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An inverse LU preconditioner based on the
Sherman–Morrison formula ∗

R. Bru, J. Cerdán, J. Maŕın and J. Mas

Abstract

An approximate inverse LU preconditioner is constructed based on
the Sherman–Morrison formula. Applying recursively that inversion for-
mula a multiplicative decomposition of the inverse of a matrix is ob-
tained. This recursion in compact form is the base to build the proposed
preconditioner that we call V–AISM. For nonsingular M -matrices and
H-matrices of the invertible class the stability of the preconditioner is
proved. Numerical results show that V–AISM is robust and competitive
compared with other preconditioners.

1 Introduction

Let Ax = b be a large, sparse nonsymmetric linear system where A ∈ Rn×n

is nonsingular and x, b ∈ Rn. Developing preconditioners for solving linear
systems by iterative methods is an important problem in Numerical Linear
Algebra. The right preconditioning technique consists of finding a matrix M
for which the solution via an iterative method of the equivalent linear system
AM−1y = b, y = Mx is obtained more efficiently. The preconditioner M
should approximate the matrix A in some sense. There are mainly two pre-
conditioning techniques. One that computes the matrix M and another that
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computes its inverse. In this work we study factorized approximate inverse
preconditioners that compute explicitly an approximation of A−1. Then the
preconditioners are applied by matrix-vector products in each iteration of the
Krylov method that is important for efficient parallel computations. Among
this class of preconditioners we can mention the AINV (Approximate Inverse)
preconditioner [1] and some variants of it, see [4, 15]. A comparative study of
this kind of preconditioners can be seen in [2].

The idea of building preconditioners by the Sherman-Morrison formula
[14, 16] gives rise to preconditioners of both classes mentioned above, the
AISM (Approximate Inverse Sherman-Morrison) [6, 10] that computes an ap-
proximate inverse and the BIF (Balanced Incomplete Factorization) [7, 8] that
computes an incomplete LU factorization.

In this work, we use the Sherman–Morrison formula to obtain an approx-
imate inverse LU preconditioner. The main difference with respect to the
AISM is the way of applying recursively the inversion formula to obtain a
new decomposition of A−1. Then we use a compact representation of this
decomposition to build our proposed preconditioner denoted by V–AISM.

The structure of the paper is the following. In section 2 we present a new
decomposition of A−1. In section 3, we show that the inverse of the LU factors
are in this decomposition. In addition, we also prove that the computation of
our algorithm is breakdown-free for nonsingular M–matrices and H–matrices
of invertible class. In section 4 some numerical results of a set of matrices from
Harwell–Boeing [12] and SuiteSparse Matrix [11] collections are given. Then
the results are compared with those of the approximate inverse preconditioners
AISM, AINV and with the ICI (Incomplete Cholesky Inverse) preconditioner
[17] adapted for nonsymmetric matrices. Section 5 gives the main conclusions
of our work.

2 A new decomposition of A−1

Consider two nonsingular n × n matrices A and A0, and two sets of vectors
{xk}nk=1 and {yk}nk=1 such that

A = A0 +

n∑
k=1

xky
T
k = A0 +XY T , (1)

where X = [x1 x2 · · · xn] and Y = [y1 y2 · · · yn].

Defining Ak = A0 +
∑k

i=1 xiy
T
i with k = 1, . . . , n we have{

Ak = Ak−1 + xky
T
k

An = A.
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Suppose that x1 and y1 are vectors such that r1 = 1+yT1 A
−1
0 x1 6= 0. By the

Sherman–Morrison formula [14, Eq. (2)] and [16], the matrix A1 = A0 +x1y
T
1

is nonsingular and its inverse is given by

A−1
1 = A−1

0 −
1

r1
A−1

0 x1y
T
1 A

−1
0

= A−1
0

(
I − 1

r1
x1y

T
1 A

−1
0

)
= A−1

0

(
I − 1

r1
x1w

T
1

)
,

where wT
1 = yT1 A

−1
0 .

Let V1 = I − 1

r1
x1w

T
1 , then

A−1
1 = A−1

0 V1.

Following this process, assuming that rk = 1 + yTk A
−1
k−1xk 6= 0 for xk and yk,

then

A−1
k = A−1

k−1 −
1

rk
A−1

k−1xky
T
k A

−1
k−1

= A−1
k−1

(
I − 1

rk
xky

T
k A

−1
k−1

)
= A−1

k−1

(
I − 1

rk
xkw

T
k

)
= A−1

k−1Vk,

where wT
k = yTk A

−1
k−1 and Vk = I − 1

rk
xkw

T
k .

The matrix A−1
k can be written in a factorized way in terms of the matrices

Vk as
A−1

k = A−1
k−1Vk

= A−1
k−2Vk−1Vk

= A−1
0 V1 · · ·Vk.

