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Abstract

Let S = Z,[u,v]/(u?,v?, uv — uv) be a semi-local ring, where p is a
prime number. In the present article, we determine the generating sets
of S and use them to construct the structures of Z,S-additive cyclic and
constacyclic codes. The minimal polynomials and spanning sets of Z,S-
additive cyclic and constacyclic codes are also determined. These codes
are identified as S[y]-submodules of the ring Sg, 5, = Zp[y]/(¥** — 1) x
S[y]/(y”* — 1). Some results that represent the relationship between the
minimal polynomials of Z,S-additive cyclic codes and their duals have
been obtained. Furthermore, optimal Z,S-additive codes and maximum
distance separable codes have been evaluated (see Table 1). Finally, we
use MAGMA software to find the parameters of Optimal and MDSS
codes.

1 Introduction

Error-correcting codes were initially investigated over finite fields, but later
more general structures have been considered and implemented. Numerous
authors are interested in the study of codes over rings.

The study over mixed alphabet has introduced new options and paths to
be explored. In one such study, additive codes were defined by Delsarte in
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1973 in terms of association schemes (see for reference [15, 16]). In general, an
additive code is defined as a subgroup of the underlying abelian group. In the
special case of a binary Hamming scheme, when the underlying abelian group
is of order 2™, the only structure for the abelian group are those of the form
Zgl X ZEZ’ with 81 + 2082 = n. Therefore, the subgroup C' of Zzﬁl X Zfz is the
only additive code in a binary Hamming scheme.

In 2013, Aydogdu et al. [9] extended the study of ZsZ4-additive codes to
ZoZss-additive codes. Further, they studied ZoZs[u]-additive codes and de-
fined mixed codes consisting of the binary part and non-binary part from the
ring Zs + uZs, u? = 0 which is another generalization of ZyZ4-additive codes.
Aydogdu and Siap generalized ZsZys-additive codes to Z,-Zys-additive codes
in [10]. In 2019, Minjia Shi et al.[21] described Z2Zs[u, v]-additive cyclic code,
where u? = v2 = 0, uv = vu which were the generalization of previously in-
troduced ZyZ4- additive cyclic codes. Later, Borges et al. [12] obtained some
interesting results on ZyrZ,s-additive codes. Note that in ZyZ4-additive codes
and ZoZos-additive codes, Zs is considered as Z4-algebra and Zos-algebra re-
spectively. Also in ZsZs[u]-additive code, Zs is known as a Zs[u]-algebra and
Zyr is a Zps-algebra in Z,rZys-additive codes.

In 2018, J. Gao et al. [17] gave the structural properties of additive cyclic
codes over ZpZp[u]. They also found the minimal generating sets of addi-
tive cyclic codes over ZsZs[u,v] and determined the relationship between
the generators of the additive codes and their dual code. In 2019, Islam
et al. [18] studied the structural properties of the ring Z,Z,[u,v], where
u? = v? = wv = vu = 0 and found Z,Z,[u,v]-additive cyclic codes and
constacyclic codes. Furthermore, they determined the generator polynomials,
minimal spanning sets of additive cyclic and constacyclic codes over Z,Zp[u, v].

In this article, we consider semi-local ring S = Z,, + uZy, + vZy, + w02y,
where u? = v? = 0, uv = vu with prime characteristic p and evaluate Z,S-
additive cyclic codes and constacyclic codes. We also find the optimal Z,S-
additive codes and maximum distance separable with respect to singleton
bound(MDSS) codes. It is to noted that the additive code of length (51, 82) is
the subgroup of the commutative group Zgl x §72. The Z,S-additive code is
a linear code over Z, if S = 0 and over S if 5; = 0. Clearly, we observe that
it is the generalization of linear code over Z, and S. Furthermore, we obtain
the generator polynomials and minimal spanning sets for Z,S-additive cyclic
codes and constacyclic codes. These codes are classified as S[y]-submodules
of the ring S5, 5, = Zp[y]/ (¥ — 1) x S[y]/ (¥ — 1).

