n

)
+ g

(
q
2n

)∥∥∥∥∥
+ lim
n→∞

1

2n
ϕ
( p

2n
,
q

2n

)
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=

∥∥∥∥µ(1

2
G

(
p+ q

2

)
− G(p)G(q)

G(p) +G(q)

)∥∥∥∥ ,
for all p, q ∈ A. Therefore, we obtain∥∥∥∥G(p+ q)− G(p)G(q)

G(p) +G(q)

∥∥∥∥ ≤ ∥∥∥∥µ(1

2
G

(
p+ q

2

)
− G(p)G(q)

G(p) +G(q)

)∥∥∥∥ ,
for all p, q ∈ A. Hence by Theorem 2.1, the mapping G : A −→ B is reciprocal.

The following theorem is the other stability result of the inequality (5).
The proof follows through idential arguments as in Theorem 3.1 and hence we
exclude it.

Theorem 3.2. Let a function ϕ : A × A −→ R+ satisfies the following
condition

lim
n→∞

|2|n ϕ (2np, 2nq) = 0,

for all p, q ∈ A. If the mapping g satisfies the inequality (12), then, a mapping
G : A −→ B exists which is unique and satisfies (7) with the condition that

‖g(p)−G(p)‖ ≤ max
{
|2|k ϕ

(
2kp, 2kp

)
: k ≥ 0 is an integer

}
,

for all p ∈ A.

Corollary 3.3. Let s 6= −1 and λ > 0. Let the mapping g satisfies the
following inequality∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥
≤
∥∥∥∥µ(1

2
g

(
p+ q

2

)
− g(p)g(q)

g(p) + g(q)

)∥∥∥∥+ λ (‖p‖s + ‖q‖s) ,

for all p, q ∈ A. Then, a mapping G : A −→ B exists which is unique and
satisfies (7) such that

‖g(p)−G(p)‖ ≤

{
2λ

|2|s|2|k(s+1) ‖p‖
s

for s < −1

2λ |2|k(s+1) ‖p‖s for s > −1,

for all p ∈ A.
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Corollary 3.4. Let a, b ∈ R with s = a + b 6= −1 and λ > 0. If the
mapping g satisfies the following inequality∥∥∥∥g(p+ q)− g(p)g(q)

g(p) + g(q)

∥∥∥∥ ≤ ∥∥∥∥µ(1

2
g

(
p+ q

2

)
− g(p)g(q)

g(p) + g(q)

)∥∥∥∥+λ
(
‖p‖a ‖q‖b

)
,

for all p, q ∈ A, then, a mapping G : A −→ B exists which is unique with the
condition that

‖g(p)−G(p)‖ ≤

{
λ

|2|s|2|k(s+1) ‖p‖
s

for s < −1

λ |2|k(s+1) ‖p‖s for s > −1,

for all p ∈ A.

Theorem 3.5. Let a function ϕ : A×A −→ R+ with the condition ϕ(u, v) 6= 0
satisfying

lim
n→∞

|2|n 1

ϕ
(
p
2n ,

q
2n

) = 0, (17)

for all p, q ∈ A. If the mapping g with g(0) =∞ satisfies the inequality∥∥∥∥∥ 2

g
(
p+q
2

) − 1

g(p)
− 1

g(q)

∥∥∥∥∥ ≤
∥∥∥∥µ( 1

g(p+ q)
− 1

g(p)
− 1

g(q)

)∥∥∥∥+
1

ϕ(p, q)
, (18)

for all p, q ∈ A, then, a mapping G : A −→ B defined by

G(p) = lim
n→∞

2n
1

g
(
p
2n

) , (19)

exists for all p ∈ A. The mapping defined in (19) is unique and satisfies (8)
with the condition that

‖g(p)−G(p)‖ ≤ max

{
|2|k 1

ϕ
(
p
2k
, p
2k

) : k ≥ 0 is an integer

}
, (20)

for all p ∈ A.