Then we obtain the following factorization of A−1

A−1 = A−1
n = A−1

0 V1 · · ·Vn. (2)

The coefficients rk will be called pivots of the Sherman–Morrison formula
when it is applied recursively. In section 3, they will be used and related with
the pivots of the LU factorization of A.
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It is worth to say that there is a main difference between the expressions
of A−1, the one in (2) and that obtained in [6]. Actually, to build the precon-
ditioner AISM given in [6] the expression of A−1 is an additive decomposition
obtained applying also the Sherman–Morrison formula. Here to construct the
new preconditioner V–AISM we have a multiplicative representation of A. In
fact, This decomposition depends explicitly on the matrices Vk.

Focusing on the construction of these matrices, we can simplify the above
inverse decomposition with the following compact representation.

Theorem 1. Consider two nonsingular n×n matrices A, A0 and two sets of
vectors {xk}nk=1, {yk}nk=1 satisfying (1) and rk = 1 + yTk A

−1
k−1xk 6= 0. Then

(i)
V1 · · ·Vk = I −XkRkW

T
k , k = 1, . . . , n, (3)

where Xk = [x1 x2 . . . xk], Wk = [w1 w2 . . . wk], wT
i = yTi A

−1
i−1 and Rk is

the k × k upper triangular nonsingular matrix

Rk =

 Rk−1 − 1

rk
Rk−1W

T
k−1xk

0
1

rk

 , (4)

with R1 =
[
r−1
1

]
.

(ii) The compact representation of A−1 is

A−1 = A−1
0 (I −XnRnW

T
n ). (5)

Proof. (i) The proof is done by induction over k and similar to the one used
in [9, Lemma 2.1].

Initially we have V1 = I − x1
1

r1
wT

1 = I −X1R1W
T
1 . Then,

V1V2 =

(
I − 1

r1
x1w

T
1

)(
I − 1

r2
x2w

T
2

)
= I − 1

r1
x1w

T
1 −

1

r2
x2w

T
2 +

1

r1r2
x1w

T
1 x2w

T
2

= I −
[
x1 x2

] 
1

r1
wT

1 −
1

r1r2
wT

1 x1w
T
2

1

r2
wT

2



= I −
[
x1 x2

] 
1

r1
− 1

r1r2
wT

1 x1

0
1

r2


 wT

1

wT
2

 = I −X2R2W
T
2 ,
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where R2 =

 R1 − 1

r2
R1W

T
1 x2

0
1

r2

 according to (4).

Now, assume that the relations (3) and (4) hold for k − 1, that is,

V1 · · ·Vk−1 = I −Xk−1Rk−1W
T
k−1.

Let us see that they are also valid for k. We have

V1 · · ·Vk = (V1 · · ·Vk−1)Vk

= (I −Xk−1Rk−1W
T
k−1)(I − 1

rk
xkw

T
k )

= I −Xk−1Rk−1W
T
k−1 −

1

rk
xkw

T
k +

1

rk
Xk−1Rk−1W

T
k−1xkw

T
k

= I −
[
Xk−1 xk

]

Rk−1W

T
k−1 −

1

rk
Rk−1W

T
k−1xkw

T
k

1

rk
wT

k



= I −
[
Xk−1 xk

]  Rk−1 − 1

rk
Rk−1W

T
k−1xk

0
1

rk


 WT

k−1

wT
k


= I −XkRkW

T
k ,

where

Rk =

 Rk−1 − 1

rk
Rk−1W

T
k−1xk

0
1

rk

 .
(ii) Applying (3) to the factorization (2) we have

A−1 = A−1
0 (I −XnRnW

T
n ).

3 An approximate inverse LU preconditioner

Now we obtain an approximate inverse preconditioner using the decomposition
of A−1 given in Theorem 1. In what follows, we choose xk = ak − ek, yk = ek
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and A0 = I, where ak and ek represent the kth column of the matrix A and
the identity matrix I, respectively. Then, from (5) we have

A−1 = I − (A− I)RnW
T
n . (6)

We will prove that the matrices Rn and WT
n are related with the inverse

factors of the LU decomposition of A. To give the result it is worth to analyze
the structure of matrices WT

k = [w1 w2 . . . wk]T , k = 1, . . . , n. In particular,
we will show that the leading principal k × k submatrix of WT

k is unit lower
triangular. We have wT

1 = yT1 A
−1
0 = eT1 and for k ≥ 1

wT
k+1 = yTk+1A

−1
k = yTk+1A

−1
0 V1 · · ·Vk

= yTk+1V1 · · ·Vk

= eTk+1(I −XkRkW
T
k )

= eTk+1 − eTk+1XkRkW
T
k

= eTk+1 − eTk+1

[
a1 − e1 a2 − e2 · · · ak − ek

]
RkW

T
k

= eTk+1 −
[
ak+1,1 ak+1,2 · · · ak+1,k

]
RkW

T
k . (7)

Then,

wT
1 = eT1 =

[
1 0 0 0 · · · 0

]
wT

2 = eT2 −
[
a2,1

]
R1W

T
1 =

[
∗ 1 0 0 · · · 0

]
wT

3 = eT3 −
[
a3,1 a3,2

]
R2W

T
2 =

[
∗ ∗ 1 0 · · · 0

]
that is,

WT
3 =

 wT
1

wT
2

wT
3

 =

 1 0 0 0 · · · 0
∗ 1 0 0 · · · 0
∗ ∗ 1 0 · · · 0

 = [T3 O],

where the block T3 is a unit lower matrix of size 3, the block O is a null matrix
with appropriate size and ∗ denotes an unspecified number.

