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Closure operators on hoops
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Abstract

In this article, we study relationships between closure operators and
hoops. We investigate the properties of closure operators and hoop-
homomorphism on hoops. We show that the image of a closure operator
on a hoop is isomorphic to a quotient hoop. In addition, we define
the notion of closure operator on ideals of hoop and investigate some
properties of it and some related results are proved. We define proper
closer operators on ideals of hoop and we show that the set of all proper
closure operators on hoops makes a bounded lattice by some operations.

1 Introduction

In recent years, due to the development of artificial intelligence and the use
of logical algebraic structures in this field, the study of these structures has
become particularly important and has attracted the attention of many math-
ematicians. On the other hand, considering the types of logical algebraic struc-
tures and their relationship with each other, the similarities and limitations
of each of them have caused each mathematician to study different concepts
on these algebraic structures according to their interest. For example, one of
the topics of interest to mathematicians is the subject of specific sub-algebras
in logical algebraic structures, including filters and ideals. In logical algebraic
structures, the concept of filters has been studied more and ideals have been
less considered by mathematicians. One of the logical algebras that is more

Key Words: Hoop, ideal, maximal and prime ideals, closure operators.
2010 Mathematics Subject Classification: Primary 06B99; Secondary 03G25.
Received: 28.10.2022
Accepted: 15.03.2023

85



CLOSURE OPERATORS ON HOOPS 86

considered these days due to its relationship with MV-algebras and L-algebras
is hoop.

Hoops are introduced by Bosbach in [8, 9]. In recent years, many mathe-
maticians have studied this algebraic structure from different perspectives such
as ideals, filters, relationships with other algebraic structures, etc., and good
results have been achieved in this regard which can be found in [2, 4, 8, 9, 14].
Given the importance of the concept of ideals and the results obtained in this
field on other algebraic structures, in [1], Aaly and Borzooei defined and char-
acterized the notions of (implicative, maximal, prime) ideal in hoops. They
investigated the relation between them and proved that every maximal im-
plicative ideal of a ∨-hoop (a hoop with join operation) with (DNP) (p∼∼ = p,
where p → 0) is a prime one. Also, they defined a congruence relation on
hoops by ideals and studied the quotient that is made by it. In addition, they
showed that an ideal is maximal if and only if the quotient hoop is a simple
MV-algebra. In [5], Borzooei and Aaly, defined the notion of minimal prime
ideals of hoops and investigated some properties of them. Then, by using the
notion of annihilators, they studied the relation between minimal prime ide-
als and annihilators. In [6], Borzooei and et al., by using the notion of ideal
of hoop, defined a new congruence relation on hoop and made a new quo-
tient structure. Also, they defined the notion of product ideals in hoops and
investigated some properties of it and studied some theorems about prime,
maximal and product of them. By using these notions, they defined the con-
cept of nilpotent ideals on hoop and by example they showed that intersection
of all maximal ideals is not nilpotent. Then they provided a condition for
intersection of all maximal ideals to be nilpotent.

In this article, we study relationships between closure operators and hoops.
We investigate the properties of closure operators and hoop-homomorphism on
hoops. We show that the image of a closure operator on a hoop is isomorphic
to a quotient hoop. In addition, we define the notion of closure operator on
ideals of hoop and investigate some properties of it and some related results
are proved. We define proper closer operators on ideals of hoop and we show
that the set of all proper closure operators on hoops makes a bounded lattice
by some operations.

2 Preliminaries

An algebra (A,�,→, 1) is said to be a hoop, where (A,�, 1) is a commutative
monoid and for any p, q, r ∈ A we have

(Hoop1) p→ p = 1,
(Hoop2) p� (p→ q) = q � (q → p),
(Hoop3) p→ (q → r) = (p� q)→ r.
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Define an order ≤ on A by p ≤ q iff p → q = 1, which (A,≤) is a Poset.
A bounded hoop, is a hoop with the least element 0 where for all p ∈ A,
0 ≤ p, then we can define a unary operation ∼ where p∼ = p → 0, for p ∈ A

and we said that A has (DNP) property if p∼∼ = p, for all p ∈ A. Also,
we can define a binary operation ∨ on a hoop A such that for any p, q ∈ A,
p ∨ q = ((p→ q)→ q) ∧ ((q → p)→ p). If ∨ is a join operation on A, then A

is a ∨-hoop, where (A,∧,∨) is a distributive lattice (see [8, 9]).
Note. From now on, we set A as a hoop such as (A,�,→, 1).

Proposition 2.1. [10] We have the next properties, for all p, q, r ∈ A:
(i) (A,≤) is a meet-semilattice, with p ∧ q = p� (p→ q);
(ii) p� q ≤ r iff p ≤ q → r;
(iii) p� q ≤ p, q and p ≤ q → p;
(iv) p→ 1 = 1 and 1→ p = p;
(v) p ≤ q → (p� q);
(vi) p → q ≤ (q → r) → (p → r), p → q ≤ (r → p) → (r → q) and
p→ q ≤ (p� r)→ (q � r);
(vii) p ≤ q implies p� r ≤ q � r, r → p ≤ r → q and q → r ≤ p→ r;
(viii) In any bounded hoop we get p ≤ p∼∼, p� p∼ = 0 and p∼∼∼ = p∼;
(ix) In any ∨-hoop, for any n ∈ N, we get (p ∨ q)n → r =

∧
{(x1 � x2 � · · · �

xn)→ r | xi ∈ {p, q}};
(x) In any ∨-hoop, we obtain p� (q ∨ r) = (p� q) ∨ (p� r).
(xi) p→ (q ∧ r) = (p→ q) ∧ (p→ r).

