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Stochastic ordering of discrete multivariate
distributions. Algorithm in C++ with

applications in the comparison of number of
claims and extremes order statistics

Luigi-Ionut Catana

Abstract

In this article we present a stochastic ordering verification algorithm
between multivariate discrete distributions implemented in the C++
programming language. This algorithm is essential in problems of find-
ing the optimal portfolio when dealing with discrete distributions.

1 Introduction

Let N = (N1, ..., Nk) a discrete random vector with the probability mass
function pN (n) = P (N = n) , n ∈ Rk.

We denote Z≥j = {k ∈ Z : k ≥ j} and Aj = A×A× ...×A︸ ︷︷ ︸
j sets

.

Robe-Voinea and Vernic (2016) presented a proof of a formula for probabil-
ity function of the corresponding multivariate compound distribution. They
considered N = N1 + ...+Nk where:

-N satisfies the Panjer-type recursion P (N = n) =
(
a+ b

n

)
P (N = n− 1),

n ∈ Z≥1, a, b ∈ R;
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- P (N1 = n1, ..., Nk = nk| N = n) = n!
k∏

i=1
nk!

k∏
i=1

pni
i , (n1, ..., nk) ∈ Zk≥1,

k∑
i=1

ni = n, (p1, ..., pk) ∈ (0, 1)
k
.

Starting from the second, the first stochastic ordering problem is intro-
duced:

P1 : When P (N1 + ...+Nk ≥ t) ≤ P (M1 + ...+Mk ≥ t) ∀ t ∈ Zk≥0 where
we know p(N1,...,Nk) and p(M1,...,Mk)?

Now, we present another often encountered situation. Catana (2021) gen-
eralized Theorems 2.1 and 2.2 from Nadarajah et al. (2017) using a family of
multivariate Pareto distributions with the survival function

P (X > x) =

(
k∑
i=1

xi

bi
− k + 1

)−a
, x ∈

k∏
i=1

(bi,∞) , b ∈ (0,∞)
k
, a ∈

(0,∞) .
The following problems was studied:

P2 : When P (min (X1, ..., Xk) > t) ≤ P (min (Y1, ..., Yk) > t) ∀ t ∈ R where
we know p(N1,...,Nk) and p(M1,...,Mk)?

P3 : When P (max (X1, ..., Xk) > t) ≤ P (max (Y1, ..., Yk) > t) ∀ t ∈ R where
we know p(N1,...,Nk) and p(M1,...,Mk)?

For the studies of stochastic orderings of smallest/largest claim amounts
important results were published in: Das and Kayal (2021), Das et al. (2021),
Nadeb et al. (2018, 2020). Also, interesting results related to recently dis-
covered stochastic orderings were published in Raducan et al. (2022) and
Radulescu et al. (2021).

Important properties of some generalized distributions that can be used in
problems with extremes order statistics can be studied in: Bancescu, (2018),
Baca and Vernic (2022), Catana (2022), Vernic (2005).

The results discovered so far in the specified works are based on inequal-
ities using the real analysis in Rk in the case of distributions with F or F ∗

continuous. However, in the case of discrete multivariate distributions, F and
F ∗ are discontinuous. In addition, there is a large number of inequalities that
must be studied.

The structure of the article is as follows: in Section 2 we present some
definitions and results regarding the multivariate stochastic ordering that will
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be used, Section 3 presents the algorithm in C++ for checking stochastic
orderings between two discrete multivariate distributions. Also, in this section
we present the data structures used, the idea of the algorithm and why it is
useful. Section 4 presents applications of the algorithm in the comparison
of number of claims and extremes order statistics and Section 5 presents the
conclusions of the article.

2 Preliminaries

The inequality in P1 represents the stochastic ordering between N1 + ...+Nk
and M1 + ...+Mk.

We specify definitions and results that will be used in this article related
to the stochastic ordering of multivariate distributions. In the multivariate
case, it is necessary to know how we can compare two points. The following
definition is often used, although we cannot compare any two points with it.

Definition 2.1. (Shaked and Shanthikumar (2007)) Let x, y ∈ Rk. We
say x is smaller (greater) than y (and denote x ≤ (≥)y) if xi ≤ (≥)yi i = 1, k.