Then WT
k = [Tk O], where Tk is a unit lower matrix of size k. Moreover

WT
k+1 =

[
Tk O
wT

k+1

]
=

[
Tk 0 O

−
[
ak+1,1 ak+1,2 · · · ak+1,k

]
RkTk 1 O

]
= [Tk+1 O] (8)

and WT
n = Tn.
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Theorem 2. Let xk = ak−ek, yk = ek and A0 = I, where ak and ek represent
the kth column of A and I, respectively. Assuming the conditions of Theorem
1, A has LU factorization, WT

n = L−1 and Rn = U−1.

Proof. We are going to show that A = W−T
n R−1

n . For that, we will prove
by induction over k that T−1

k R−1
k = Akk where Akk represents the leading

principal submatrix of A of size k, with k = 1, . . . , n.
For k = 1, it is trivially satisfied that T−1

1 R−1
1 = [1][r1] = [a11] = A11 since

r1 = 1 + wT
1 x1.

Assuming that T−1
k R−1

k = Akk, let us see that the equality holds for k+ 1.
That is, T−1

k and R−1
k are the LU factors of the leading principal submatrix

Akk. From (8) we have

Tk+1 =

[
Tk 0

−
[
ak+1,1 ak+1,2 . . . ak+1,k

]
RkTk 1

]
and then its inverse is

T−1
k+1 =

[
T−1
k 0[

ak+1,1 ak+1,2 . . . ak+1,k

]
Rk 1

]
. (9)

Then, from (4) and (9) it follows

T−1
k+1R

−1
k+1 =

[
T−1
k 0[

ak+1,1 ak+1,2 . . . ak+1,k

]
Rk 1

] R−1
k WT

k xk+1

0 rk+1



=


Akk


a1,k+1

a2,k+1

...
ak,k+1

[
ak+1,1 ak+1,2 . . . ak+1,k

]
ak+1,k+1

 = Ak+1,k+1.

Then, for k = n, T−1
n R−1

n = W−T
n R−1

n = A. That is, A is factorized as
a product of a unit lower triangular matrix W−T

n and an upper triangular
matrix Rn. Since the LU factorization of a nonsingular matrix is unique, then
WT

n = L−1 and Rn = U−1.

Note that under the conditions of the above theorem the pivots of the
Sherman-Morrison formula rk are equal to those of the LU factorization. Then
we give an algorithm to compute the approximate factors denoted by R̄ and
W̄T . The columns of these matrices are obtained according to (4) and (7). In
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the algorithm a MATLAB notation is used to indicate the indices of vectors.
We recall that even a sparse matrix can have a dense inverse and therefore
the number of nonzero elements of these factors (fill-in) grows up during its
computation in exact arithmetic. Therefore, selected new entries must be
nullified in order to keep the preconditioner sparse. This is fundamental for
an efficient preconditioning of the iterative method.

Algorithm 1 V–AISM algorithm

Inputs: A, X = A− I, Y = I, WT = I,

(1.1) w̄T
1 = Y[1,:], W̄

T
[1,:] = w̄T

1 and R̄[1,1] = a−1
11

For k = 2, . . . , n
(2.1) w̄T

k = Y[k,:] −A[k,1:k−1]R̄[1:k−1,1:k−1]W̄
T
[1:k−1,:]

(2.2) W̄T
[k,:] = w̄T

k

(2.3) r̄k = 1 + w̄T
kX[:,k]

(2.4) c̄k = − 1

r̄k
[R̄[1:k−1,1:k−1](W̄

T
[1:k−1,:]X[:,k])]

(2.5) R̄[1:k−1,k] = c̄k

(2.6) R̄[k,k] =
1

r̄k
EndFor
Outputs: Approximate factors R̄ ≈ U−1 and W̄T ≈ L−1

The computation of the new row w̄T
k of W̄T

k is done in the step (2.1) of the
algorithm. Then r̄k can be computed in step (2.3). In addition, the step (2.4)
gives the off–diagonal elements of the kth column of R̄k. Finally, the matrix
R̄k is completed in steps (2.5) and (2.6). We note that the inexact factors
are obtained by applying a dropping strategy after steps (2.1) and (2.4) to
off–diagonal elements of these matrices.

The algorithm gives us the new preconditioner V–AISM which can be
considered as a variant of the AISM preconditioner [6]. The approximate
preconditioner is based on the two approximate factors R̄ ≈ U−1 and W̄T ≈
L−1. Therefore, the preconditioning step is done by performing two matrix-
by-vector products as

R̄(W̄Tx) .