Consider ∅ 6= F ⊆ A is said to be a filter of A if for any p, q ∈ A,
(F1) p, q ∈ F implies p� q ∈ F,
(F2) p ≤ q and p ∈ F imply q ∈ F.
The set F(A) contains all filters of A. Clearly, 1 ∈ F, for each F ∈ F(A).
F ∈ F(A) is proper if F 6= A. Obviously, if F is a proper filter of A, then
0 /∈ F where A is bounded.

Let F ∈ F(A). Then for any p, q ∈ A, define the relation ∼F by

p ∼F q ⇔ p→ q ∈ F and q → p ∈ F.

Then we can see that the relation ∼F is a congruence relation on A and the

algebraic structure (
A

F
,⊗, ,F) is a hoop where

[p]⊗ [q] = [p� q], [p] [q] = [p→ q],

for any [p], [q] ∈ A

F
.

Consider A and M are two hoops. A map h : A → M is a hoop-
homomorphism if it satisfies in the following conditions:
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(h1) h(p→ q) = h(p)→ h(q),
(h2) h(p� q) = h(p)� h(q).
A hoop-homomorphism h is called a hoop-isomorphism if h is bijective.

Definition 2.2. [1] Consider ∅ 6= I ⊆ A. Then I is an ideal of A if
(I1) 0 ∈ I,
(I2) for each p, q ∈ I, p⊕ q ∈ I, where p⊕ q = p∼ → q.
(I3) for each p, q ∈ A, if p ≤ q and q ∈ I, then p ∈ I.
Obviously, A and {0} are trivial ideals. All ideals of A is set by Id(A). I ∈
Id(A) is a proper ideal if I 6= A. Clearly, I ∈ Id(A) is proper iff 1 /∈ I.

Proposition 2.3. [1] Suppose ∅ 6= I ⊆ A. Then, for any p, q ∈ A, the next
equivalent properties hold:
(i) I ∈ Id(A),
(ii) 0 ∈ I, for any p, q ∈ I, p⊕ q ∈ I and if p∼ � q ∈ I and p ∈ I, then q ∈ I.
(iii) 0 ∈ I, for any p, q ∈ I, p ⊕ q ∈ I and if (p∼ → q∼)∼ ∈ I and p ∈ I, then
q ∈ I.

Definition 2.4. [1] Let ∅ 6= X ⊆ A. The smallest ideal containing X in A is
said the generated ideal by X in A and set it by (X].

Theorem 2.5. [1] Consider ∅ 6= X ⊆ A. Then

(X] = {x ∈ A | ∃n ∈ N s.t. for p1, p2, · · · , pn ∈ X, x ≤ p1⊕(p2⊕· · ·⊕(pn−1⊕pn) · · · )}.

Proposition 2.6. [1] Assume I ∈ Id(A) and x ∈ A. Then the following
statements hold,
(i) (x] = {p ∈ A | ∃n ∈ N s.t. p ≤ nx}, where nx = x⊕ (x⊕· · ·⊕ (x⊕x) · · · );
(ii) if A has (DNP), then (I ∪ {x}] = {p ∈ A | ∃ n ∈ N s.t p� (nx)∼ ∈ I};
(iii) if ∨-hoop A has (DNP), then (I ∪ {p}] ∩ (I ∪ {q}] = (I ∪ {p ∧ q}].

Proper ideal P is a prime ideal if p ∧ q ∈ P implies p ∈ P or q ∈ P, for
any p, q ∈ A. All prime ideals of A set by Spec(A). A proper ideal M is a
maximal ideal of A if there is Q ∈ Id(A) that M ⊆ Q ⊆ A, then M = Q or
Q = A. All maximal ideals of A set by Max(A) (see [1]).

Proposition 2.7. [5] Suppose A is a ∨-hoop with (DNP). Then
(i)
⋂
{P | P ∈ Spec(A)} = {0}.

(ii) If 0 6= p ∈ A, then ∃P ∈ Spec(A), where p /∈ P.

Proposition 2.8. [5] Let A be a ∨-hoop with (DNP). Then every maximal
ideal of A is a prime one.

Proposition 2.9. [6] Let M ∈ Max(A) and I,Q ∈ Id(A), where hoop has
(DNP ). Then I�Q ⊆M if and only if I ⊆M or Q ⊆M.
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3 Closure operators on elements of hoops

In this section, we define the notion of closure operator on elements of hoops
and investigate some properties of it.

Note. In this section we let (A,�,→, 1) be a hoop.

Definition 3.1. A map c : A→ A is a closure operator if for any p, q ∈ A

we have
(c1) p ≤ c(p),
(c2) If p ≤ q, then c(p) ≤ c(q),
(c3) c(c(p)) = c(p).

Note. By (c1), clearly c(1) = 1.

Example 3.2. (i) Clearly, identity map idA : A→ A is a closure operator.
(ii) The constant map that sends every element to 1 is a closure operator.
(iii) Assume A = {0, x, y, 1} is a chain, where 0 ≤ x ≤ y ≤ 1. Define the
operations � and → on A as follows:

� 0 x y 1
0 0 0 0 0
x 0 x x x
y 0 x x y
1 0 x y 1

→ 0 x y 1
0 1 1 1 1
x 0 1 1 1
y 0 y 1 1
1 0 x y 1

Then (A,�,→, 0, 1) is a bounded hoop. Define c : A→ A as c(0) = 0, c(1) = 1
and c(x) = c(y) = y. Obviously, c is a closure operator on A.

Definition 3.3. A map c : A → A is a semi-closure operator if for any
p, q ∈ A it satisfies in (c1)-(c3), and we have
(c4) c(p)� c(q) ≤ c(p� q).

Remark 3.4. Clearly, every semi-closure operator is a closure operator. But
the converse is not true.