This paper is organized as follows: In Section 2, we present some basic
definitions and properties of the ring S = Z, + uZ, + vZ, + wZ,, where
u2 =0, v2 = 0, uv = vu. We also define the Gray maps and include some
results. The generator polynomials and spanning sets for Z,S-additive cyclic
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codes are discussed in Section 3. A result which guarantees that a code to
be maximum distance separable with respect to singleton bound(MDSS) has
also been provided. Section 4 contains the results based on the relationship
between additive cyclic codes and their duals. Section 5 is devoted to the
study of Z,S-additive constacyclic codes and related results. In Section 6,
some examples of Z,S-additive cyclic codes, constacyclic codes and optimal
codes have been included. Section 7 brings the article to a conclusion.

Some of the concepts on Z,Z,[u, v]-additive codes described in this paper
have been implemented by MAGMA which is a software package designed to
solve computationally hard problems in algebra, number theory, geometry and
combinatorics.

2 PRELIMINARIES

Let Z, = {0,1,...,p — 1} be finite field and S = Z, +uZ, +vZ,+wvZ,, where
u?2 =0, v2 = 0 and uv = vu be a non chain ring with characteristic p. Any
element z € S can be written as z = a+ub+uc+wuvd for all a,b,¢,d € Z,,. An
element z = a+ub+uc+uvd € S is a unit if a is a unit. The total number of
ideals in S are listed as I1 = {0}, I = (u), Is = (v), Is = (wv), Iy = (u + av)
and Is = (u,v), where a is nonzero element of Z,. Since Is = (u,v) is the
unique maximal ideal in S, the finite commutative ring S is a local ring. Let

Z,S = {(c.,d) | ce Zy, ¢ €S}

Define a map
0:S—17Z,

such that 6(a + ub + uc + uvd) = a. Clearly, 6 is a well-defined onto ring
homomorphism. Let Zgl be -tuples over Z, and S%2 be Bo-tuples over S,
where 81 and Sz are positive integers. Let y = (y | y") € ZJ' x 87 be a
vector, where y = (yo,yy,---,Yg, 1) and Yy = (Yo, Yps--- 79%2_1)- For any
z=a+ub+uc+uvd € S, the S-scalar multiplication on Zgl x 72 is defined
as follows:

Ry = (G(z)yOa G(Z)yl, L 79(2)2//31_1 | Zyga Zy;a e Zy:f;’g—l) € Z]B)l X SB27 (21)

where G(z)y; and zyj are performed modp for all i =0,1,...,5; — 1 and
j=0,1,...,82—1. The Zzﬁ,l x 872 forms a S-module under usual addition and
multiplication defined in (2.1). Let Sg, 5, = Z,[y]/(y”* — 1) x S[y]/(y”* — 1).
Define a map

O : 70 x 87 — S, 5,
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d=(fg)—d(y) = (f(y) ] 9(y),

where (f | g) = (fo,f1,---, fai-1 | 90.91,---.98,-1), f(y) = fo+ fry +
o+ fa—1y™ Tt and g(y) = go + g1y + - + gg, 1y For any h(y) =
ho + hiy + -+ + lyy' € S[y] and

d(y) = (f(y) | 9(y)) € Sp,.3,, define the S[y]-scalar multiplication

h(y) - d(y) = (0(h(y)f(y) | (y)g(y)), (2.2)

where 6(h(y)) = 0(ho) + 0(h1)y + - -+ + 0(hy)y'. Then Sg, g, forms a S[yl-
module under usual addition and scalar multiplication of polynomials defined
in (2.2).

Definition 2.1. A non-empty subset C' of Zgl x 8% is called a 7, S-additive
code if C is a subgroup of Zf,l x 8% that is, C is isomorphic to L' X Zﬁ”z X
Zg”e' X ZZQ,”“ X Zy®, for some positive integers ni,nz, n3,ng and ns.