The algorithm runs to the end if all the pivots r̄k, k = 1, 2, . . . , n, are nonzero.
The following theorems prove that this is the case when the matrix A is a
nonsingular M–matrix or H–matrix of the invertible class.
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Remark 1. Given two matrices M = [mij ] and N = [nij ], we denote M ≥ N
when mij ≥ nij. Likewise, |M | = [|mij |]. A matrix M is a nonsingular M–
matrix if mij ≤ 0 for all i 6= j and M−1 ≥ O [3, Cond. N38 of Th. (2.3)].
Recall that a nonsingular M–matrix has positive diagonal entries, moreover
the pivots of the LU factorization without pivoting are positive [3, Cond. E18

of Th. (2.3)]. Indeed, the LU factors are also M–matrices [3, Ex. (5.16)].

Theorem 3. Let A be a nonsingular M–matrix. Then the matrix R̄ computed
by Algorithm 1 is nonsingular. Moreover, the pivots satisfy r̄k > 0, k =
1, 2, . . . , n.

Proof. To prove that the matrix R̄ is nonsingular we will show by induction
over k that

O ≤ R̄k ≤ Rk, (10)

with the help of
O ≤ W̄T

k ≤WT
k . (11)

For k = 1, we have WT
1 =

[
wT

1

]
=
[
eT1
]

and R1 =
[
r−1
1

]
where r1 =

1 + wT
1 x1 = a11 > 0. Note that no dropping can be done for the first vector,

and (10) and (11) trivially hold.
Now, assume that (10) and (11) hold for k. Let us see for k + 1. First we

prove (11).
Recall that the matrix WT

k+1 is built adding a row, the vector wT
k+1, to

the matrix WT
k (see (8)). Since A is an M–matrix, aij ≤ 0 for i 6= j, and

0 ≤ R̄k ≤ Rk holds for k by the induction hypothesis, then

0 ≤ w̄T
k+1

= eTk+1 −
[
ak+1,1 ak+1,2 · · · ak+1,k

]
R̄kW̄

T
k

≤ eTk+1 −
[
ak+1,1 ak+1,2 · · · ak+1,k

]
RkW

T
k

= wT
k+1,

now some off-diagonal entries of w̄T
k+1 are nullified and (11) holds for k + 1.

We use the same notation.
Now, let us prove (10). From (4)

Rk+1 =

[
Rk − 1

rk+1
RkW

T
k xk+1

0 1
rk+1

]
.

Then, it will be enough to check that it is fulfilled for the last column.
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First, we have

r̄k+1 = 1 + w̄T
k+1xk+1 = 1 + w̄T

k+1(ak+1 − ek+1)

= 1 +
[
w̄T

k+1[1 : k] 1 O
]  ak+1[1 : k]

ak+1,k+1 − 1
ak+1[k + 2 : n]



= ak+1,k+1 + w̄T
k+1[1 : k]


a1,k+1

a2,k+1

...
ak,k+1



≥ ak+1,k+1 + wT
k+1[1 : k]


a1,k+1

a2,k+1

...
ak,k+1


= rk+1 > 0,

which is positive since it is the pivot of the gaussian elimination of a nonsin-
gular M–matrix (see Remark 1). Here wT

k+1[1 : k] and ak+1[1 : k] denote the k

first entries of the vector wT
k+1 and ak+1, respectively. Moreover ak+1[k+2 : n]

denotes the n− k + 2 last components of the vector ak+1.
Second,

0 ≥ W̄T
k xk+1 = W̄T

k (ak+1 − ek+1) = W̄T
k ak+1 ≥WT

k ak+1 = WT
k xk+1,

since A is an M–matrix and (11) holds for k. Therefore,

0 ≤ − 1

r̄k+1
R̄kW̄

T
k xk+1 ≤ −

1

rk+1
RkW

T
k xk+1

and (10) holds for k + 1. Thus, R̄ = R̄n is nonsingular and the pivots are
positive.

In what follows we need to denote by R̄k(C) and W̄T
k (C) the two matrices

obtained by the algorithm when is applied to a given matrix C. A similar
notation is used for vectors or its components.

Remark 2. The comparison matrix of M is M(M) = [αij ], where αii = |mij |
and αij = −|mij | for i 6= j. The matrix M is an H–matrix of the invertible
class if its comparison matrix M(M) is a nonsingular M–matrix (see [5, Table
1]).
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Theorem 4. Let A be an H–matrix of the invertible class. Then the matrix
R̄ computed by Algorithm 1 is nonsingular.

Proof. To prove that the matrix R̄ is nonsingular we will show by induction
over k that

0 ≤
∣∣R̄k(A)

∣∣ ≤ R̄k(M(A)), (12)

showing
0 ≤

∣∣W̄T
k (A)

∣∣ ≤ W̄T
k (M(A)). (13)

For k = 1, we have

|W̄T
1 (A)| = |WT

1 (A)| =
∣∣[wT

1 (A)
]∣∣ =

[
eT1
]

= WT
1 (M(A)) = W̄T

1 (M(A))

and

|r1(A)| =
∣∣1 + wT

1 (A)x1(A)
∣∣ = |a11|
= 1 + wT

1 ((M(A))x1(M(A)) = r1(M(A)) > 0.