Example 3.5. (i) According to Example 3.2(iii), clearly c is a semi-closure
operator.
(ii) Consider A = {0, x, y, 1} is a chain, where 0 ≤ x ≤ y ≤ 1. Define the
operations � and → on A as follows:

� 0 x y 1
0 0 0 0 0
x 0 0 x x
y 0 x y y
1 0 x y 1

→ 0 x y 1
0 1 1 1 1
x x 1 1 1
y 0 x 1 1
1 0 x y 1
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Then (A,�,→, 0, 1) is a bounded hoop. Define c : A→ A as c(0) = 0, c(1) = 1
and c(x) = c(y) = y. Obviously, c is a closure operator on A but it is not a
semi-closure operator on A. Because

c(x)� c(x) = y � y = y � 0 = c(0) = c(x� x).

Theorem 3.6. If c : A→ A is a semi-closure operator on A, then D = {p ∈
A | c(p) = 1} is a filter of A.

Proof. Since c(1) = 1, we get 1 ∈ D and so D 6= ∅. Assume p, q ∈ D. Then
c(p) = c(q) = 1. Since c is a semi-closure operator on A, by (c4) we have

1 = 1� 1 = c(p)� c(q) ≤ c(p� q).

Thus c(p � q) = 1, and so p � q ∈ D. Suppose p ∈ D and q ∈ A such that
p ≤ q. By (c2), we have 1 = c(p) ≤ c(q). Hence, c(q) = 1 and so q ∈ D.
Therefore, D is a filter of A.

The following example shows that the condition semi-closure operator is
necessary in Theorem 3.6.

Example 3.7. In Example 3.5(ii), define c : A → A by c(0) = 0 and c(x) =
c(y) = c(1) = 1. Clearly c is a closure operator but it is not a semi-closure
operator, because

c(x)� c(x) = 1� 1 = 1 � 0 = c(0) = c(x� x).

Also, D = {x, y, 1} is not a filter of A, since x� x = 0 /∈ D.

Theorem 3.8. Let c : A → A be a semi-closure operator on A and c(A) =
{p ∈ A | c(p) = p}. Then we have the following statements:
(i) c(A) = {c(p) | p ∈ A} and c(A) is closed under ∧ and →.
(ii) If for any p ∈ A, p2 = p, then c(p� q) = c(p)� c(q). In addition, in this
case, c(A) is �-closed.
(iii) If A is idempotent, then (c(A),�c,→c, c(0), 1) is a hoop, and for any
p, q ∈ c(A) we have

p�c q = c(p� q), and p→c q = c(p→ q).

Proof. (i) Let B = {c(p) | p ∈ A}. Assume p ∈ B. Then there exists x ∈ A

such that c(x) = p. Since c is a closure operator, by (c3) we have

c(p) = c(c(x)) = c(x) = p.

Thus c(p) = p and so p ∈ c(A). Conversely, suppose p ∈ c(A). Then c(p) = p
and so p ∈ B. Hence, c(A) = {c(p) | p ∈ A}.
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Now, suppose that c is a semi-closure operator on A and p, q ∈ c(A). Then
c(p) = p and c(q) = q. By (c2) and since p ∧ q ≤ p, q we have c(p ∧ q) ≤
c(p) ∧ c(q). Also, by (c1) we obtain

p ∧ q ≤ c(p ∧ q) ≤ c(p) ∧ c(q) = p ∧ q. (3.1)

Hence c(p ∧ q) = p ∧ q and so c(A) is ∧-closed. In addition, by (c1) we have
p → q ≤ c(p → q). Since c is a semi-closure operator, by (c4) and (3.1) we
have

c(p)� c(p→ q) ≤ c(p� (p→ q)) = c(p ∧ q) = c(p) ∧ c(q) ≤ c(q).

By Proposition 2.1(ii), we get c(p → q) ≤ c(p) → c(q) = p → q. Hence,
c(p→ q) = p→ q. Therefore, c(A) is →-closed, too.
(ii) Since c is a semi-closure operator, clearly, for any p ∈ A, c(p) ∈ A and by
hypothesis, c2(p) = c(p). By (c4), we know c(p)� c(q) ≤ c(p� q), for p, q ∈ A.
By Proposition 2.1(iii), p � q ≤ p, q and by (c2) we get c(p � q) ≤ c(p), c(q).
Then c2(p� q) ≤ c(p)� c(q). By assumption, we obtain c(p� q) ≤ c(p)� c(q).
Hence c(p� q) = c(p)� c(q).
(iii) Consider p, q, r ∈ c(A). Then by (i) we have

p→c p = c(p→ p) = c(1) = 1.

Thus p→c p = 1. By (i) and (ii) we get c(A) is ∧-closed and �-closed, then

p�c (p→c q) = p�c c(p→ q) = c(p� c(p→ q))

= c(p� (p→ q)) = p� (p→ q) = q � (q → p)

= c(q � (q → p)) = c(q � c(q → p)) = q �c c(q → p)

= q �c (q →c p).

Also,

p→c (q →c r) = p→c c(q → r) = c(p→ c(q → r))

= c(p→ (q → r)) = p→ (q → r)

= q → (p→ r) = q → c(p→ r)

= c(q → c(p→ r)) = c(q → (p→c r))

= q →c (p→c r).

Now, it is enough to prove that (c(A),�c) is a commutative monoid. For this,
by (ii) we have

p�c q = c(p� q) = c(q � p) = q �c p, and p�c 1 = c(p� 1) = p.