If C is a ZpS-additive code isomorphic to Zp* x Zy™> x Z3"s x 72" x
Zy®, then C is of type (B1,82,n1,n2,n3,14,n5). It is called Z,S-additive
linear code. For any z1 = (ag,a1,...,a8,—1 | bo,b1,...,bg,—1) and 2o =
(co,c1y...,¢8-1 | do,d1,...,dg,—1), the inner product is defined as

2129 = (uvagco+ uvaicr + -+ -+ uvag, —1¢p,—1 + bodo
+bid; + - + b,@2_1d52_1)(modp)
B1—1 Ba2—1

(uv Z a;c; + Z bi.ci) (modp).
i=0 k=0

Definition 2.2. A non-empty subset C' of Zgl x 8% is called a 7, S-additive
cyclic code if

(1) C is additive code;

(#4) For any codeword z= (ag,a1,...,a8,-1 | bo,b1,...,bg,—1) € C its cyclic
Shlft T(Z) = ((1[31,1,(10, s, aB,-2 | bﬁgfl, bo, .-, b52,2) eC.

Definition 2.3. Let C be any Z,S-additive cyclic code. Then the dual code
of C with respect to the inner product defined as
CL:{ZQEzgl x %2 | 2120 =0 for all zy € C}.

Let C be a linear code of length n and dimension k over S. The singleton
bound is given by dg(C) < n—k+1, and MDS (maximum distance separable
code) code if equality holds.
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Lemma 2.1. Let C be a Z,S-additive code of type (01, B2, n1,na, N3, N, N5).
Then
dG(C) < (ﬁl —|—4,82) —ny —4ne — 3ng — 2ng4 — ns + 1.

Proof. Let C be a Z,S-additive code of type (51, S2,n1,n2,n3,n4,n5) and
C = ®(C). Then dg(C) = dg(€). Suppose that € is a code of length £ + 452
and dimension ny 4+ 4ns + 3ns + 2n4 + n5. Then applying the singleton bound
on C, we get

dc;(C) < (61 + 452) —ny —4ne — 3nz — 2ng4 — ns + 1.
O

Lemma 2.2. Let C be a Z,S-additive code of type (B1, Bz, N1, na, Nz, N4, Ns).
Then

d(;(C') -1 ﬂl nq 3713 Ty ns
A A e L
e R
Proof. Proof is directly followed by Lemma 2.1. O

Definition 2.4. Let C be a Z,S-additive code. Then C is said to be a maz-
imum distance separable with respect to singleton bound (MDSS) code if it
satisfies the equality

d(;(C) -1 o ﬂl ni 3713 N4 ns

5 gtk mo oo
Theorem 2.1. Let C be any Z,S-additive cyclic code. Then C*+ is also cyclic.

Proof. Let C' be any Z,S-additive cyclic code and z» = (co,c1,...,¢8,-1 |
do,dy,...,dg,—1) € C*. In order to show T(zz) € C*, we have to prove that
21T (z9) = 0. Since C is cyclic, we have T?(z;) also in C, where | = lem(31, (2)-
Now, we can write

0 = Tl_l(zl)-zg
= (al,ag,. -5ap,-1,00 ‘ bl,bg,. .. ,bﬁgfl,bo) . (00,01, sy Cp—1 | d(),
di,....dg, 1)

= (wvaico + uwvager + - - + uvag, 168, —2 + uvagcs, —1 + bidop
+body + -+ bg,—1dg,—1 + bodg,—1)
= (uvapcp,—1 +uvaicy + - - - + uvag, —1¢g,—2 + uvagcg,—1 + bodg,—1
+bido + -+ 552_1d52_2) + b0d52_1
0 = 2z1-T(z2).

This implies that T'(22) € C+. Hence C* is Z,S-additive cyclic code. O
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Definition 2.5. A subset C C Sp, g, is called a Z,S-additive cyclic code
if and only if C is a subgroup of Sg, s, and for all d(y) = (f(y) | 9(y)) =
(fot+ fry+ -+ fa-1y™ ™ | go+ quy+ -+ gs,—1y™2 1) in C, we have
y-d(y) = (fo, 1+ foy+- -+ f3, 29" 7" | gp 1+ goy+---+9p, 29> 1) € C.

Theorem 2.2. A code C is a Z,S-additive cyclic code if and only if C is a
S[y]-submodule of S, s, .

