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Abstract

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth bound-
ary ∂Ω. Consider the following generalized Robin-Steklov eigenvalue
problem associated with the operator Au = −∆pu−∆qu{

Au+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = λα(x) | u |r−2 u, x ∈ Ω,
∂u
∂νA

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λβ(x) | u |r−2 u, x ∈ ∂Ω,

where p, q, r ∈ (1,∞), p < q; α, ρi ∈ L∞(Ω) and β, γi ∈ L∞(∂Ω) are
nonnegative functions satisfying

∫
Ω
α dx+

∫
∂Ω
β dσ > 0 and

∫
Ω
ρi dx+∫

∂Ω
γi dσ > 0, i = 1, 2.
We show that, if either

(
r < p

)
or
(
r > q with r < q(N − 1)/(N − q)

in case q < N
)
, then the eigenvalue set (spectrum) of the above problem

is precisely (0,∞). If r ∈ {p, q} then the corresponding spectrum is a
smaller interval (d,∞), d > 0. On the other hand, if

(
r ∈ (p, q) with

r < p(N − 1)/(N − p) in case p < N
)
, then we are able to identify an

interval of eigenvalues [λ∗,∞), where λ∗ is a positive number depending
on r.

Obviously, the spectrum of the above problem coincides with the
spectra of the Neumann-like, Robin-like, and Steklov-like eigenvalue
problems corresponding to the cases when some of the functions α, β,
γi vanish.
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manifold, variational methods.
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1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary ∂Ω.
Consider the eigenvalue problem associated with the operator Au = −∆pu−
∆qu{

Au+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = λα(x) | u |r−2 u, x ∈ Ω,
∂u
∂νA

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λβ(x) | u |r−2 u, x ∈ ∂Ω,
(1)

under the following hypotheses
(hpqr) p, q, r ∈ (1,∞), p < q;

(hαβ) α ∈ L∞(Ω) and β ∈ L∞(∂Ω) are nonnegative functions satisfying∫
Ω

α dx+

∫
∂Ω

β dσ > 0; (2)

(hρiγi) ρi ∈ L∞(Ω), i = 1, 2, and γi ∈ L∞(∂Ω), i = 1, 2, are nonnegative
functions such that ∫

Ω

ρi dx+

∫
∂Ω

γi dσ > 0, i = 1, 2. (3)

Recall that, for θ ∈ (1,∞),∆θ denotes the θ-Laplacian, ∆θu = div (|∇u|θ−2∇u).
In the above boundary condition we have used the notation

∂u

∂νA
:=
(
| ∇u |p−2 + | ∇u |q−2

)∂u
∂ν
,

where ν is the outward unit normal to ∂Ω.
The operator

(
∆p + ∆q

)
, called (p, q)-Laplacian, occurs in many applica-

tions that include models of elementary particles ([9], [14]), elasticity theory
([21]), reaction-diffusion equations ([12]).

The solution u of (1) is understood as an element of the Sobolev space
W := W 1,q(Ω) satisfying equation (1)1 in the sense of distributions and (1)2

in the sense of traces.

Definition 1.1. A scalar λ ∈ R is said to be an eigenvalue of the problem (1)
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if there exists uλ ∈W \ {0} such that for all w ∈W∫
Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx

+

∫
Ω

(
ρ1 | uλ |p−2 +ρ2 | uλ |q−2

)
uλw dx

+

∫
∂Ω

(
γ1 | uλ |p−2 +γ2 | uλ |q−2

)
uλw dσ

= λ

∫
Ω

α | uλ |r−2 uλw dx+

∫
∂Ω

β | uλ |r−2 uλw dσ

 .

(4)

This uλ is called an eigenfunction of the problem (1) (corresponding to the
eigenvalue λ).

According to a Green type formula (see [11], p. 71), u ∈ W \ {0} is a
solution of (1) if and only if it satisfies (4).

Remark 1.2. Choosing w = uλ in (4) shows that the eigenvalues of problem
(1) cannot be negative. It is also obvious, taking into account the assumptions
(hρiγi), that 0 can not be an eigenvalue of problem (1).

Now, let us introduce the notations

Kp(u) :=

∫
Ω

(
| ∇u |p +ρ1 | u |p

)
dx+

∫
∂Ω

γ1 | u |p dσ,

Kq(u) :=

∫
Ω

(
| ∇u |q +ρ2 | u |q

)
dx+

∫
∂Ω

γ2 | u |q dσ,

kr(u) :=

∫
Ω

α | u |r dx+

∫
∂Ω

β | u |r dσ ∀ u ∈W.

(5)

Note that any eigenfunction uλ corresponding to an eigenvalue λ > 0 satis-
fies kr(uλ) > 0, hence all eigenfunctions corresponding to positive eigenvalues
necessarily belong to W \ Z, Z := {v ∈W ; kr(v) = 0}.