Proof. Initially, we put q = 0 in (18) to obtain∥∥∥∥∥ 2

g
(
p
2

) − 1

g(p)

∥∥∥∥∥ ≤ 1

ϕ(p, 0)
, (21)
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for all p ∈ A. Therefore, using (21), we have∥∥∥∥∥ 2k

g
(
p
2k

) − 2`

g
(

1
2`

)∥∥∥∥∥
≤ max

{∥∥∥∥∥ 2k

g
(
p
2k

) − 2k+1

g
(

p
2k+1

)∥∥∥∥∥ , . . . ,
∥∥∥∥∥ 2`−1

g
(

p
2`−1

) − 2`

g
(
p
2`

)∥∥∥∥∥
}

= max

{
|2|k

∥∥∥∥∥ 1

g
(
p
2k

) − 2

g
(

p
2k+1

)∥∥∥∥∥ , . . . , |2|`−1
∥∥∥∥∥ 1

g
(

p
2`−1

) − 2

g
(
p
2`

)∥∥∥∥∥
}

≤ max

{
|2|k 1

ϕ
(
p
2k
, 0
) , . . . , |2|`−1 1

ϕ
(

p
2`−1 , 0

)}

≤ |2|k 1

ϕ
(
p
2k
, 0
) → 0 as k →∞. (22)

From the above, we notice that the sequence

{
2n 1

g( p
2n )

}
emerges as Cauchy

for all p ∈ A. Since B is complete, the sequence

{
2n 1

g( p
2n )

}
converges to a

mapping G : A −→ B defined in (19). On the other hand, by taking k = 0
and taking the limit ` → ∞ in (22), we arrive at (20). The enduring part of
the proof is achieved via analogous reasoning as in Theorem 3.1.

The subsequent result is the other stability of the inequality (6). Since
the proof is akin to Theorem 3.5, we furnish only the statement.

Theorem 3.6. Let a function ϕ : A × A −→ R+ with ϕ(p, q) 6= 0 satis-
fies the condition

lim
n→∞

1

|2|n+1

1

ϕ
(
p
2n ,

q
2n

) = 0,

for all p, q ∈ A. If the mapping g with g(0) =∞ satisfies (18), then, a unique
mapping G : A −→ B exists and satisfies (8) with the condition that

‖g(p)−G(p)‖ ≤ max

{
1

|2|k+1

1

ϕ (2kp, 2kp)
: k ≥ 0 is an integer

}
,

for all p ∈ A.

Corollary 3.7. Let s 6= −1 and λ > 0. If the mapping g satisfies the
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following inequality∥∥∥∥∥ 2

g
(
p+q
2

) − 1

g(p)
− 1

g(q)

∥∥∥∥∥ ≤
∥∥∥∥µ( 1

g(p+ q)
− 1

g(p)
− 1

g(q)

)∥∥∥∥+λ (‖p‖s + ‖q‖s) ,

for all p, q ∈ A, then, a mapping G : A −→ B exists which is unique such that

‖g(p)−G(p)‖ ≤

{
2λ

|2|s|2|k(s+1) ‖p‖
s

for s < −1

2λ
|2||2|k(s+1) ‖p‖

s
for s > −1,

for all p ∈ A.

Corollary 3.8. Let a, b ∈ R with s = a + b 6= −1 and λ > 0. Let the
mapping g satisfies the following inequality∥∥∥∥∥ 2

g
(
p+q
2

) − 1

g(p)
− 1

g(q)

∥∥∥∥∥ ≤
∥∥∥∥µ( 1

g(p+ q)
− 1

h(p)
− 1

g(q)

)∥∥∥∥+ λ
(
‖p‖a ‖q‖b

)
,

for all p, q ∈ A. Then, a unique mapping G : A −→ B exists with the condition
that

‖g(p)−G(p)‖ ≤

{
λ

|2|s|2|k(s+1) ‖p‖
s

for s < −1

2λ
|2||2|k(s+1) ‖p‖

s
for s > −1,

for all p ∈ A.

4 Conclusion

We close this study with a conclusion of validity of stability results of in-
equalities (5) and (6) and the equations associated with them. The stability
results pertaining to various µ-functional inequalities arising from additive,
quadratic, cubic and quartic mappings are obtained by many mathemati-
cians. This study is the foremost attempt that we have concerned with new
multiplicative inverse µ-functional inequalities and multiplicative inverse µ-
functional equations to investigate their several stabilities pertinent to the
theory of Ulam’s approximation. It is interesting to observe from the out-
comes attained in this study that the stabilities of inequalities (5) and (6) are
still valid over non-Archimedean spaces. The results obtained in this study
indicate that the functional inequalities (5) and (6) can be used to approxi-
mate the solutions of equations (2) and (3). This would pave a different and
fascinating direction to investigate several forms of µ-functional inequalities
and equations for their stabilities.
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