Proof. Let C be a Z,S-additive cyclic code. Then we show that for any d(y) €
C and h(y) € S[y], h(y)d(y) € C. Assume that d(y) = (f(y) | 9(y)) € C,

where f(y) = (fo+ fiy + -+ fa,—1y” 1) and g(y) = (90 + 1y + -+ +
9p,—19¥%271). Now,

yd(y) = (fa—1+ foy + -+ far—29™ ' | g1 + g0y + -+ + gp—2y™ ),

represents the cyclic shift T'(d(y)) of d(y). Also, C is Z,S- additive cyclic
code, so y'd(y) € C for all i € N. It follows that h(y) - d(y) € C. This implies
that C' is S[y]- submodule of Sg, g,. The Converse of this lemma is directly
followed by Definition 2.5. O

Let us define the Gray map
¢1:8 — 7, (2.3)

such that ¢1 (a+ub+vec+uvd) = (a+b+c+d, c+d,b+d,d) foralla,b,c,d € S.
Again, define another Gray map

U:Z, xS :— Ly X L (2.4)

such that ¥(c | ¢') = (¢, $1(c)). An extension of the map W in (2.4) is defined
as

Uy 20 x 8P — 7 (2.5)

such that U1(y = (¥ | ¥")) = (¥ | 61(¥")), where y = (yo, 1, .-, Y5, _1 |
yo,yl,...,y52_1) € Zgl x 8Pz,

Definition 2.6. Let y= (y |y’) € Z x 8% where y € 75 andy € SPz.
Then the Gray weight of y is defined as

we(y) = wu(y) +wu(61(y")),

where wy denotes the Hamming weight.
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Definition 2.7. Let y, z € 251 x 8%2. Then the Gray distance between y and
z is defined as

da(y,2) = wa(y—2) =du((y | 61(y"), (2 | 61(2"))).

Definition 2.8. Let y,z € Zgl x 8§%2 . Then the Lee distance between y and z
18 defined as

dr(y, 2) = wr(y — 2).

3 Z,S-additive cyclic codes

In this section, we obtain the set of generators for Z,S-additive cyclic codes
as S[y]-submodules of Sg, g,. Here, C will always denote a Z,S-additive cyclic
code. Since C and S[y]/(y”* — 1) are S[y]-submodules of Sg, 5,, we define a
mapping
n:C— S[yl/{y™ - 1)

such that n(f(y) | g(y)) = g(y). Clearly, n is a module homomorphism whose
image is S[y]-submodule in S[y]/(y® — 1) and ker(n) is a submodule of C.
Further, n(C) can easily be identified as an ideal in the ring S[y]/(y”* — 1)
(see for reference [14]). Since n is odd and 7(C) is an ideal in S[y]/(y®? — 1),

1(C) = (9(y) + up1(y) + vq1 (y) + uor1(y), uai (y) + vga(y) + vora(y), vaz(y) +
uvrs(y), wvas(y)) with a; | g; | (y*2 — 1)(modp), for i = 1,2, 3.

ker(n) = {(f(v),0) € C'| f(y) € Z,[y]/(y™ — 1)}.
Now, let J

J = {f(y) € Zylyl/(y™ — 1) | (£(),0) € ker(n)}.

It is clear that J is an ideal in the ring Z,[y]/(y”* — 1) and hence a cyclic code.
Therefore, by the well-known result on generators of binary cyclic codes, we
have J = (f(y)). Now, for any element (h(y),0) € ker(n), we have h(y) €
J = (f(y)) and it can be written as h(y) = m1(y)f(y) for some polynomial
mi(y) € Zyly]/(y** —1). Thus, (h(y),0) = (m1(y)f(y),0). This implies that
ker(n) is a submodule of C generated by an element of the form (f(y),0),
where f(y) | (y* — 1)(modp). By the first isomorphism theorem for rings, we
have

C
ker(n)

~

= (g(y) +up1(y) +vq1(y) + uwvri(y), vai(y) + vgz(y) + uvra(y),

vag(y) + uors(y), wwas(y)).
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This implies that any Z,S-additive cyclic code can be generated as a S[y]-
submodule of S, 5, by (f1(y),0) and (f2(y), 9(y) +up1(y) +var (y) +uori (y))

(f3(y), uar(y) +va2(y) +uvra(y)), (fa(y),vaz(y) +uvrs(y)) and (f5, uvas(y)).
Hence, any element in C can be expressed as di(y) x (f1(y),0) + da(y

) X
(£2(9), 9(y) + upr(y) + va1 (y) + wori(y)) + ds(y) x (fs(y), uar(y) + vaa(y) +
wory(y)) +da(y) x (fa(y), vaz(y) +uors(y)) +ds (y) x (f5, uvas(y)), where di(y),
da(y), ds(y), da(y) and d5(y) are polynomials in the ring S[y].