In order to state our main results, let us define

λ̂q := inf
w∈W\Z

Kq(w)

kq(w)
, λ̂p := inf

w∈W\Z

Kp(w)

kp(w)
, (6)



ON AN EIGENVALUE PROBLEM ASSOCIATED WITH THE
(p, q) LAPLACIAN 48

λ∗ := inf
w∈W\Z

Γ
Kp(w)ωKq(w)1−ω

kr(w)
, λ∗ =

r

pωq1−ω λ∗,

ω :=
q − r
q − p

, Γ :=
q − p

(r − p)1−ω(q − r)ω
.

(7)

Let us now state the main results of this paper.

Theorem 1.3. Assume that (hpqr), (hαβ), (hρiγi) are fulfilled.

(a) If r = p, then λ̂p > 0 and the set of eigenvalues of problem (1) is precisely

(λ̂p,∞);

(b) If r = q, then λ̂q > 0 and the set of eigenvalues of problem (1) is precisely

(λ̂q,∞).

Theorem 1.4. Assume that (hpqr), (hαβ), (hρiγi) are fulfilled.
(a) If either

(
r < p

)
or
(
r > q with r < q(N − 1)/(N − q) in case q < N

)
,

then the set of eigenvalues of problem (1) equals (0,∞);
(b) If p < r < q with r < p(N − 1)/(N − p) in case p < N, then 0 < λ∗ < λ∗

and every λ ∈ [λ∗,∞) is an eigenvalue of problem (1); for any λ ∈ (−∞, λ∗)
problem (1) has only the trivial solution.

Moreover, the constants λ∗, λ
∗ can be expressed as follows

λ∗ = inf
v∈W\Z

Kp(v) +Kq(v)

kr(v)
, λ∗ = inf

v∈W\Z

1
pKp(v) + 1

qKq(v)
1
rkr(v)

. (8)

Remark 1.5. Regarding the assumptions
(
r < q(N − 1)/(N − q) if q <

N
)
, and

(
r < p(N − 1)/(N − p) if 1 < p < N

)
in Theorem 1.4 (a) and

(b), respectively, we point out that these are directly related to the well-known
compact embedding W 1,θ(Ω) ↪→ Lr(Ω) which holds when 1 < r < θ∗, where
θ∗ = θN/(N − θ) if 1 < θ < N, and the trace compact embedding W 1,θ(Ω) ↪→
Lr(∂Ω) if 1 < r < θ̃, where θ̃ = θ(N − 1)/(N − θ) if θ < N (see [1], [10,
Section 9.3]).

If γ1 = γ2 = β ≡ 0 (i.e., the boundary condition is of Neumann type),
Theorem 1.4 still holds if in the cases q < N and p < N the conditions
r < q(N − 1)/(N − q) and r < p(N − 1)/(N − p) are replaced by the weaker
conditions r < qN/(N − q) and r < qN/(N − q), respectively, since in this
case we need only the compact embedding W 1,θ(Ω) ↪→ Lr(Ω), θ ∈ {p, q}.

Eigenvalue problems for the (p, q)−Laplacian have been extensively inves-
tigated in recent years. For the case of the Dirichlet boundary condition we
refer to Bobkov and Tanaka [8], Cherfils and Il’yasov [12], Faria, Miyagaki and
Motreanu [15] and the references therein.

The spectrum of problem (1), which we describe herein, coincides with the
Neumann-like, Robin-like, and Steklov-like eigenvalue problems corresponding
to the cases when some of the functions α, β, γi vanish.
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The generalized Steklov spectrum in the case ρi ≡ 0, γi ≡ 0, i = 1, 2,
was investigated by the authors in [3, 4, 6]. Note also that the particular case
α ≡ 1, β ≡ 0 and ρi ≡ 0, i = 1, 2, γ1 ≡ 0, γ2 ≡ const. > 0, r ∈ {p, q},
i.e., the case of the (p, q)-Laplacian with a Robin boundary condition, was
investigated by Gyulov and Moroşanu in [17]. Let us also mention the paper
by Papageorgiou, Vetro and Vetro [19] concerning the case ρ1 ≡ 0, γ1 ≡
0, γ2 ≡ const. > 0, r = q, with the potential function ρ2 being sign changing.
Also, the problem (1) in the case r = q, a ≡ 0, b ≡ 1 was studied by Barbu
and Moroşanu in [5].

Notice that the arguments we shall use in the proof of Theorem 1.3 are
essentially known from [2, 4, 5], but here those arguments are adapted to the
present context and presented for the convenience of the reader.

While in the previous papers [17], [19] only subsets of the corresponding
spectra were determined, in this paper the presence of the potential functions
ρi, γi satisfying assumptions (hρiγi) allows the full description of the spectrum
in four cases out of five.

2 Preliminary results

In this section we state some auxiliary results which will be used in the proofs
of our main results.

First of all, note that for θ ∈ (1,∞) and r < θ̃ if θ < N, u →
(
kr(u)

) 1
r is

a seminorm on W 1,θ(Ω) which satisfies

(i) ∃d > 0 such that kr(u)
1
r ≤ d ‖ u ‖W 1,θ(Ω) ∀u ∈W 1,θ(Ω), and

(ii) if u ≡ const., then kr(u) = 0 implies u ≡ 0.
Hence, from [13, Proposition 3.9.55] we obtain the following result

Lemma 2.1. Assume that assumptions (hαβ) are fulfilled, θ, r ∈ (1,∞) and

r < θ̃ if θ < N. Then

‖ u ‖θ,r:=‖ ∇u ‖Lθ(Ω) +
(
kr(u)

) 1
r ∀ u ∈W 1,θ(Ω)

is a norm on W 1,θ(Ω), equivalent to the standard one.