Once the ordering between two points is introduced, we can also define the
minimum and maximum between two points, given by Definition 2.2:

Definition 2.2. (Shaked and Shanthikumar (2007)) Let x, y ∈ Rk. We
denote

min(x, y) = (min(x1, y1), ...,min(xk, yk))

and

max(x, y) = (max(x1, y1), ...,max(xk, yk)) .

The following definition will be useful in defining the usual multivariate
stochastic ordering between two distributions.

Definition 2.3. (Shaked and Shanthikumar (2007)) A set C ⊂ Rk is
called increasing if

∀ x ∈ C ∀ y ∈ Rk then x ≤ y =⇒ y ∈ C.

Unlike the univariate case where the stochastic ordering had only one def-
inition, in the multivariate case due to the fact that any two points on the
right are comparable, in the multivariate case three definitions appear, one for
the usual stochastic ordering (the one that generalizes the usual ordering) and
the others two weaker.

Definition 2.4. (Shaked and Shanthikumar (2007)) Let X, Y : Ω → Rk
be two random vectors. We say that X is said to be smaller than Y in the

(i) usual stochastic order (written as X ≺st Y ) if
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P (X ∈ C) ≤ P (Y ∈ C) ∀ C ⊂ Rk;

(ii) weak stochastic order (written as X ≺wst Y ) if

F ∗X (x) ≤ F ∗Y (x) ∀ x ∈ Rk;

(iii) dual weak stochastic order (written as X ≺dwst Y ) if

FX(x) ≥ FY (x) ∀ x ∈ Rk.

We now define the increasing functions u : Rk → R:
Definition 2.5. (Shaked and Shanthikumar (2007)) A function
u : Rk → R is called increasing if ∀ x, y ∈ Rk then x ≤ y =⇒ u (x) ≤ u (y) .
The following theorem presents a characterization of multivariate stochas-

tic ordering:
Theorem 2.6. (Shaked and Shanthikumar (2007)) Let X, Y : Ω→ Rk be

two random vectors. Then

X ≺st Y ⇐⇒ Eu (X) ≤ Eu (Y ) ∀ u : Rk → R increasing function.

Theorem 2.7 presents a characterization of multivariate weak stochastic
orders:

Theorem 2.7. (Shaked and Shanthikumar (2007), Theorem 6.G.15., p.
315) Let X, Y : Ω→ Rk be two positive random vectors. Then

(i) X ≺wst Y ⇐⇒ min (α1X1, ..., αkXk) ≺st min (α1Y1, ..., αkYk)

∀ α1, ..., αk ∈ (0,∞) .

(ii) X ≺dwst Y ⇐⇒ max (α1X1, ..., αkXk) ≺st max (α1Y1, ..., αkYk)

∀ α1, ..., αk ∈ (0,∞) .
Remark 2.8. (Shaked and Shanthikumar (2007)) X ≺st Y =⇒ X ≺wst Y

and X ≺st Y =⇒ X ≺dwst Y.
We note:
Ua =

{
x ∈ Rk : x ≥ a, x 6= a

}
,

Ua =
{
x ∈ Rk : x ≥ a

}
,

V =
{
Ua : a ∈ Rk

}
,

Vσ the set of all countable reunions of Ua ∈ V.
Catana (2019) proved a fundamental equivalence of stochastic orderings of

multivariate distributions:
Theorem 2.9. (Catana (2019), Theorem 3.4) Let X, Y : Ω→ Rk be two

random vectors. Then
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X ≺st Y ⇐⇒ P (X ∈ C) ≤ P (Y ∈ C) ∀ C ∈ Vσ.

These results show us that the verification of multivariate stochastic order-
ing is reduced to a particular class of increasing sets. The following proposition
is a direct application of this theorem in the case of discrete multivariate dis-
tributions:

Proposition 2.10. (Catana (2019), Proposition 3.5) Let the multivariate

random vectors X, Y : Ω→ Rk, with X ∼
n∑
i=1

piδai and Y ∼
m∑
i=1

qiδbi . Then

X ≺st Y ⇐⇒ P (X ∈ C) ≤ P (Y ∈ C) ∀ C = ∪x∈MUx ,

with M ⊂ {a1, ..., an, b1, ..., bm} set of mutual not comparable points or
singleton.