Theorem 3.1. If C' = ((f1(y),0), (f2(y), 9(y)+up1(y)+var (y)+uvri(y)) (f3(y),
a1 (y)+vgz(y)+uora(y)), (fa(y), vaz(y) +uvrs(y)), (f5(y), woas(y))) is a ZyS-
additive cyclic code, then deg(fi(y)) < deg(f1(y)), where i =2,3,4,5.

Proof. Suppose that deg(fi(y)) > deg(f1(y)). Then we can assume that
deg(fi(y)) — deg(fi(y)) =t

and the code with generators is of the form

¢ = ((1®),0), (1), 9(y) + upr(y) +var(y) + wori (),
(f3(y), uai(y )+vq2(y)+uv7‘z(y))7(f4(y)»va2(y)+uv7"3(y)),
(fs,uvas(y)) —y" - (f1(y),0))
= ((f1(¥),0),(f2(y ) Y f1(y), 9(y) + upr(y) + var (y) + uvri (y)),
(f3(y) = y' f1(y), uar (y) + vga(y) + uora(y)), (fa(y) — v" f1(y), vaz(y)
Fuvrs(y)), (fs(y) — ' f1(y), woas(y))).

This implies that C" C C. Now, for any

(L(y): 91(y) + 2a1(y) + up(y)), (2(y), ug2(y) + 2a2(y)))
= ((Iy) + ¥ FW), (91(y) + 2a1(y) + up(y)), (2 (y) + ¥" f (v),
ug2(y) + 2a2(y))) — (y' f(y),0).
This shows that C C C'. Finally, we get C = c'. O
)

Theorem 3.2. Let C' = ((f1(y),0), (f2(y), 9(y) + up1(y) +va1(y) + uvri(y)))

be a Z,S-additive cyclic code of length (51, 82) and g(y) + up1(y) + vq1 (y) +
B2 _
uvry(y) | (y[b - 1. Ifily) = g(y)+UP1('£/(;J+ij11()1/)+uv7'1(y)’ then fi | Lfz.

Proof. Let n(I(y)(f2(y), 9(y) + up1(y) +vai(y) + uvri(y)) = 1(l(y) f2(y),0
This implies that I(y)f2(y),0) € ker(n). Hence, f1(y) | I(y)f2(y)-

O~

Theorem 3.3. Let

(f1(y),0), (f2(y), 9(y) + up1(y) + va1(y) + uvri(y)),
¢ = < (f3(y), uar(y) +vga(y) + uvra(y)), (fa(y), vaa(y) + uvrs(y)), >
(f5(y), uvasz(y))
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be a Z,S-additive cyclic code of length (f1,B2) and a; | g | (y* — 1) for
i=1,2,3. Ifhy = W20 Hy = ged(hgpr, hean,

hyri, (% 1)), Hy = W=D hy = @220 1 = ged(hg, go, hay 7, (52 1),
(yﬁzil) J1 = ged(ha,rs3, (¥72 — 1)), Jo = (yﬁjil_l), hag = (yﬂ% then

(i) fi| Hahgfo,

(@) f1 | I2ha, f3,

(i) fi | J2hay fa,

(1) fi | hasf5-

Proof. (i) Since Hy | hgp1, H1 | hgqr and Hy | hgr, hgp1 = biHi, hgqn = boHy
and hgr; = b3H, for some polynomials by, ba, b3 € S[y]. Now,

n(Hz

hg(f2(y), 9(y) + up1(y) + var(y) + uori(y)))
= n(Hzhg f2(y), Haheg(y) + uHahgpi(y) + vH2heq1(y) + uvHahgri(y))
= n(Hahgfa(y), uHaH1bi (y) + vHaH1ba(y) + uvHa Hibs(y))
= n(Hzhgf2(y),0)

=]

This implies that
(Hahg(f2(y): 9(y) + up1(y) + var(y) + uvri(y))) = (Hzhgf2(y),0) € C.
Therefore, (Hahg f2(y),0) € ker(n) = ((f1,0)). Hence f1 | Hahg fo.