Remark 2.2. Under assumptions (hρiγi), Kp(·)1/p and Kq(·)1/q are norms
equivalent to the usual norms of the Sobolev spaces W 1,p(Ω) and W 1,q(Ω),
respectively.

Next, for θ > 1, we consider the eigenvalue problem{
−∆θu+ ρ(x) | u |θ−2 u = λα(x) | u |θ−2 u in Ω,

| ∇u |θ−2 ∂u
∂ν + γ(x) | u |θ−2 u = λβ(x) | u |θ−2 u on ∂Ω,

(9)
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where ρ ∈ L∞(Ω) and γ ∈ L∞(∂Ω) are given nonnegative functions satisfying∫
Ω

ρ dx+

∫
∂Ω

γ dσ > 0. (10)

As usual, the number λ ∈ R is said to be an eigenvalue of problem (9) if
there exists a function uλ ∈W 1,θ(Ω) \ {0} such that for all w ∈W 1,θ(Ω)∫

Ω

| ∇uλ |θ−2 ∇uλ · ∇w dx+

∫
Ω

ρ | uλ |θ−2 uλw dx+

∫
∂Ω

γ | uλ |θ−2 uλw dσ

=λ

∫
Ω

α | uλ |θ−2 uλw dx+

∫
∂Ω

β | uλ |θ−2 uλw dσ

 .

By arguments similar to those used in the case of problem (1) we can show
that the eigenvalues of problem (9) are positive and the corresponding eigen-
functions belong to W 1,θ(Ω) \ Zθ, where

Zθ :=

w ∈W 1,θ(Ω); kθ(w) :=

∫
Ω

α | u |θ dx+

∫
∂Ω

β | u |θ dσ = 0

 ,

Define the C1 functional

Θθ : W 1,θ(Ω) \ Zθ → (0,∞), Θθ(v) :=
Kθ(v)

kθ(v)
∀ v ∈W 1,θ(Ω) \ Zθ,

where Kθ(u) :=
∫
Ω

(
| ∇u |p +ρ | u |p

)
dx+

∫
∂Ω

γ | u |p dσ.

Lemma 2.3. Assume that the assumption (hαβ) is fulfilled and ρ ∈ L∞(Ω), γ ∈
L∞(∂Ω) are given nonnegative functions satisfying (10). Then there exists
u∗ ∈W 1,θ(Ω) \ Zθ such that

Θθ(u∗) = λθ := inf
w∈W 1,θ(Ω)\Zθ

Θθ(w) > 0.

In addition, λθ is the smallest eigenvalue of the problem (9) and u∗ is an
eigenfunction corresponding to λθ.

The proof of this result is based on arguments similar to those used in the
proof of Lemma 2 in [5] (see also [18, Proposition 3.1]), so we omit it.

Now, for λ > 0 define the C1 energy functional for problem (1)

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)− λ

r
kr(u) ∀ u ∈W. (11)
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Obviously, according to Definition 1.1, λ is an eigenvalue of problem (1) with
corresponding eigenfunction uλ ∈ W \ {0} if and only if uλ is a critical point
of Jλ, i.e. J′λ(uλ) = 0.

The following lemma will be an important ingredient in the proof of our
main results.

Lemma 2.4. Assume that (hpqr), (hαβ), (hρiγi) are fulfilled and r ∈ (1, q).
Then the functional Jλ is coercive on W, i.e., lim

‖u‖W→∞
Jλ(u) =∞.

Proof. Assume by way of contradiction that functional Jλ is not coercive.
So, there exist a positive constant C and a sequence

(
un
)
n
⊂ W such that

‖ un ‖W→∞ as n→∞ and Jλ(un) ≤ C ∀ n ≥ 1. Therefore

1

p
Kp(un) +

1

q
Kq(un)− λ

r
kr(un) ≤ C ∀ n ≥ 1. (12)

In particular,

0 ≤ 1

q
Kq(un) ≤ λ

r
kr(un) + C ∀ n ≥ 1. (13)

It follows from estimate (13) and Remark 2.2 that kr(un)→∞ as n→∞.
Define vn := un/

(
kr(un)1/r

)
∀ n ≥ 1 and divide inequality (13) by

kr(un)q/r. As r < q, we obtain that Kq(vn) → 0 as n → ∞. Hence, vn → 0
in W (see Remark 2.2) as well as in Lr(Ω) and in Lr(∂Ω). In particular,
kr(vn) → 0, as n → ∞, but this contradicts the fact that kr(vn) = 1 for all
n ≥ 1. So, Jλ is coercive on W.