CLOSURE OPERATORS ON HOOPS 92

Suppose (c(A),�c) is not associative. Assume p �c (q �c r) � (p �c q) �c r.
Then there exists y ∈ c(A) such that p�c (q �c r) ≤ y ≺ (p�c q)�c r. Then
by (c2) we have

p�c (q �c r) ≤ y ⇔ q �c r ≤ p→c y

⇔ q ≤ r →c (p→c y)

⇔ q ≤ r →c c(p→ y)

⇔ q ≤ c(r → c(p→ y))

⇔ q ≤ c(r → (p→ y))

⇔ q ≤ r → (p→ y)

⇔ q ≤ c(r)→ (c(p)→ c(y))

⇔ q ≤ c(p)→ (c(r)→ c(y))

⇔ q ≤ p→c c(r → y)

⇔ (p�c q)�c r ≤ y

which is a contradiction. So, p �c (q �c r) ≤ (p �c q) �c r and similarly,
(p �c q) �c r ≤ p �c (q �c r). Hence, (c(A),�c) is a commutative monoid.
Therefore, (c(A),�c,→c, c(0), 1) is a hoop.

The following example shows that all the conditions in Theorem 3.8 are
necessary.

Example 3.9. (i) According to Example 3.5(ii), c is a closure operator and

c(x→ 0) = c(x) = y 6= 0 = y → 0 = c(x)→ c(0).

Hence the condition semi-closure operator in Theorem 3.8(i) is necessary.
(ii) According to Example 3.2(iii), clearly c is a semi-closure operator and A

is not idempotent since y � y = x 6= y. Obviously, c(p � q) 6= c(p) � c(q), for
any p, q ∈ A, because

c(y)� c(y) = y � y = x 6= y = c(x) = c(y � y).

Thus the condition idempotent in Theorem 3.8(ii) is necessary.

Example 3.10. (i) Consider I = [0, 1] and define two operations � and →
on I as follows:

p� q = min{p, q}, p→ q =

{
1, p ≤ q
q otherwise
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Then (I,�,→, 1) is a hoop, where for any p ∈ I, p� p = p. Define c : I→ I as
follows:

c(p) =


1
3 , 0 ≤ p ≤ 1

3

2
3 ,

1
3 < p ≤ 2

3

1, 2
3 < p ≤ 1

(3.2)

Obviously, c is a semi-closure operator and by Theorem 3.8,
〈
I,�c,→c,

1
3 , 1
〉

is a hoop.
(ii) Consider I = [0, 1] and define two operations � and → on I as follows:

p� q = max{0, p+ q − 1}, and p→ q = min{1, 1− p+ q}.

Then (I,�,→, 1) is a hoop. Consider the map defined in (3.2). Clearly, c(p)�
c(q) � c(p� q), for any p, q ∈ I, because

2

3
=

2

3
� 1 = c(

1

2
)� c(5

6
) � c(

1

2
� 5

6
) = c(

1

3
) =

1

3
.

Hence, c is not a semi-closure operator and so
〈
I,�c,→c,

1
3 , 1
〉

is not a hoop,
since

1 = c(
1

2
→ 1

3
) 6= c(

1

2
)→ c(

1

3
) =

2

3
→ 1

3
=

2

3
.

Theorem 3.11. Consider (A,�,→, 1) and (c(A),�c,→c, 1) are two idempo-
tent hoops, where c is a semi-closure operator on A. Then
(i) c : A→ c(A) is a hoop homomorphism.

(ii) The map c :
A

D
→ c(A) defined by c([p]) = c(p) is a hoop isomorphism,

where D = {p ∈ A | c(p) = 1}.

Proof. (i) Define c(p ∗ q) = p ∗c q, where ∗ ∈ {�,→}. Then by Theorem
3.8(iii), the proof is clear.

(ii) By Theorem 3.6, D is a filter of A and so
A

D
is well-defined. We show

that c is well-defined. Suppose [p] = [q]. Then (p→ q)� (q → p) ∈ D, and so
c ((p→ q)� (q → p)) = 1. Since by Proposition 2.1(iii), (p→ q)� (q → p) ≤
p→ q, q → p, by (c2) we get

1 = c ((p→ q)� (q → p)) ≤ c(p→ q), c(q → p),

and so c(p → q) = c(q → p) = 1. By (i), since c is a hoop homomorphism
we have c(p) → c(q) = 1 and c(q) → c(p) = 1. Hence, c(p) = c(q), and
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so c([p]) = c([q]). Therefore, c is well-defined. Now, we prove c is a hoop
homomorphism. By (i) we have

c([p]→ [q]) = c([p→ q]) = c(p→ q) = c(p)→ c(q) = c([p])→ c([q]).

Also,

c([p]� [q]) = c([p� q]) = c(p� q) = c(p)� c(q) = c([p])� c([q]).

Hence c is a hoop homomorphism and clearly, c is surjective. Suppose for
p, q ∈ A, c(p) = c(q). Then c(p) → c(q) = c(q) → c(p) = 1. Thus since c is a
hoop homomorphism we have

c ((p→ q)� (q → p)) = (c(p)→ c(q))� (c(q)→ c(p)) = 1.

So, (p → q) � (q → p) ∈ D. Hence, [p] = [q]. Therefore, the map c is a hoop
isomorphism.

Theorem 3.12. Let A and X be two hoops and h : A → X be a hoop ho-
momorphism. Suppose c1 : A → A and c2 : X → X are two semi-closure
operators. Assume D1 = {p ∈ A | c1(p) = 1} and D2 = {q ∈ X | c2(q) = 1}.
Then the following statements hold:

(i) If for any p ∈ A, h(c1(p)) ≤ c2(h(p)), then the map h :
A

D1
→ X

D2
where

h([p]) = [h(p)] is a hoop homomorphism.
(ii) If h is surjective such that for any p ∈ A, h(c1(p)) = c2(h(p)), and

h(c1(p)) = 1 implies c1(p) = 1, then a map h :
A

D1
→ X

D2
is a hoop isomor-

phism.

Proof. (i) Suppose [p] = [q]. Then (p → q) � (q → p) ∈ D1, and so
c1 ((p→ q)� (q → p)) = 1. Since h is a hoop homomorphism, we have

h (c1 ((p→ q)� (q → p))) = 1.