(#4) Since Iy | hg g2 and Iy | ha, 72, ha, g2 = c111 and hg, 79 = coIp for some
polynomials ¢1, ¢ € S[y]. Now,

N(I2ha, (f3(y); uai(y) +vga2(y) + uvrz(y)))
= N(Iz2ha, f3(y), I2ha, (va1(y) +vg2(y) +uvra(y)))
= n(l2ha, f3(y), I2ha, uai(y) + vi2ha,q2(y) + uwvlzha,m2(y)))
= n(I2ha, f3(y), ulzl1a1(y) + vizlzci(y) + uvlilacz(y)))
= n(l2ha, f3(y),0)
0.

This implies that (I2hg, (f3(y), uai (y)+vge(y)+uvre(y))) = ((Izha, (f3(y),0) €
C'. Therefore, (Izhg, f3(y),0) € ker(n) = ((f1,0)). Hence fi | Ik, f3.
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(#4i) Since Jy | ha,r3, 80 he,r3 = diJy for some polynomials dy € Sly].
Now,

n(J2ha, (f4(y), vaz(y) + wors(y)))

= n(Joha, f4(y), Iaha, vaz(y) + uvrs(y)))

= N(J2ha, fa(y), Joha,vaz(y) + uvlzha,r3(y)))

= n(Joha, fa(y), vI2J102(y) + wvJiJ2di(y)))
(J2 (y)

= n a2f4 Y »0)

—_—

=

This implies that (Joha,(f1(y), vaz(y) + wvrs(y))) = ((J2ha, (fa(y),0) € C.
Therefore,

(J2ha, f4(y),0) € ker(n) = ((f1,0)). Hence fi | J2ha, fa-

(iv) Let n(hag (f5(y), uvas)) = n(hag f5(y), 0). This implies that (hq, f5(y),0) €
ker(n). Hence, f1 | hag f5- O

Theorem 3.4. Let

(f1(y),0), (f2(y), 9(y) +up1(y) +va1(y) + uvri(y)),
Cc = < (f3(y), uwar(y) +vq2(y) +uwvra(y)), (fa(y), vaz(y) + vvrs(y)), >

(f5(y), uvas(y))
be a Z,S-additive cyclic code of length (1,B2) and a; | g | (y* — 1) for
i =1,2,3. Suppose that hg m . hi = ged(hgpr, hgqr, hyr1, (yP2 — 1)),

B _ B
h2 = %7 ha1 = %7 mi = ng(htthahalrQa (Z/’Bz - 1))7 - %;

hay = 2205 = ged(hayrs, (y% — 1)), 52 = W20 g, = G220
Further, assume that
Br-deg(f)-1
51 = U & rw.ok
1=0
B2—deg(g)—1 '
Sy = U ' (W), 9@) +upy) +vai(y) + uori ()}
=0
Bo—deg(h1)—1 4
S5 = U (hgfo uhgpi(y) + vheai (y) + uvhyri (y))};

=0
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deg(g)—deg(a1)—1

Si = U ' (B, uay) + valy) + wra(y)};
=0
B2—deg(m1)—1 4
S5 = U ¥ (hay f5(1), vha, a2(y) + uoha, 72(y) };
=0
deg(ai)—deg(az)—1
Se = U {y' - (faly), vaz(y) +uvrs(y)};
=0
B2—deg(s1)—1 ‘
Sr = U ' (hao fa ), uvha,ms(y)};
=0
deg(az)—deg(az)—1 _
Ss = U {y* - (fs(y), uvas(y)}.
=0

Then S = S1USyUS3 US4 US5USgUS?USys is a minimal generating set
for the code C and

| C |= pPr—deg(f1) 1082 —deg(g) —3deg(h1)—deg(ar)—2deg(m1) —deg(az) —deg(s1) ~deg(as)
Proof. Let ¢ € C be a codeword and ¢; € S[y|, i =1, 2, 3, 4, 5. Then

c = c-(fiy),0) + ez (f2(y),9(y) +upi(y) +var(y) + wvri(y))
tes - (f3(y), uar(y) +vaz(y) +uora(y)) + ca - (fa(y), vaz(y) + wors(y))
+es - (f5(y), uwvasz(y)).

c = (0(c1)fi(y),0) + 2 (f2(y), 9(y) +upi(y) + va1(y) + uvri(y))
+ez - (f3(y),uai(y) +vaa(y) + uora(y)) + ca - (fa(y), vaz(y) + uors(y))
+e5 - (f5(y), uvaz(y)).