Remark 2.5. Let λ > 0 be fixed. Under the assumptions of Lemma 2.4, if
there exists u0λ ∈ W \ {0} such that Jλ(u0λ) < 0, then λ is an eigenvalue
of problem (1). Indeed, taking into account Lemma 2.4, the functional Jλ is
coercive on W. Obviously, Jλ is also weakly lower semicontinuous on W. So,
there exists a global minimizer u∗ ∈ W for Jλ, i.e., Jλ(u∗) = minW Jλ (see,
e.g., [20, Theorem 1.2]). We notice that Jλ(u∗) ≤ Jλ(u0λ) < 0, which implies
u∗ 6= 0. In addition, J′λ(u∗) = 0 and so u∗ is an eigenfunction of problem (1)
corresponding to the eigenvalue λ.

3 Proof of Theorem 1.3

Throughout this section we assume that (hpqr), (hαβ) and (hρiγi) are fulfilled
and will be used without mentioning them in the statements below.
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3.1 Proof of Theorem 1.3 (a)

In this subsection we will address the case r = p. The proof of Theorem 1.3
(a) is based on the following two lemmas.

Lemma 3.1. If r = p, then λ̂p > 0 and there is no eigenvalue of problem (1)

in (−∞, λ̂p]. Moreover, we have the equality

λ̃p := inf
w∈W\Z

1
qKq(w) + 1

pKp(w)
1
qkp(w)

= λ̂p. (14)

Proof. First, we deduce from Lemma 2.3 with θ = p that λ̂p > λp = Θp(u
∗) >

0. As we pointed out in Remark 1.2, all the eigenvalues of problem (1) must
be positive.

Now, let us check that there is no eigenvalue of problem (1) in (−∞, λ̂p].
Assume the contrary, that there is an eigenpair (λ, uλ) ∈ (−∞, λ̂p]× (W \Z).
Then (4) with w = uλ will imply

λ =
Kq(uλ) +Kp(uλ)

kp(uλ)
≤ λ̂p. (15)

On one hand, if λ < λ̂p, we have a contradiction with the definition of λ̂p.

On the other hand, if λ = λ̂p we have Kq(uλ) = 0 which implies uλ ≡ 0 (see
Remark 2.2). This is impossible since uλ was assumed to be an eigenfunction.

Finally, let us check the equality (14). The estimate λ̂p ≤ λ̃p is obvious.
On the other hand, for each v ∈W \ Z and t > 0, we have

λ̃p = inf
w∈W\Z

p
qKq(w) +Kp(w)

kp(w)
≤ Kp(v)

kp(v)
+ tq−p

pKq(v)

qkp(v)
.

Now letting t → 0, then passing to infimum over all v ∈ W \ Z, we get the
claimed inequality.

Lemma 3.2. If r = p, then every λ > λ̂p is an eigenvalue of problem (1).

Proof. Let λ > λ̂p be fixed. From Lemma 2.4 with r = p, the functional Jλ is
coercive on W.

On the other hand, from Lemma 3.1 we get λ̂p = λ̃p hence, as λ > λ̂p,
there is some u0λ ∈W \ Z satisfying Jλ(u0λ) < 0. Consequently, according to
Remark 2.5, λ is an eigenvalue of problem (1).

Finally, the conclusions of Theorem 1.3 (a) follow from Lemmas 3.1 and 3.2.
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3.2 Proof of Theorem 1.3 (b)

If r = q we cannot expect to have coercivity on W of the functional Jλ. So,
we need to use another approach. Consider the Nehari type manifold defined
by

Nλ = {v ∈W \ {0}; 〈J′λ(v), v〉 = Kp(v) +Kq(v)− λkq(v) = 0}.
We shall consider the restriction of Jλ to Nλ since any possible eigenfunction
corresponding to λ belongs to Nλ. Note that on Nλ functional Jλ has the form

Jλ(u) =
q − p
qp

Kp(u) > 0 ∀ u ∈ Nλ. (16)

Remark 3.3. Taking into account assumptions (hρiγi), it is obvious that Nλ ⊂
W \ Z.

As in the preceding case, we have

Lemma 3.4. If r = q, then λ̂q > 0 and there is no eigenvalue of problem (1)

in (−∞, λ̂q]. Moreover, we have the equality

λ̃q := inf
w∈W\Z

q
pKp(w) +Kq(w)

kq(w)
= λ̂q. (17)

The proof is similar to the proof of Lemma 3.1, so we omit it.
In what follows, until further notice, λ > λ̂q will be a fixed real number.

Lemma 3.5. If r = q, then there exists a point u∗ ∈ Nλ where Jλ attains its
minimal value over Nλ, mλ := inf

w∈Nλ
Jλ(w) > 0.

Proof. We shall follow an argument similar to that used in [2, Case 2, Steps
1-4]. So, we split the proof into four steps.

Step 1. Nλ 6= ∅.
In fact, from λ > λ̂q and the definition of λ̂q (see (6)) there exists v0 ∈W \Z

such that Kq(v0) < λkq(v0). In addition, taking into account assumptions
(hρiγi), we have Kp(v0) > 0.

We claim that for a convenient τ > 0, τv0 ∈ Nλ. Indeed, the condition
τv0 ∈ Nλ, τ > 0, reads τpKp(v0) + τ qKq(v0) = λτ qkq(v0). This equation can
be solved for τ , and hence, for this τ we have τv0 ∈ Nλ.