Then
∣∣R̄1(A)

∣∣ = |R1(A)| = |R1(M(A))| =
∣∣R̄1(M(A))

∣∣, because no dropping
can be done, (12) and (13) trivially hold.

Now, assuming that (12) and (13) hold for k, let us prove them for k + 1.
By (8) the matrix W̄T

k+1(A) is built adding the row vector w̄T
k+1 (A) to the

matrix W̄T
k (A). Then, we have only to prove that

∣∣w̄T
k+1 (A)

∣∣ ≤ w̄T
k+1 (M(A)).

That is,∣∣w̄T
k+1 (A)

∣∣ =
∣∣eTk+1 −

[
ak+1,1 ak+1,2 · · · ak+1,k

]
R̄k(A)W̄T

k (A)
∣∣

≤ eTk+1 +
∣∣[ ak+1,1 ak+1,2 · · · ak+1,k

]
R̄k(A)W̄T

k (A)
∣∣

≤ eTk+1 +
∣∣[ ak+1,1 ak+1,2 · · · ak+1,k

]∣∣∣∣R̄k(A)
∣∣∣∣W̄T

k (A)
∣∣

≤ eTk+1 +
∣∣[ ak+1,1 ak+1,2 · · · ak+1,k

]∣∣R̄k(M(A))W̄T
k (M(A))

= eTk+1

−
(
−
∣∣[ ak+1,1 ak+1,2 · · · ak+1,k

]∣∣) R̄k(M(A))W̄T
k (M(A))

= wT
k+1 (M(A)) ,

Now, let us prove the (12). From (4) applied to M(A), we have
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Rk+1(M(A))

=

 Rk(M(A))
−1

rk+1(M(A))
Rk(M(A))WT

k (M(A))xk+1(M(A))

0
1

rk+1(M(A))


It will be enough to prove for the last column.

First, we have

|r̄k+1 (A)| =
∣∣ak+1,k+1 + w̄T

k+1 (A) [1 : k]A[1 : k, k + 1]
∣∣

≥ |ak+1,k+1| −
∣∣w̄T

k+1 (A) [1 : k]
∣∣ ∣∣A[1 : k, k + 1]

∣∣
≥ |ak+1,k+1| − wT

k+1(M(A))[1 : k] |A[1 : k, k + 1]|

= |ak+1,k+1|+ wT
k+1(M(A))[1 : k] (−|A[1 : k, k + 1]|)

= |ak+1,k+1|+ wT
k+1(M(A))[1 : k]M(A)[1 : k, k + 1]

= r̄k+1 (M(A)) > 0.

Thus

∣∣∣∣ 1

r̄k+1 (A)

∣∣∣∣ ≤ 1

r̄k+1(M(A))
·

Second,∣∣∣∣− 1

r̄k+1 (A)
R̄k(A)W̄T

k (A)xk+1(A)

∣∣∣∣ ≤ ∣∣∣∣− 1

r̄k+1 (A)

∣∣∣∣ ∣∣R̄k(A)
∣∣ ∣∣W̄T

k (A)xk+1(A)
∣∣

≤ 1

r̄k+1 (M(A))
R̄k(M(A))W̄T

k (M(A)) |ak+1(A)|

= − 1

r̄k+1 (M(A))
R̄k(M(A))W̄T

k (M(A)) (−|ak+1(A)|)

= − 1

r̄k+1 (M(A))
R̄k(M(A))W̄T

k (M(A))ak+1(M(A))

= − 1

r̄k+1 (M(A))
R̄k(M(A))W̄T

k (M(A))xk+1(M(A))

Then (12) is satisfied for k + 1.
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4 Numerical results

In this section we study the numerical performance of the proposed precondi-
tioner V–AISM. We have compared V–AISM with the AISM [6], the AINV [1]
and ICI [17] preconditioners. The comparison with AISM is a natural choice
since V–AISM is related to it. The AINV preconditioner is an important and
well known approximate inverse preconditioner, also used in [6] to assess the
AISM performance. It computes approximate LU factors by a biconjugation
process. The ICI preconditioner was used in [17] to obtain an approximate in-
verse of the Cholesky factor of SPD matrices. The algorithm first computes an
approximate Cholesky factor and then obtain an approximation of its inverse.
We modified the algorithm for nonsymmetric matrices. An ILU(0) was first
computed and after that, approximations of the inverse of the incomplete LU
factors were obtained applying Algorithm 2 of [17] with the same procedure
used for SPD matrices.

The goal is to show that the new version V–AISM allows for the computa-
tion of robust preconditioners for solving sparse nonsymmetric linear systems.
In addition, we think that the way its computation is formulated permits more
efficient implementations than AISM. In fact, the algorithm shows that the
main operations performed are two sparse matrix-vector products that opens
the possibility for using sparse BLAS level 2 routines [13]. Efficient implemen-
tations of these routines are available for modern computer architectures.