Then by assumption, we get

1 = h (c1 ((p→ q)� (q → p)))

≤ c2 (h ((p→ q)� (q → p)))

= c2 ((h(p)→ h(q))� (h(q)→ h(p))) .

Thus c2 ((h(p)→ h(q))� (h(q)→ h(p))) = 1, and so (h(p)→ h(q))� (h(q)→
h(p)) ∈ D2. Hence, [h(p)] = [h(q)], and so h is well-defined. The proof of
homomorphism is clear.
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(ii) By (i), h is a hoop homomorphism. Since h is surjective, obviously h is
surjective, too. Suppose h[p] = h[q]. Then [h(p)] = [h(q)] and so (h(p) →
h(q))� (h(q)→ h(p)) ∈ D2. Thus

c2 ((h(p)→ h(q))� (h(q)→ h(p))) = 1.

Since h is a hoop homomorphism we have c2 (h((p→ q)� (q → p))) = 1. By
assumption, h(c1((p→ q)� (q → p))) = 1, and so c1((p→ q)� (q → p)) = 1.
Hence (p → q) � (q → p) ∈ D1. Thus [p] = [q]. Therefore, h is a hoop
isomorphism.

Assume X is a set. Define two operations � and → on P (X) as follows:

I�Q = I ∩Q, and I→ Q = Ic ∪Q, (3.3)

where I,Q ⊆ X and Ic = X \ I. Then P (X) (the power set of X) with above
operation is a hoop.

Example 3.13. Let A = {x, y, z} and M = {w, u} be two sets. Clearly,
(P (A),�,→,A) and (P (M),�,→,M) with operations defined in (3.3) are
hoops. Define a map h : P (A)→M as follows:

h(A) = M, h(∅) = ∅
h({x}) = {w}, h({y}) = {u}, h({z}) = ∅,

h({x, y}) = {w, u}, h({x, z}) = {w}, h({y, z}) = {u},

Obviously, h is a hoop-homomorphism. Now, consider two maps c1 and c2 on
P (A) and P (M), respectively, as follows:

c1(I) =

{
{x, z}, I ⊂ {x, z}
A, otherwise

and c2(Q) =

{
{w}, Q ⊂ {w}
M, otherwise

Clearly, c1 and c2 are two semi-closure operators. In addition, we have

h(c1(I)) =

{
h ({x, z}) = {w} = c2 (h(I)) , I ⊂ {x, z}

h(A) = M = c2 (h(I)) , otherwise

Moreover, D1 = {{y}, {x, y}, {y, z},A}, D2 = {{u},M}. It is routine that

h :
P (A)

D1
→ P (M)

D2
, where h ([{x, z}]) = [{w}], and h ([A]) = [M].

Since h(c1(I)) = c2(h(I)), for any I ⊂ A and h(c1(A)) = M implies c1(I) = A.
Hence, by Theorem 3.12, h is a hoop-isomorphism.
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4 Closure operator on ideals of hoops

In this section, we define the notion of closure operator on the set of all ideals
of hoops and investigate some properties of it.

Definition 4.1. Define the map C : Id(A) → Id(A) is called a closure
operator on ideals of A if C has the following conditions:
(C1) I ⊆ Ic,
(C2) if I ⊆ Q, then Ic ⊆ Qc,
(C3) Icc = Ic,
where Ic = C(I). An ideal I is called C-closed if Ic = I.

Example 4.2. (i) Clearly, id : Id(A)→ Id(A) is a closure operator on Id(A).
(ii) Obviously, Ic is a C-closed ideal of A.
(iii) Let A be a hoop and I ∈ Id(A). Consider

Ic =
⋂
{Q ∈ Id(A) | I ⊆ Q}.

Then C is a closure operator on ideal of A. Clearly, I ⊆
⋂
{Q ∈ Id(A) | I ⊆

Q} = Ic. Assume I ⊆ Q. Since Ic =
⋂
{Q ∈ Id(A) | I ⊆ Q} ⊆ Q and Q ⊆ Qc,

we get Ic ⊆ Qc.
In addition, Ic ⊆ Ic, then Icc ⊆ Ic. Also, by (C1), Ic ⊆ Icc. Hence, Ic = Icc.

Therefore, Ic is a closure operator on ideal.

For every I ∈ Id(A), MI is the set of all maximal ideals of A containing
I and Rad(I) =

⋂
MI. Also, I ∈ Id(A) is called a radical ideal of A if

Rad(I) = I.

Example 4.3. Assume A = {0, x, y, 1} is a poset where 0 ≤ x, y ≤ 1. Define
� and → on A by:

u
u u

u

@
@
@

�
�
�

�
�
�

@
@
@

0

x

1

y

� 0 x y 1
0 0 0 0 0
x 0 x 0 x
y 0 0 y y
1 0 x y 1

→ 0 x y 1
0 1 1 1 1
x y 1 y 1
y x x 1 1
1 0 x y 1

Then (A,�,→, 0, 1) is a bounded hoop, Id(A) = {{0}, {0, x}, {0, y},A} and
for I = {0} we have MI = {{0, x}, {0, y}}. Thus

Rad(I) =
⋂
MI = {0, x} ∩ {0, y} = {0} = I.

Hence, {0} is a radical ideal of A.
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Note. Similar to Example 4.2(iii), Rad(I) is a closure operator on ideal of
A.

Proposition 4.4. Suppose C is a closure operator on Id(A) and {Iα}α∈Λ is
a family of ideals of A. Then
(i) for any I ∈ Id(A), Ic =

⋂
{Q | Q ∈ Id(A), I ⊆ Q, and Q is a C-closed ideal of A}.

(ii) If for any α ∈ Λ, Iα is C-closed, then
⋂
α∈Λ

Iα is C-closed.