Step 2. Every minimizing sequence
(
un
)
n
⊂ Nλ for Jλ restricted to Nλ is

bounded in W.
Let

(
un
)
n
⊂ Nλ be such a minimizing sequence for Jλ. Assume by contra-

diction that
(
un
)
n

is unbounded in W hence, on a subsequence, again denoted(
un
)
n
, we have ‖un‖ → ∞. Since

(
un
)
n
⊂ Nλ, we have (see equality (16))

Jλ(un) =
q − p
qp

Kp(un)→ mλ ≥ 0 as n→∞, (18)
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and
0 < λkq(un) = Kp(un) +Kq(un) ∀ n ≥ 1. (19)

It follows from (19) and Remark 2.2 that

kq(un)→∞ as n→∞. (20)

Set vn = un/(kq(un)1/q), n ≥ 1. Obviously, kq(vn) = 1 ∀ n ≥ 1. Now, from
(19) it follows Kq(vn) ≤ λ for all n ≥ 1, so

(
vn
)
n

is bounded in W . Therefore,

there exists v0 ∈ W such that vn ⇀ v0 in W (hence also in W 1,p(Ω) to the
same v0) and vn → v0 in Lq(Ω) as well as in Lq(∂Ω). In addition, we also have
kq(v0) = 1. Now, dividing (18) by kq(un)p/q and making use of (20), we see
that Kp(vn) → 0, and so v0 ≡ 0 which contradicts the fact that kq(v0) = 1.
Therefore,

(
un
)
n

is bounded in W .
Step 3. mλ := inf

w∈Nλ
Jλ(w) > 0.

Otherwise, suppose mλ = 0 and let
(
un
)
n
⊂ Nλ be a minimizing sequence

for Jλ. By Step 2,
(
un
)
n

is bounded in W, so for some u0 ∈W , un ⇀ u0 (on a

subsequence) in W (and also weakly in W 1,p(Ω) to the same u0), and un → u0

in Lq(Ω) as well as in Lq(∂Ω). We have (see (18)) Kp(un)→ 0, hence u0 ≡ 0
(see Remark 2.2).

Note that kq(un) > 0 for all n ≥ 1 (see Remark 3.3) and kq(un) → 0
as n → ∞. Now, from (19) we obtain that Kq(vn) ≤ λ for all n ≥ 1, so
the sequence

(
vn
)
n

is bounded in W (see Step 2 for the definition of
(
vn
)
n
).

Hence, on a subsequence, vn ⇀ v0 in W and vn → v0 in Lq(Ω) as well as in
Lq(∂Ω), for some v0 ∈W. Now, we divide (19) by kq(un)p/q to obtain

Kp(vn) = kq(un)(q−p)/q
[
λ−Kq(vn)− kq(vn)

]
→ 0.

This implies vn ⇀ 0 in W 1,p(Ω). In particular, kq(vn)→ 0, which is a contra-
diction. This contradiction shows that mλ > 0.

Step 4. There exists u∗ ∈ Nλ such that Jλ(u∗) = mλ.
Let

(
un
)
n
⊂ Nλ be a minimizing sequence, i.e., Jλ(un) → mλ. In partic-

ular, the sequence
(
un
)
n

satisfies (19) and is bounded in W by Step 3, thus
on a subsequence un ⇀ u∗ ∈ W and strongly in both Lq(Ω) and Lq(∂Ω) (to
the same u∗). In addition, u∗ 6≡ 0. Otherwise, if u∗ ≡ 0, we infer by (19) that(
Kp(un)

)
n

converges to 0. Then (18) will give mλ = 0 thus contradicting the
statement of Step 3. By passing to limit as n→∞ in (19), we find

Kp(u∗) +Kq(u∗) ≤ λkq(u∗). (21)

If we have equality in (21), then u∗ ∈ Nλ and the proof is complete since in
this case Jλ(u∗) = mλ. In what follows we show that the strict inequality

Kp(u∗) +Kq(u∗) < λkq(u∗) (22)
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is impossible. Let us assume by contradiction that (22) holds true. We check
that there exists τ ∈ (0, 1) such that τu∗ ∈ Nλ. For this purpose, we consider
the function

f : (0,∞)→ R, f(t) := tp−qKp(u∗) +Kq(u∗)− λkq(u∗).

As Kp(u∗) > 0, we have f(t)→∞ as t→ 0+. Since f(1) < 0 (see (22)), there
exists τ ∈ (0, 1) such that f(τ) = 0 which implies τu∗ ∈ Nλ. But then,

0 < mλ ≤ Jλ(τu∗) = τp
q − p
qp

Kp(u∗) ≤ τp lim
n→∞

Jλ(un) = τpmλ < mλ,

which is impossible.

Lemma 3.6. If r = q, the minimizer u∗ ∈ Nλ from Lemma 3.5 is an eigen-
function of problem (1) with corresponding eigenvalue λ.

Proof. First, note that u∗ is a solution of the constraint minimization problem.

min
v∈W\{0}

Jλ(v), gq(v) := Kp(v) +Kq(v)− λkq(v) = 0.