3 The algorithm

The algorithm is based on the Proposition 2.10. To represent a point in any
dimension we use the vector data structure (the dimension is read). In this
algorithm we have implemented a function that decides if x ≤ y, x, y ∈ Rk.

In the algorithm, after reading the size of the working space (let us consider
the dimension= k), a point in Rk will be represented by a list-type vector and
a set of points in Rk will be represented by a list-type vector of vectors.

We want to verify if X ≺st Y. The algorithm forms all sets of mutually
incomparable points (or singletons) M then for each set it calculates P (X ∈
∪x∈MUx) and P (Y ∈ ∪x∈MUx) and checks if P (X ∈ ∪x∈MUx) ≤ P (Y ∈
∪x∈MUx).

If for each such set M found P (X ∈ ∪x∈MUx) ≤ P (Y ∈ ∪x∈MUx) then
X ≺st Y.

If it finds a set T such that P (X ∈ ∪x∈TUx) > P (Y ∈ ∪x∈TUx) then the
algorithm stops and X ⊀st Y.

The advantage of using the algorithm based on Proposition 2.10 is the
finite and in practice quite small number of checks that the computer makes
to determine if X ≺st Y.

Algorithm 3.1.
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <vector>
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using namespace std;
ifstream fin(”points.in”);
ofstream fout(”results.out”);
vector<vector<double>> A,B,C;
vector<double> a;
double p,x,s1,s2;
int n,m,M[100],dim,q,k,d;
int inequality less than(vector<double> k1, vector<double> k2)
{
int z=1;
for(int i=0;i<dim;i++)
{
if(k1.at(i)>k2.at(i))
{
z=0;
break;
}
}
return z;
}
void init()
{
int U = 10;
int T = 100;
fin>>dim;
fin>>n;
fin>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<dim;j++)
{
fin>>x;
a.push back(x);
}
fin>>p;
a.push back(p);
A.push back(a);
a.clear();
}
for(int i=0;i<m;i++)
{
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for(int j=0;j<dim;j++)
{
fin>>x;
a.push back(x);
}
fin>>p;
a.push back(p);
B.push back(a);
a.clear();
}
for(int i=0;i<n;i++)
C.push back(A.at(i));
for(int i=n;i<n+m;i++)
C.push back(B.at(i-n));
for(int i=0;i<n+m;i++)
{
M[i]=i;
}
}
int verify(int data[], int r)
{
int q=1;
if(r>1)
for(int i=0;i<r;i++)
for(int j=i+1;j<r;j++)
if((inequality less than(C.at(data[i]),C.at(data[j]))==1)||
(inequality less than(C.at(data[j]),C.at(data[i]))==1))
{
q=0;
break;
}
return q;
}
int verify dominance(int data[],int r)
{
int q;
double s1=0,s2=0;
for(int i=0;i<n;i++)
{
q=0;
for(int j=0;j<r;j++)
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if(inequality less than(C.at(data[j]),A.at(i))==1)
{
q=1;
break;
}
if(q==1)
s1=s1+A.at(i).at(dim);
}
for(int i=0;i<m;i++)
{
q=0;
for(int j=0;j<r;j++)
if(inequality less than(C.at(data[j]),B.at(i))==1)
{
q=1;
break;
}
if(q==1)
s2=s2+B.at(i).at(dim);
}
fout<<”probability X=”<<s1<<” and ”<<”probability Y=”<<s2<<
endl;
if(s1>s2)
k=0;
}
void combinationUtil(int M[], int n, int r, int index, int data[], int i);
void printCombination(int M[], int n, int r)
{
int data[r];
combinationUtil(M, n, r, 0, data, 0);
}
void combinationUtil(int M[], int n, int r, int index, int data[], int i)
{
if (index == r)
{
if(verify(data,r)==1)
{
fout<<”For ”;
for (int j = 0; j < r; j++)
{
fout<<”(”;
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for(int i=0;i<dim-1;i++)
fout<<C.at(data[j]).at(i)<<”,”;
fout<<C.at(data[j]).at(dim-1);
fout<<”) ”;
}
fout<<”we have ”;
verify dominance(data,r);
}
return;
}
if (i >= n)
{
return;
}
data[index] = M[i];
combinationUtil(M, n, r, index + 1, data, i + 1);
combinationUtil(M, n, r, index, data, i + 1);
}
int main()
{
init();
k=1;
for(int r=1;r<=n+m;r++)
{
printCombination(M, n+m, r);
fout<<endl;
}
if(k==1)
fout<<”X is stochastic dominated by Y”;
else
fout<<”X is not stochastic dominated by Y”;
return 0;
}

4 The applications

We now analyze how we can apply the algorithm.