All the experiments were done in MATLAB. The AINV, AISM and ICI pre-
conditioners were coded as described in [1], [6] and [17], respectively. Moreover,
for AINV the results with an optimized FORTRAN code kindly provided by
Michele Benzi are also reported. The iterative method used is the BiCGSTAB
with right inverse preconditioning using the MATLAB function bicgstab().
The BiCGSTAB method was stopped when the relative initial residual was
reduced to 10−8 and allowing up to 2000 iterations. The number of itera-
tions reported in the tables corresponds to the rounded value returned by the
function mentioned above. The initial guess was the corresponding zero vec-
tor in all computations. To preserve the sparsity of the preconditioner small
entries were dropped by value. More precisely, the new off-diagonal entries
in vectors w̄k and c̄k (steps (2.1) and (2.4) in Algorithm 1) were dropped if
their relative value with respect to the maximum value of |A| was less than a
given threshold. The same dropping strategy and drop tolerances were used
for both factors R̄ and W̄T . This threshold is the only parameter needed to
build the preconditioner. In some cases better results can be obtained with
different drop tolerances for these factors, but we avoided fine tuning in order
to simplify the results. The value of the threshold was choosen so that the
number of nonzero elements of the preconditioner was approximately the same
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for all the preconditioners tested.
Prior computations with V–AISM the matrices were rescaled in two dif-

ferent ways. The first one consists in dividing all the elements of a matrix by
the absolute value of its largest entry. For the second one each column was
rescaled with its maximum column entry in absolute value. In Tables 2 and 4
an asterisk symbol ∗ indicates the second situation. We found some differences
in the results with these two different scaling strategies and therefore, we only
show the best result obtained. For AINV the matrices were also rescaled in
the first way as it was done in [1]. For AISM and ICI the matrices were not
rescaled as it was not done in [6] and [17].

The matrices used for the test can be downloaded from the Harwell–Boeing
[12] and SuiteSparse Matrix collections [11], see Table 1 where n and nnz
represents the size and number of nonzero elements. We have selected most of
the matrices used in [6] to compare the AISM and AINV preconditioners. In
addition we include the result with larger matrices, CHEM MASTER1, EPB3
and POISSON3Db.

Table 1: Size (n) and number of nonzero elements (nnz) of the test matrices.

Matrix n nnz Description
ADD20 2395 17319 Circuit simulation

CHEM MASTER1 40401 201201 Chemical reaction simulation
EPB3 84617 463625 Thermal Problem

FS 541 4 541 4285 Chemical kinetics
HOR 131 434 4710 Network flow

JPWH 991 991 6027 Circuit physics modeling
MEMPLUS 17758 99147 Circuit simulation
ORSIRR 1 1030 6858 Reservoir simulation
ORSIRR 2 886 5970 Reservoir simulation
ORSREG 1 2205 14133 Reservoir simulation

POISSON3Db 85623 2374949 Computational fluid Dynamics
PORES 2 1224 9613 Reservoir simulation

RAEFSKY1 3242 293409 Computational fluid dynamics
RAEFSKY5 6316 168658 Computational fluid dynamics
SHERMAN2 1080 23094 Computational fluid dynamics

WATT 1 1856 11360 Computational fluid dynamics
WATT 2 1856 11550 Computational fluid dynamics

In the tables, tol indicates the value for the drop tolerance for the different
preconditioners used. The density of the preconditioner, ρ, is computed as
the ratio between the number of the nonzero elements of the factors and the
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number of elements of the initial matrix. For instance, for V–AISM it is

ρ =
nnz(R̄) + nnz(W̄T )

nnz(A)
·

The symbol † indicates that no convergence was attained by the iterative
method. Moreover, the CPU times for computing the preconditioner (Tp)
and solving the system (Ts) are reported. The symbol § means that the time
for computing the preconditioner was larger than 2, 000 seconds. For AINV
these times are detailed for both, the MATLAB and the FORTRAN codes.
We think that comparing a basic MATLAB implementation of AINV with
its FORTRAN version gives an idea of the performance improvement that
can be achieved with a fully optimized code. In other way, comparing the
times obtained with highly optimized FORTRAN implementations against
MATLAB scripts could be unfair. We believe that, due to the recursion nature
of all these algorithms, a FORTRAN implementation of V–AISM can be as
efficient as the AINV one. In fact, in [7] the authors experiment with an ILU
preconditioner derived from the AISM formulas that competes against RIF, a
robust version of AINV for SPD matrices, and other ILU-type preconditioners
implemented in FORTRAN.

Table 2: Comparison between V–AISM and AISM preconditioners.

Matrix V–AISM AISM
tol ρ Tp Ts Iter. tol ρ Tp Ts Iter.