Next, we are going to check that R(g′q(u∗)) = R, i.e., for all ξ ∈ R there
exists a w ∈W \ {0} such that 〈g′q(u∗), w〉 = ξ (here R(g′q(u∗)) stands for the
range of g′q(u∗)). Indeed, if we choose in the above equations w of the form
w = χu∗, χ ∈ R making use of u∗ ∈ Nλ, we obtain

χ
(
pKp(u∗) + q

(
Kq(u∗)− λkq(u∗)

)
= ξ ⇔ χKp(u∗)(p− q) = ξ

which has a unique solution χ (by Remark 2.2). Applying the Lagrange mul-
tiplier rule [16, Theorem 3.29, p. 496], we can find µ ∈ R such that

〈J′λ(u∗), v〉+ µ〈g′q(u∗), v〉 = 0, ∀ v ∈W.

Testing with v = u∗ and using the fact that u∗ ∈ Nλ, we derive that

µ(p− q)Kp(u∗) = 0,

which implies µ = 0. Therefore 〈J′λ(u∗), v〉 = 0, ∀ v ∈ W , i.e., λ is an
eigenvalue of problem (1).

Finally, we see that Theorem 1.3 (b) follows from Lemmas 3.4, 3.5 and 3.6.

4 Proof of Theorem 1.4

We shall prove Theorem 1.4 through a series of lemmas based on the assump-
tions (hpqr), (hαβ) and (hρiγi) which will not be mentioned explicitly in the
statements.
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4.1 Proof of Theorem 1.4 (a)

The proof of Theorem 1.4 (a) is based on some intermediate results, as follows.

Lemma 4.1. If r < p, then every λ > 0 is an eigenvalue of problem (1).

Proof. Let λ > 0 be fixed. According to Lemma 2.4, the functional Jλ is
coercive.
Now, for t > 0, we have

t→ Jλ

tr
(t) =

tp−r

p
k1 +

tq−r

q
k2 −

λ

r
kr(1)→ −λ

r
kr(1) < 0 as t→ 0+,

where ki :=
∫
Ω

ρi dx+
∫
∂Ω

γi dx > 0, i = 1, 2. Hence Jλ(u∗) < 0 and, according

to Remark 2.2, the proof is complete.

In the rest of this subsection we suppose that q < r, and r < q̃ if q < N.
Let λ > 0 be a fixed number. As in Subsection 3.2, under these assumptions
we cannot expect to have coercivity of the functional Jλ on W. So, we need to
consider another approach involving the Nehari manifold

Nλ = {v ∈W \ {0}; 〈J′λ(w), w〉 = Kp(v) +Kq(v)− λkr(v) = 0}. (23)

Notice that on Nλ the functional Jλ is given by

Jλ(u) =
r − p
pr

Kp(u) +
r − q
qr

Kq(u) > 0. (24)

Also, we claim that Nλ 6= ∅. In this respect, we define

h(t) := tpKp(1) + tqKq(1)− trλkr(1) ∀ t > 0.

Observing that the function t 7→ h(t) is continuous on (0,∞) and

t−ph(t)→ Kp(1) > 0 as t→ 0+, t
−rh(t)→ −λkr(1) < 0 as t→∞,

we infer that there exists τ ∈ (0,∞) such that h(τ) = 0, so w ≡ τ ∈ Nλ.
The proofs of the next two results can be achieved by using arguments

similar to those from the proofs of Lemmas 3.5 and 3.6 above, so we omit
them.

Lemma 4.2. Assume that q < r, and r < q̃ if q < N. Then there exists a point
u∗ ∈ Nλ where Jλ attains its minimal value over Nλ, mλ := inf

w∈Nλ
Jλ(w) > 0.

Lemma 4.3. Assume that q < r, and r < q̃ if q < N. Then the minimizer
u∗ ∈ Nλ from Lemma 4.2 is an eigenfunction of problem (1) corresponding to
the eigenvalue λ.

Summing up, we see that Lemmas 4.1, 4.2, and 4.3 fully complete the proof
of Theorem 1.4 (a).
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4.2 Proof of Theorem 1.4 (b)

Lemma 4.4. Assume that p < r < q, and r < p̃ if p < N. Then 0 < λ∗ < λ∗,
where λ∗ and λ∗ are the constants defined in (7).

Proof. Taking into account Lemma 2.1 with θ = p, Remark 2.2, and the
following continuous embeddings

W 1,q(Ω) ↪→W 1,p(Ω) ↪→ Lr(Ω), W 1,q(Ω) ↪→W 1,p(Ω) ↪→ Lr(∂Ω),

we see that

Kp(v) ≥M1kr(v)
p
r , Kq(v) ≥M2kr(v)

q
r ∀ v ∈W \ Z, (25)

where M1,M2 are two positive constants (independent of v). Next, from (25),
since pω + q(1 − ω) = r, we obtain that there exists a positive constant M
(independent of v) such that

Γ
Kp(v)ωKq(v)1−ω

kr(v)
≥M ∀ v ∈W \ Z.