Let X ∼
n∑
i=1

piδai and Y ∼
m∑
i=1

qiδbi k-dimensional random vectors,
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{ai}i=1,n, {bi}i=1,m, {pi}i=1,n, {qi}i=1,m randomly generated.
We want to determine if X ≺st Y.
We simulated two situations to compare with k, n,m ∈ [0, 9] ∩ Z≥0,
{ai}i=1,n , {bi}i=1,m ⊂ [0, 9] ∩ Z≥0 and
{pi}i=1,n, {qi}i=1,m ⊂ (0, 1) with one decimal.

In the first situation we obtain:

k = 3, n = 2, m = 3,
a1 = (0, 0, 1) , a2 = (3, 5, 2) ,
b1 = (1, 0, 1) , b2 = (2, 1, 4) , b3 = (4, 5, 6) ,
p1 = 0.5, p2 = 0.5,
q1 = 0.2, q2 = 0.2, q3 = 0.6.

We run the program and we obtain:

For (0,0,1) we have probability X=1 and probability Y=1
For (3,5,2) we have probability X=0.5 and probability Y=0.6
For (1,0,1) we have probability X=0.5 and probability Y=1
For (2,1,4) we have probability X=0 and probability Y=0.8
For (4,5,6) we have probability X=0 and probability Y=0.6
For (3,5,2) (2,1,4) we have probability X=0.5 and probability Y=0.8
X is stochastic dominated by Y

Thus X ≺st Y.

In the second situation we obtain:

k = 8, n = 4, m = 2,
a1 = (5, 3, 1, 5, 2, 3, 7, 9) ,
a2 = (0, 4, 5, 0, 0, 1, 0, 0) ,
a3 = (1, 0, 1, 2, 2, 9, 8, 5) ,
a4 = (3, 1, 4, 4, 5, 5, 5, 9) ,
b1 = (4, 5, 6, 5, 0, 1, 0, 1) ,
b2 = (5, 8, 9, 9, 9, 5, 1, 1) ,
p1 = 0.2, p2 = 0.4, p3 = 0.2, p4 = 0.2,
q1 = 0.6, q2 = 0.4.

We run the program and we obtain:

For (5,3,1,5,2,3,7,9) we have probability X=0.2 and probability Y=0
For (0,4,5,0,0,1,0,0) we have probability X=0.4 and probability Y=1
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For (1,0,1,2,2,9,8,5) we have probability X=0.2 and probability Y=0
For (3,1,4,4,5,5,5,9) we have probability X=0.2 and probability Y=0
For (4,5,6,5,0,1,0,1) we have probability X=0 and probability Y=1
For (5,8,9,9,9,5,1,1) we have probability X=0 and probability Y=0.4
For (5,3,1,5,2,3,7,9) (0,4,5,0,0,1,0,0) we have probability X=0.6 and
probability Y=1
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) we have probability X=0.4 and
probability Y=0
For (5,3,1,5,2,3,7,9) (3,1,4,4,5,5,5,9) we have probability X=0.4 and
probability Y=0
For (5,3,1,5,2,3,7,9) (4,5,6,5,0,1,0,1) we have probability X=0.2 and
probability Y=1
For (5,3,1,5,2,3,7,9) (5,8,9,9,9,5,1,1) we have probability X=0.2 and
probability Y=0.4
For (0,4,5,0,0,1,0,0) (1,0,1,2,2,9,8,5) we have probability X=0.6 and
probability Y=1
For (0,4,5,0,0,1,0,0) (3,1,4,4,5,5,5,9) we have probability X=0.6 and
probability Y=1
For (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) we have probability X=0.4 and
probability Y=0
For (1,0,1,2,2,9,8,5) (4,5,6,5,0,1,0,1) we have probability X=0.2 and
probability Y=1
For (1,0,1,2,2,9,8,5) (5,8,9,9,9,5,1,1) we have probability X=0.2 and
probability Y=0.4
For (3,1,4,4,5,5,5,9) (4,5,6,5,0,1,0,1) we have probability X=0.2 and
probability Y=1
For (3,1,4,4,5,5,5,9) (5,8,9,9,9,5,1,1) we have probability X=0.2 and
probability Y=0.4
For (5,3,1,5,2,3,7,9) (0,4,5,0,0,1,0,0) (1,0,1,2,2,9,8,5) we have
probability X=0.8 and probability Y=1
For (5,3,1,5,2,3,7,9) (0,4,5,0,0,1,0,0) (3,1,4,4,5,5,5,9) we have
probability X=0.8 and probability Y=1
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) we have
probability X=0.6 and probability Y=0
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) (4,5,6,5,0,1,0,1) we have
probability X=0.4 and probability Y=1
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) (5,8,9,9,9,5,1,1) we have
probability X=0.4 and probability Y=0.4
For (5,3,1,5,2,3,7,9) (3,1,4,4,5,5,5,9) (4,5,6,5,0,1,0,1) we have
probability X=0.4 and probability Y=1
For (5,3,1,5,2,3,7,9) (3,1,4,4,5,5,5,9) (5,8,9,9,9,5,1,1) we have
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probability X=0.4 and probability Y=0.4
For (0,4,5,0,0,1,0,0) (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) we have
probability X=0.8 and probability Y=1
For (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) (4,5,6,5,0,1,0,1) we have
probability X=0.4 and probability Y=1
For (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) (5,8,9,9,9,5,1,1) we have
probability X=0.4 and probability Y=0.4
For (5,3,1,5,2,3,7,9) (0,4,5,0,0,1,0,0) (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9)
we have probability X=1 and probability Y=1
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) (4,5,6,5,0,1,0,1)
we have probability X=0.6 and probability Y=1
For (5,3,1,5,2,3,7,9) (1,0,1,2,2,9,8,5) (3,1,4,4,5,5,5,9) (5,8,9,9,9,5,1,1)
we have probability X=0.6 and probability Y=0.4
X is not stochastic dominated by Y

Thus X ⊀st Y.

If X ≺st Y then:
1) from Theorem 2.6 (taking u (x) = (x1 + x2 + ...+ xk) ·1x∈[0,∞)k (x)) we

obtain X1 + ...+Xn ≺st Y1 + ...+ Ym. Thus

P (N1 + ...+Nk ≥ t) ≤ P (N1 + ...+Mk ≥ t) ∀ t ∈ Zk≥0;

2) from Theorem 2.7 (taking u (x) = min (α1x1, ..., αkxk), α1, ..., αk ∈
(0,∞)) we obtain

min (α1X1, ..., αkXk) ≺st min (α1Y1, ..., αkYk) . Thus

P (min (α1X1, ..., αkXk) > t) ≤ P (min (α1Y1, ..., αkYk) > t) ∀ t ∈ R;

3) from Theorem 2.7 (taking u (x) = max (α1x1, ..., αkxk), α1, ..., αk ∈
(0,∞)) we obtain

max (α1X1, ..., αkXk) ≺st max (α1Y1, ..., αkYk) . Thus

P (max (α1X1, ..., αkXk) > t) ≤ P (max (α1Y1, ..., αkYk) > t) ∀ t ∈ R.

If X ⊀st Y then we cannot give an answer to the problems P1, P2, P3 on
this way but one can analyze the univariate ordering in P1, the weak and dual
weak orderings in P2 and P3.
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5 Conclusions

In this article, the problem of stochastic ordering of discrete multivariate dis-
tributions was treated using an algorithm implemented in C++. Due to the
number of increasing sets for which the inequality describing the stochastic
ordering should be verified, it was necessary to implement an algorithm. This
algorithm can simplify many analysis problems of F ∗X maximization at a point
or Eu(X) (increasing u) according to the parameters of the random vector X.
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