(iii) 〈
⋃
α∈Λ

Icα〉c = 〈
⋃
α∈Λ

Iα〉c.

Proof. (i) Let

C =
⋂
{Q | Q ∈ Id(A), I ⊆ Q, and Q is a C-closed ideal of A}.

Suppose Q ∈ C. Then Q ∈ Id(A), I ⊆ Q and Q is C-closed. Then by (C2),
Ic ⊆ Qc, and since Q is C-closed, we get Qc = Q, and so Ic ⊆ Q. Hence,
C ⊆ Ic.

Conversely, by (C1), I ⊆ Ic and by (C3), Ic is C-closed. Thus Ic ∈ C, and
so Ic ⊆ C. Therefore,

Ic =
⋂
{Q | Q ∈ Id(A), I ⊆ Q, and Q is a C-closed ideal of A}.

(ii) Clearly,
⋂
α∈Λ

Iα ⊆ Iα and by (C2),

( ⋂
α∈Λ

Iα
)c
⊆ Icα. Since Iα is C-closed,

we get

( ⋂
α∈Λ

Iα
)c
⊆ Iα, and so

( ⋂
α∈Λ

Iα
)c
⊆
⋂
α∈Λ

Iα. On the other side, since

⋂
α∈Λ

Iα ∈ Id(A), by (C1),
⋂
α∈Λ

Iα ⊆
( ⋂
α∈Λ

Iα
)c

. Hence,
⋂
α∈Λ

Iα is C-closed.

(iii) By (C1), for any α ∈ Λ, Iα ⊆ Icα, thus
⋃
α∈Λ

Iα ⊆
⋃
α∈Λ

Icα, and so 〈
⋃
α∈Λ

Iα〉 ⊆

〈
⋃
α∈Λ

Icα〉. Hence, by (C1), we have 〈
⋃
α∈Λ

Iα〉c ⊆ 〈
⋃
α∈Λ

Icα〉c.

Conversely, since Iα ⊆ 〈
⋃
α∈Λ

Iα〉, by (C2) we get Icα ⊆ 〈
⋃
α∈Λ

Iα〉c, and so⋃
α∈Λ

Icα ⊆ 〈
⋃
α∈Λ

Iα〉c. Thus 〈
⋃
α∈Λ

Icα〉 ⊆ 〈
⋃
α∈Λ

Iα〉c. Then 〈
⋃
α∈Λ

Icα〉c ⊆ 〈
⋃
α∈Λ

Iα〉cc. By

(C3), 〈
⋃
α∈Λ

Icα〉c ⊆ 〈
⋃
α∈Λ

Iα〉c. Therefore, 〈
⋃
α∈Λ

Icα〉c = 〈
⋃
α∈Λ

Iα〉c.

Corollary 4.5. There is a one-to-one correspondence between the closure op-
erators on A and the subsets of Id(A) that are arbitrary closed.

Proof. Consider C is a closure operator on ideal of Id(A) and Ic is the set
of all C-closed ideals of A. For any subset J of Id(A) that is closed under
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arbitrary intersection, define c(J) : Id(A) → Id(A) where Ic(J) =
⋂
{Q | Q ∈

J and I ⊆ Q}. Similar to Example 4.2(iii), we can see that c(J) is a closure
operator on ideal of A. By Proposition 4.4(i), we get c(J(C)) = C and by
Example 4.2(iii), c(J)-closed ideals are exactly J. Hence, J(c(J)) = J.

Proposition 4.6. Consider A be a ∨-hoop with (DNP). Then Rad(I ∩Q) =
Rad(I) ∩ Rad(Q), for any I,Q ∈ Id(A).

Proof. According to definition of Rad(I), we have to prove
⋂
MI∩Q =

⋂
MI ∩⋂

MQ. For this, let M ∈
⋂
MI ∩

⋂
MQ. Then M ∈

⋂
MI and M ∈

⋂
MQ.

Thus I ⊆M and Q ⊆M, and so I ∩Q ⊆M. Hence, M ∈
⋂
MI∩Q.

Conversely, assume M ∈
⋂
MI∩Q. Then I ∩Q ⊆ M. Suppose M /∈

⋂
MI ∩⋂

MQ. Thus, M /∈
⋂
MI or M /∈

⋂
MQ, and so I * M or Q * M. Then there

exist p ∈ I \M or q ∈ Q \M. Since p ∧ q ≤ p, q, we get p ∧ q ∈ I ∩ Q ⊆ M.
Hence, p ∧ q ∈M. By Proposition 2.8, M is a prime ideal of A, and so p ∈M
or q ∈ M, which is a contradiction. Thus, M ∈ MI and M ∈ MQ. Hence,
Rad(I) ∩ Rad(Q) ⊆ Rad(I) ⊆M or Rad(I) ∩ Rad(Q) ⊆ Rad(Q) ⊆M, and so

Rad(I ∩Q) ⊆ Rad(I) ∩ Rad(Q).

Therefore, Rad(I ∩Q) = Rad(I) ∩ Rad(Q).

Definition 4.7. The closure operator C is stable if for any I,Q ∈ Id(A),
(I ∩Q)

c
= Ic ∩Qc.

Example 4.8. (i) Obviously, the identity map and the constant map, where
Ic = A, are stable closure operators.
(ii) Consider A be a ∨-hoop with (DNP). Since Rad(I) is a closure operator
on ideal of I, by Proposition 4.6, we have Rad(I∩Q) = Rad(I)∩Rad(Q), and
so Rad(I) is a stable closure operator on ideals of A.