Finally, taking the infimum over all v ∈W \Z in the above inequality, we infer
that M ≤ λ∗.

To complete the proof we need to show that λ∗ < λ∗. This inequality is
equivalent to (see (7))

r

pωq1−ω > 1 ⇔ rq−p > pq−rqr−p,

which can be rewritten as(
1 +

q − p
p

) p
q−p

<

(
1 +

r − p
p

) p
r−p

.

So, the desired inequality follows, since the function x→ (1+x)
1
x is decreasing

on (0,∞) and q − p > r − p.

Lemma 4.5. Assume that p < r < q, and r < p̃ if p < N. Then the constants
λ∗ and λ∗ defined in (7) can be equivalently expressed by (8).

Proof. Let v ∈W \ Z be fixed. Define

T∗(v) :=
Kp(v) +Kq(v)

kr(v)
, T ∗(v) :=

r
pKp(v) + r

qKq(v)

kr(v)
, (26)
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gv(t) := T∗(tv) =
tp−rKp(v) + tq−rKq(v)

kr(v)
,

hv(t) := T ∗(tv) =

r
p t
p−rKp(v) + r

q t
q−rKq(v)

kr(v)
∀ t > 0.

(27)

It is easy to see that the function gv achieves its minimal value λ(v) > 0 on
(0,∞) for t = t(v) > 0, where

λ(v) = Γ
Kp(v)ωKq(v)1−ω

kr(v)
, t(v) =

[
(r − p)Kp(v)

(q − r)Kq(v)

] 1
q−p

. (28)

It follows that

λ(v) = T∗
(
t(v)v

)
= inf
t>0

Kp(tv) +Kq(tv)

kr(tv)
.

Now, taking the infimum over all v ∈W \ Z, we obtain that

λ∗ = inf
v∈W\Z

(
inf
t>0

Kp(tv) +Kq(tv)

kr(tv)

)
. (29)

Put ξ∗ := inf
v∈W\Z

T∗(v), ξ∗ := inf
v∈W\Z

T ∗(v). The estimate ξ∗ ≥ λ∗ is obvious.

On the other hand, for each v ∈ W \ Z we have t(v)v ∈ W \ Z, so λ(v) ≥ ξ∗,
and taking the infimum over all v ∈ W \ Z, we infer that ξ∗ ≤ λ∗. Hence,
ξ∗ = λ∗.

By a similar reasoning, as the function hv achieves its minimal value λ̂(v) =

r
pωq1−ω λ(v) > 0 on (0,∞) for t = t̂(v) =

(
q
p

)1/(q−p)
t(v) > 0, we first get the

equality

λ∗ = inf
v∈W\Z

(
inf
t>0

r
pKp(tv) + r

qKq(tv)

kr(tv)

)
, (30)

and finally ξ∗ = λ∗.

Next, let us show that there exists u∗ ∈ W \ Z such that λ∗ = λ(u∗). To
this purpose, we define the functional Φ : W \ Z→ (0,∞), v → λ(v), that is

Φ(v) := Γ
Kp(v)ωKq(v)1−ω

kr(v)
∀ v ∈W \ Z.

Lemma 4.6. Assume that p < r < q, and r < p̃ if p < N. Then there exists
u∗ ∈W \ Z such that λ∗ = Φ(u∗) = inf

w∈W\Z
Φ(w).
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Proof. First of all, taking into account the equality pω + q(1− ω) = r, we see
that functional Φ is positively homogeneous of zero degree, that is

Φ(tv) = Φ(v) ∀ t > 0, v ∈W \ Z.

Hence, we can find a minimizing sequence
(
un
)
n

for λ∗ such that
(
un
)
n
⊂W\Z

and kr(un) = 1 ∀ n ∈ N, i.e.,

Φ(un) = ΓKp(un)ωKq(un)1−ω → inf
w∈W\Z

Φ(w) = λ∗. (31)

Let us prove that
(
un
)
n

is bounded in W . Assume the contrary, that there

exists a subsequence of
(
un
)
n
, again denoted

(
un
)
n
, such that ‖un‖W → ∞.

From Lemma 2.1 we infer that Kq(un) → ∞ as n → ∞ and so, using the
inequality (25) and kr(un) = 1 for all n ≥ 1, we get Kq(un) ≥ M2 > 0
for all n ≥ 1. Therefore, since ω > 0, we have ΓKp(un)ωKq(un)1−ω → ∞,
which contradicts (31). Thus, the sequence

(
un
)
n

is bounded in W so there

exist u∗ ∈ W and a subsequence of
(
un
)
n
, again denoted

(
un
)
n
, such that

un ⇀ u∗ in W, (also in W 1,p(Ω)) and un → u∗ in Lr(Ω) as well as in Lr(∂Ω).
In particular, kr(u∗) = 1, thus u∗ 6∈ Z.

Also, the functionals Kp and Kq are weakly lower semicontinuous on
W 1,p(Ω) and W 1,q(Ω), respectively. Therefore we have

Kp(u∗) ≤ lim inf
n→∞

Kp(un) := Kp, Kq(u∗) ≤ lim inf
n→∞

Kq(un) := Kq.