ADD20 0.1 0.7 0.37 0.001 8 0.01 1.1 20.2 0.003 7
FS 541 4* 0.01 1.1 0.04 0.001 5 0.0001 1.2 1.0 0.002 23
HOR 131* 0.1 2.3 0.04 0.002 39 0.1 1.1 0.67 0.002 39

JPWH 991* 1.0 0.4 0.08 0.006 26 0.1 1.2 †
MEMPLUS* 0.2 0.8 13.8 0.02 53 0.01 0.7 1110 0.04 137
ORSIRR 1* 0.1 0.9 0.1 0.002 29 0.01 1.7 3.8 0.004 35
ORSIRR 2* 0.03 1.4 0.08 0.002 27 0.01 1.7 2.8 0.004 34
ORSREG 1* 0.3 0.9 0.31 0.002 28 0.1 1.2 17.2 0.004 38
PORES 2* 0.05 2.6 0.18 0.004 55 0.0001 5.2 5.5 0.01 86

RAEFSKY1 0.06 0.3 1.6 0.02 42 0.1 0.7 40 0.03 50
RAEFSKY5 0.02 0.5 4.1 0.003 2 0.1 0.2 142 0.005 6

SHERMAN2* 0.01 1.9 0.24 0.002 13 0.1 5.1 †
WATT 1 0.5 0.4 0.2 0.001 4 0.1 0.8 12.1 0.001 2
WATT 2 0.5 0.4 0.2 0.001 13 0.5 0.5 11.7 0.002 7

Table 2 shows the results with the V–AISM and AISM preconditioners.
The first to observe is that the proposed preconditioner solved all the prob-
lems, while AISM failed to solve the problems SHERMAN2 and JPWH 991.
Also, V–AISM had a clearly advantage in number of iterations for the matrices
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MEMPLUS and PORES 2. Note that AISM needed a denser preconditioner
to converge for PORES 2. For the rest, it seems that in general the balance
between density and number of iterations was better for V–AISM. Concern-
ing the computational time, V–AISM was extremely faster compared with
AISM. The reason is that V–AISM avoids the inner loop present in the AISM
algorithm and uses matrix-by-vector multiplications instead.

Table 3 reports the results for the ICI preconditioner compared with V–
AISM. For ICI we mostly used a drop tolerance equal to 0.01 as it is done
in [17]. We do not further sparsified the factors of the preconditioner wich
is equivalent to apply a value of the parameter F = ∞ in [17]. We observe
that ICI fails to converge for the matrix JPWH 991. For the matrices ADD20,
MEMPLUS, ORSIRR 1, ORSIRR 2, ORSREG 1 and WATT 2, V–AISM has
an advantage. By contrast, ICI obtains better results for PORES 2. For the
rest of the matrices the results are quite similar.

Table 3: Comparison between V–AISM and ICI preconditioners.

Matrix V–AISM ICI
tol ρ Tp Ts Iter. tol ρ Tp Ts Iter.

ADD20 0.1 0.7 0.37 0.001 8 0.01 0.6 0.29 0.01 136
CHEM MASTER1 0.1 3.0 223 0.2 130 0.1 2.6 307 0.2 107

EPB3 0.1 2.1 619.0 0.53 196 0.1 3.7 1977 †
FS 541 4* 0.01 1.1 0.04 0.001 5 0.01 1.1 0.06 0.03 5
HOR 131* 0.1 2.3 0.04 0.002 39 0.01 3.7 0.22 0.003 34

JPWH 991* 1.0 0.4 0.08 0.006 26 0.01 4.6 †
MEMPLUS* 0.2 0.8 13.8 0.02 53 0.01 0.6 13.9 0.11 221
ORSIRR 1* 0.1 0.9 0.1 0.002 29 0.01 1.5 0.25 0.002 33
ORSIRR 2* 0.03 1.4 0.08 0.002 27 0.01 1.6 0.22 0.03 31
ORSREG 1* 0.3 0.9 0.31 0.002 28 0.01 1.6 0.7 0.003 34

POISSON3Db 0.1 0.4 973.0 1.04 210 0.1 0.4 †
PORES 2* 0.05 2.6 0.18 0.004 55 0.01 2.5 0.6 0.003 30

RAEFSKY1 0.06 0.3 1.6 0.02 42 0.01 0.9 24.6 0.02 29
RAEFSKY5 0.02 0.5 4.1 0.003 2 0.01 0.7 13.4 0.002 2

SHERMAN2* 0.01 1.9 0.24 0.002 13 0.01 1.4 0.95 0.002 11
WATT 1 0.5 0.4 0.2 0.001 4 0.5 0.4 0.15 0.001 4
WATT 2 0.5 0.4 0.2 0.001 13 0.5 0.4 0.15 0.02 266

Table 4 shows the results comparing V–AISM and AINV. For AINV in the
columns Tp the preconditioner computation time for MATLAB is written first
and then FORTRAN. The solution time corresponds to the FORTRAN code
since it was almost equal to the one obtained in MATLAB. One can see the
big improvement that can be achieved with an optimized FORTRAN code.
Due to the recursion nature of these algorithms the computational time may
grow significantly with the matrix size, and therefore special coding techniques
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are needed to avoid it (see [1]). Comparing only the MATLAB times one can
see that the computation of V–AISM is much faster than AINV. Thus, we
believe that a fully optimized version of V–AISM can be at least as fast as
AINV. We observe that V–AISM performs better for FS 541 4, MEMPLUS
and WATT 2. By contrast, AINV was better for ADD20, and HOR 131. Note
that AINV failed to solve the JPWH 991 and SHERMAN2 problems. For the
rest of the matrices V–AISM and AINV performed similarly.