Let CO(A) be the set of all closure operators on A. Then define an order
on CO(A) such that
(1) (CO(A),4) where C 4 C ′ if and only if Ic ⊆ Ic′ , for any I ∈ Id(A).
(2) (CO(A), ◦) is closed and make a monoid, where ◦ is the composition oper-
ation.
(3) (CO(A),4) is a distributive lattice. According to definition of (CO(A),4),
we consequence that (CO(A),4) is equivalent to (Id(A),⊆). Since (Id(A),⊆)
is a bounded complete lattice, then (CO(A),4) is a bounded complete lattice,
where the least element is id and the greatest element is C : Id(A) → Id(A),
where C(I) = A.

Example 4.9. If (Id(A),⊆) is a chain, then every ideal of A is stable. Suppose
I,Q ∈ Id(A). Then I ⊆ Q or Q ⊆ I. If I ⊆ Q, then Ic ⊆ Qc. Thus
Ic ∩Qc = Ic = (I ∩Q)

c
. The proof of other case is similar.
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Let A be a ∨-hoop. Then A is called an H-hoop if for any p ∈ A, there
exists n ≥ 1 such that p ∨ (pn)∼ = 1, where pn = p� pn−1 and p0 = 1.

Example 4.10. (i) Consider A is the hoop as in Example 4.3. Clearly, A is
an H-hoop.
(ii) Assume A is the hoop as in Example 3.2(iii). Then A is not an H-hoop,
since for any n ∈ N we have

x ∨ (xn)∼ = x ∨ x∼ = x ∨ 0 = x 6= 1.

Theorem 4.11. In any H-hoop, every prime ideal of A is contained in a
maximal ideal of A.

Proof. Let P ∈ Spec(A) and M ∈ Id(A) where P ⊂ M ⊂ A. We show that
M ∈ Max(A). For this, by assumption, A is an H-hoop, then for any p ∈ P,
there exists n ∈ N such that p∨(pn)∼ = 1. Thus for any p ∈ P, by Proposition
2.1(ix), p∼ ∧ (pn)∼∼ = 0 and by Proposition 2.1(viii) we have p∼ ∧ pn = 0.
Then p∼ ∧ pn ∈ P. Since P ∈ Spec(A), we get p∼ ∈ P or pn ∈ P. If p∼ ∈ P,
then p ⊕ p∼ = 1 ∈ P, which is a contradiction. Thus p∼ /∈ P and so p∼ /∈ M,
since M is a proper ideal of A. Then M ⊂ (M ∪ {p∼}]. On the other side,
p ∈ P ⊂M, thus p ∈M, and so we get 1 ∈ 〈M∪{p∼}〉. Thus, (M∪{p∼}] = A.
Hence, M is a maximal ideal of A that contain P.

A hoop A is called a hyper-archimedean hoop if every ideal of A is a
radical ideal of A.

Example 4.12. According to Example 4.3, clearly A is a hyper-archimedean
hoop.

Example 4.13. Assume A = {0, x, y, z, 1} where 0 ≤ x ≤ z ≤ 1 and 0 ≤ y ≤
z ≤ 1. Define the operations → and � on A by:

→ 0 x y 1
0 1 1 1 1 1
x y 1 y 1 1
y x x 1 1 1

0 x y 1 1
1 0 x y z 1

� 0 x y 1
0 0 0 0 0 0
x 0 x 0 x x
y 0 0 y y y

0 x y z z
1 0 x y z 1

Then (A,→,�, 0, 1) is a hyper-archimedean hoop which is not an H-hoop,
since for any n ∈ N, z ∨ (zn)∼ = z ∨ 0 = z 6= 1.

Proposition 4.14. Consider A had (DNP). Let I,Q be two radical ideals of
A such that I�Q be a radical ideal. Then I�Q = I ∩Q.
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Proof. Let I,Q be two radical ideals of A such that I � Q be a radical ideal.
Then I = Rad(I) =

⋂
MI and Q = Rad(Q) =

⋂
MQ. Since I � Q is a radical

ideal, we get I�Q = Rad(I�Q) =
⋂
MI�Q. Thus

I ∩Q =
(⋂

MI

)
∩
(⋂

MQ

)
=
⋂

(MI ∩MQ).

So, it is enough to prove that MI ∩MQ = MI�Q. For this, suppose p ∈ I�Q.
Then there exist x ∈ I and y ∈ Q such that p = x� y. Since x� y ≤ x, y and
I,Q ∈ Id(A), we get p = x�y ∈ I,Q. Hence, it is clear that MI∩MQ ⊆MI�Q.

Conversely, suppose M ∈MI�Q. Then I�Q ⊆M. By Proposition 2.9, we
get I ⊆M or Q ⊆M. Consider I ⊆M. Since I∩Q ⊆ I we have I∩Q ⊆M, and
so M ∈MI∩Q = MI ∩MQ, by Proposition 4.6. Therefore, I�Q = I ∩Q.

Definition 4.15. The operator C : Id(A) → Id(A) is called a semiprime
operator if for any I,Q ∈ Id(A), Ic �Qc ⊆ (I�Q)

c
.

Example 4.16. (i) Obviously, the identity map and the constant map, where
Ic = A, are semiprime operators.
(ii) According to Example 4.13 we have Id(A) = {{0}, {0, x}, {0, y},A}. De-
fine C : Id(A) → Id(A) such that C({0}) = {0} and C({0, x}) = C({0, y}) =
C(A) = A. Then C is a semiprime operator.
(iii) According to Example 4.3, define C : Id(A)→ Id(A) such that C({0}) =
{0} and C({0, x}) = C({0, y}) = C(A) = A. Then C is not a semiprime
operator, because

C({0, x})� C({0, y}) = A�A = A * {0} = C({0}) = C({0, x} � {0, y}).

Proposition 4.17. In any hyper-archimedean hoop, a stable closure operator
and semiprime are coincide.