Consequently, since kr(u∗) = kr(un) = 1 ∀ n ∈ N, we have

Φ(u∗) = ΓKp(u∗)
ωKq(u∗)

1−ω ≤ ΓKω
pK

1−ω
q

≤ lim inf
n→∞

ΓKp(un)ωKq(un)1−ω = λ∗,
(32)

and so Φ(u∗) = λ∗.

As a consequence of Lemma 4.6 we obtain that λ∗ is an eigenvalue of
problem (1).

Lemma 4.7. Assume that p < r < q, and r < p̃ if p < N. If u∗ ∈ W \ Z is
the minimizer determined in Lemma 4.6, then

u∗ =

(
q

p

) 1
q−p

t(u∗)u∗ ∈W \ Z, (33)

with t(u∗) defined in (28)2, is an eigenfunction of problem (1) corresponding
to the eigenvalue λ∗. In addition, Jλ∗(u∗) = 0.
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Proof. From Lemma 4.6, since functional Φ is a C1 functional on W \ Z, we
have Φ′(u∗) = 0, that is

〈Φ′(u∗), w〉 =
1

kr(u∗)

[
Γωp

(Kp(u∗)

Kq(u∗)

)ω−1(∫
Ω

| ∇u∗ |p−2 ∇u∗ · ∇w dx

+

∫
Ω

ρ1 | u∗ |p−2 u∗w dx+

∫
∂Ω

γ1 | u∗ |p−2 u∗w dσ
)

+ Γ(1− ω)q
(Kp(u∗)

Kq(u∗)

)ω( ∫
Ω

| ∇u∗ |q−2 ∇u∗ · ∇w dx

+

∫
Ω

ρ2 | u∗ |q−2 u∗w dx+

∫
∂Ω

γ2 | u∗ |q−2 u∗w dσ
)

− Φ(u∗)r

(∫
Ω

α | u∗ |r−2 u∗w dx+

∫
∂Ω

β | u∗ |r−2 u∗w dσ

)]
= 0,

for every w ∈ W. Multiplying the above equality by 1/(pωq1−ω) and taking
into account (33) and Φ(u∗) = pωq1−ωλ∗/r, we obtain∫

Ω

(
| ∇u∗ |p−2 + | ∇u∗ |q−2

)
∇u∗ · ∇w dx

+

∫
Ω

(
ρ1 | u∗ |p−2 +ρ2 | u∗ |q−2

)
u∗w dx

+

∫
∂Ω

(
γ1 | u∗ |p−2 +γ2 | u∗ |q−2

)
u∗w dσ

= λ∗
(∫

Ω

a | u∗ |r−2 u∗w dx+

∫
∂Ω

b | u∗ |r−2 u∗w dσ
)
∀ w ∈W.

According to Definition 1.1, u∗ is an eigenfunction of problem (1) correspond-
ing to the eigenvalue λ∗.

Finally, a simple computation shows that Jλ∗(u∗) = 0.

Lemma 4.8. Assume that p < r < q, and r < p̃ if p < N. Then every number
λ ∈ (λ∗,∞) is an eigenvalue of problem (1), and for any λ ∈ (−∞, λ∗) \ {0}
problem (1) has only the trivial solution.

Proof. Let λ > λ∗ be fixed. Note that the eigenfunction u∗ from Lemma 4.7
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satisfies kr(u
∗) 6= 0 and Jλ∗(u∗) = 0, so we have

0 =Jλ∗(u∗) =
1

p
Kp(u

∗) +
1

q
Kq(u)− λ∗

r
k(u∗)

>
1

p
Kp(u

∗) +
1

q
Kq(u

∗)− λ

r
kr(u

∗) = Jλ(u∗).

Finally, making use of Remark 2.5, λ is an eigenvalue of problem (1).
The second statement is a simple consequence of Lemma 4.5. Assume, by

way of contradiction, that there exists a λ ∈ (0, λ∗) and uλ ∈ W \ Z which
satisfy the relation (4). Choosing here w = uλ yields

λ =
Kp(uλ) +Kq(uλ)

kr(uλ)
,

which, by virtue of the equivalent definition of λ∗ in (7), implies that λ ≥ λ∗.
This contradicts the choice of λ.

Summarizing, we see that Lemmas 4.4, 4.5, 4.7, and 4.8 fully complete the
proof of Theorem 1.4 (b).
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[2] L. Barbu, G. Moroşanu, Eigenvalues of the negative (p, q)−Laplacian un-
der a Steklov-like boundary condition, Complex Var. Elliptic, 644(2019),
685700.
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[4] L. Barbu, G. Moroşanu, On a Steklov eigenvalue problem associated with
the (p, q)−Laplacian, Carpathian J. Math., 37(2021), 161-171.
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Babeş-Bolyai University,
1 Mihail Kogălniceanu Str.,
400084 Cluj-Napoca, Romania
and
Academy of Romanian Scientists
5 Ilfov Str.
050044 Bucharest, Romania
Email: morosanu@math.ubbcluj.ro



ON AN EIGENVALUE PROBLEM ASSOCIATED WITH THE
(p, q) LAPLACIAN 64