Table 4: Comparison between V–AISM and AINV preconditioners.

Matrix V–AISM AINV
tol ρ Tp Ts Iter. tol ρ Tp Ts Iter.

ADD20 0.1 0.7 0.37 0.001 8 0.1 0.6 407/0.02 0.001 7
CHEM MASTER1 0.1 3.0 223 0.2 130 0.1 2.6 §/0.1 0.4 156

EPB3 0.1 2.1 619.0 0.53 196 0.1 3.7 §/0.1 1.4 244
FS 541 4* 0.01 1.1 0.04 0.001 5 0.02 1.2 1.42/0.01 0.001 10
HOR 131* 0.1 2.3 0.04 0.002 39 0.1 1.8 1.0/0.01 0.002 26

JPWH 991* 0.1 1.4 0.11 0.001 13 0.1 1.2 †
MEMPLUS* 0.2 0.8 13.9 0.02 53 0.1 0.6 §/0.05 0.1 155
ORSIRR 1* 0.1 0.9 0.1 0.002 29 0.1 0.9 4.35/0.01 0.002 32
ORSIRR 2* 0.03 1.4 0.08 0.002 27 0.1 0.9 3.24/0.01 0.002 36
ORSREG 1* 0.3 0.9 0.31 0.002 28 0.2 0.9 49.1/0.02 0.002 33

POISSON3Db 0.1 0.4 973.0 1.0 210 0.1 0.4 §/2.2 11.1 1312
PORES 2* 0.05 2.6 0.18 0.004 55 0.05 2.1 6.84/0.02 0.006 80

RAEFSKY1 0.06 0.3 1.6 0.02 42 0.05 0.2 76.9/0.07 0.03 53
RAEFSKY5 0.02 0.5 4.1 0.003 2 0.01 0.7 208.1/0.1 0.006 2

SHERMAN2* 0.01 1.9 0.24 0.002 13 0.1 4.0 †
WATT 1 0.5 0.4 0.2 0.001 4 0.5 0.4 0.34/0.01 0.002 3
WATT 2 0.5 0.4 0.28 0.001 13 0.5 0.4 0.39/0.01 0.002 23

Finally, concerning the largest matrices of the set we see that the ICI
preconditioner performed the best in density and number of iterations for
CHEM MASTER1 but failed to converge for the other two matrices EPB3
and POISSON3Db. V–AISM and AINV were able to solve the three prob-
lems, but V–AISM spent considerably less iterations and time for solving the
POISSON3Db matrix.

Figure 1 shows the nonzero patterns of the matrix ORSIRR 1 and the pat-
terns of the sum of the factors of the different preconditioners analyzed. The
patterns of V–AISM, AINV and ICI look similar showing that they capture
more or less de same information. Note that the pattern of AISM is quite
different. The reason is that the factors of this preconditioner does not ap-
proximate the inverse LU factors as the other preconditioners do. For all the
preconditioners the density is similar and also the number of iterations needed
to converge. Figure 2 shows the patterns for the matrix FS 541 4. We can
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(a) ORSIRR 1

(b) AINV (c) AISM

(d) ICI (e) V-AISM

Figure 1: Nonzero patterns of the matrix ORSIRR 1 and the sum of the factors
of the different preconditioners analyzed.
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(a) FS 541 4

(b) AINV (c) AISM

(d) ICI (e) V-AISM

Figure 2: Nonzero patterns of the matrix FS 541 4 and the sum of the factors
of the different preconditioners analyzed.
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see that differences in the nonzero pattern in AINV with respect ICI and V–
AISM, even with almost identical number of nonzero elements, could lead to
different number of iterations, 10 iterations for AINV and 5 iterations for ICI
and V–AISM.

5 Conclusions

We have introduced a new way to build an approximate factorization of the
inverse of a nonsingular matrix applying recursively the Sherman–Morrison in-
version formula. Then, with a compact representation of that decomposition
a new preconditioner is built which is an approximate inverse LU precondi-
tioner, referred to as V–AISM. These kind of preconditioners perform matrix-
vector products in each iteration of the Krylov subspace method. Then, they
are attractive for the parallel execution of the preconditioning step in Krylov
subspace methods. An advantage of the new algorithm is that the main op-
erations for computing the preconditioner are sparse matrix-vector products
that opens the door for efficient implementations that it can be investigated in
the future. Moreover this algorithm is stable for nonsingular M–matrices and
H–matrices of the invertible class. The numerical computations done with a
set of matrices from the Harwell–Boeing and SuiteSparse Matrix collections
show that the proposed approximate inverse preconditioner V–AISM is robust
and competitive with respect to AISM, AINV and ICI preconditioners.
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