Proof. Since A is a hyper-archimedean hoop, by Proposition 4.14, for any
I,Q ∈ Id(A), I ∩ Q = I � Q. Suppose C : Id(A) → Id(A) is a stable closure
operator on Id(A). Then for any I,Q ∈ Id(A), Ic ∩ Qc ⊆ (I ∩ Q)c. By
assumption, Ic ∩Qc = Ic �Qc and I∩Q = I�Q. Hence, Ic �Qc = Ic ∩Qc ⊆
(I ∩Q)c = (I�Q)c. Thus C is a semiprime closure operator on Id(A).

Conversely, suppose C : Id(A) → Id(A) is a semi-prime operator. Then
for any I,Q ∈ Id(A), Ic � Qc ⊆ (I � Q)c. Since A is hyper-archimedean, we
have

Ic ∩Qc = Ic �Qc ⊆ (I�Q)c = (I ∩Q)c.

Clearly, (I ∩ Q)c ⊆ Ic ∩ Qc, since C is a closure operator. Therefore, in
any hyper-archimedean hoop, a stable closure operator and semiprime are
coincide.
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Note. Let C be a closure operator on Id(A) such that Ic 6= A, for any
proper I ∈ Id(A). Then C is called a proper closure operator.

Example 4.18. Obviously, the identity map and Rad, where Ic = A, are
proper closure operators.

Remark 4.19. If C is a proper closure operator, then every maximal ideal of
A is C-closed. Since C is proper, for any M ∈ Max(A), M ⊆ Mc 6= A. From
M ∈ Max(A), we get M = Mc, and so M is C-closed.

Example 4.20. Obviously, the identity map and the Rad(A) map, where
id : Spec(A) → Spec(A) and Rad : Max(A) → Max(A), respectively, are
C-closed operators.

Note. Denote Specc(A) = Spec(A) ∩ I(c), where I(c) is the set of all
C-closed ideals of A.

Proposition 4.21. Let A be a ∨-hoop with (DNP). Then the following equiv-
alent statements hold:
(i) A is an H-hoop,
(ii) for any C ∈ CO(A), we have Spec(A) ∩ Ic = Specc(A) = Max(A).

Proof. (i ⇒ ii) By Proposition 2.8, Max(A) ⊆ Spec(A). Also, by Remark
4.19, every maximal ideal of A is C-closed, and so Max(A) ⊆ I(c). Thus,
Max(A) ⊆ I(c)∩Spec(A) ⊆ Spec(A). Hence, Max(A) ⊆ Specc(A) ⊆ Spec(A).
By (i), since A is anH-hoop, by Theorem 4.11, Spec(A) ⊆ Max(A). Therefore,
Specc(A) = Max(A).
(ii ⇒ i) Suppose Specc(A) = Max(A), for any proper closure operator on
Id(A). Let C = idId(A). Clearly, idId(A) is proper and C-closed. Thus, by
assumption SpecidId(A)

(A) = Max(A) = Spec(A). Hence, A is an H-hoop.

Since if A is not an H-hoop, by Theorem 4.11, there is a prime ideal which is
not maximal, and so Max(A) 6= Spec(A), which is a contradiction.

Proposition 4.22. If the only proper closure operator on A is identity, then
A is an H-hoop.

Proof. Suppose A is not an H-hoop. Then by Theorem 4.11, A has a prime
ideal such as P which is not maximal, and so Rad(A) 6= P. On the other side,
clearly Rad(A) is a proper closure operator on A and Rad 6= id, which is a
contradiction. Therefore, A is an H-hoop.

Proposition 4.23. Every closure operator C on A induces a closure operator

C on
A

I
. If C is stable (semi-prime), then C is stable (semi-prime), too.
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Proof. If I ⊆ Q, for any I,Q ∈ Id(A), since Q ⊆ Qc, then I ⊆ Qc, and so Qc

I

is well-defined. Define C : Id
(
A
I
)
→ Id

(
A
I
)
, where

(Q
I
)C

= Qc

I . Clearly, C is

a closure operator on
A

I
and if c is stable, then

C

(
Q
I
⋂ M

I

)
= C

(
Q ∩M
I

)
=

(Q ∩M)
c

I
=
Qc ∩Mc

I
=
Qc

I
⋂ Mc

I

= C

(
Q
I

)⋂
C

(
M
I

)
.

The proof of other case is similar.

Let Prc(A) be the set of all proper closure operators on A. Consider
C ∈ Prc(A). For any I ∈ Id(A) and M ∈ Max(A), where I ⊆ M, by (C3),
Ic ⊆Mc. Since C ∈ Prc(A), by Remark 4.19, Mc = M, and so Ic ⊆M. Thus,
Ic ⊆ Rad(I), for any I ∈ Id(A). Hence, by Example 4.18, C ≤ Rad. On
the other side, we know that idId(A),Rad ∈ Prc(A), which are minimum and
maximum proper closure operators on Id(A). Define two operators u and t
on Prc(A) as follows:

(c u d) (I) = c(I) ∩ d(I), and (c t d) (I) = (c(I) ∪ d(I)],

for any c, d ∈ Prc(A). If Prc(A) is t-closed, then 〈Prc(A),u,t, idId(A),Rad〉
is a bounded lattice.

Notice that the condition ∨-closed is necessary, since according to Example
4.3, I1 = {0, x} and I2 = {0, y} are proper ideals of A, but I1 ∪ I2 is not an
ideal of A since x⊕ y = 1 /∈ I1 ∪ I2 and so (I1 ∪ I2] = A which is not proper.

5 Conclusions and future works

The notion of closure operators are defined on elements and ideals of hoops.
The properties of closure operators and hoop-homomorphism on hoops are
investigated. It is shown that the image of a closure operator on a hoop is
isomorphic to a quotient hoop. In addition, by using the notion of closure
operator on ideals of hoop, some related results are proved. The concept of
proper closer operators on ideals of hoop is defined and it is proved that the
set of all proper closure operators on hoops makes a bounded lattice by some
operations.
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