If deg(0(c1)) < 1 —deg(f1) — 1, then By — deg(f1) € span(S1). Otherwise, by

division algorithm, deg(f(c1) = (yﬁl(y)l)b—i— d, where deg(d) < 1 —deg(f1) —1.
Therefore,

(¥ —1)
f1(y)

This shows that (6(c1)f1,0) € span(Sy). Now, we have to prove

(0(c1)f1,0) = (( b+d)f1,0) = (df1,0) = d(f1,0).

c2 - (f2,9(y) +up1(y) +vq1(y) + uvri(y)) € span(Sy U Sz U S3) C span(S).
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Let us divide ¢ by hy and write co = bihy + di, where di = 0 or deg(d;) <
B2 — deg(g) — 1. Therefore,

c2 - (f2,9(y) +up1(y) +vq1(y) + uvri(y))
= (bihg +d1) - ((f2,9(y) +up1(y) +var(y) + uvri(y))
= bi(hgfo, uhgp1(y) + vheq1(y) + uvhgri(y)) + di(f2, 9(y) + up1(y) + va1(y)
+uvry (y)).

Cleraly, di(f2,9(y) + up1(y) + vq1(y) + uvri(y)) € span(Sz). It remains to
show that b1 (hgfa, uhgpi(y) + vheqi(y) + uvhyri(y)) € span(Si U S2 U Ss).
Since hl ‘ hgph h1 | thl, hl | hg’f‘l, hgpl = llhl, thh = lghl and hgT'l = l3h1
Hence, hgpiha = hyqihe = hyriho = 0. Again, by division algorithm, we have
b1 = bohg + da, where do = 0 or deg(ds) < B2 — deg(hy) — 1. Now,

by (hg f2, uhgpi(y) + vheqi(y) + uvhgri(y))
= (b2ha + d2)(hg fa, uhgp1(y) + vhyqi(y) + uvhgri(y))
= ba(h2hg fa, uhahgp1(y) + vhahyqi(y) + uvhahgri(y))
+da(hg f2, uhgp1(y) + vheqi(y) + uvhgri(y)).
= ba(hahgf2,0) + do(hg fa, uhgpi(y) + vheqi (y) + uvhgry).

By Theorem 3.3, fi|hohgf2, then ba(haohy f2,0) € span(St). Also,
(hgfa, uhgpi(y) + vheqi(y) + wvhgri) € span(Ss). Then,

e (f2, 9(y) + up1(y) + vq1(y) + uvri(y)) € span(S; U Sz U Ss).

Again, we have to show
es - (fs,uar(y) + vea(y) + uvra(y)) € span(Sy U Sy U S5) C span(S).

Let us divide c3 by h,, and write c3 = bgh,, + ds, where d3 = 0 or deg(ds) <
deg(g) — deg(ay) — 1. Therefore,

ez - (f3,uar(y) +vga(y) +uvra(y))
= (b3ha, +d3) - ((f3,ua1(y) + vga(y) + uvra(y))
= b3(ha, f3, uha, a1(y) + vha, @2 (y) + uvhae, m2(y))
+d3(f3,ua1(y) +vg2(y) + uora(y)).

Obviuosly, ds(fs,ua1(y) + vgz(y) + wvra(y)) € span(Sy). It remains to show

that

b3 (ha, f3,uhe,a1(y) + vha, @2(y) + wvhe,m2(y)) € span(S; U Sz U Ss). Since
my | hayq2 and my | he, 72, S0 ha,q2 = lymy and hg, 7o = lsmy. Hence,
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ha,gama = hq,rome = 0. Again, by division algorithm, we have b3 = byma +
dy, where dy = 0 or deg(dy) < B2 — deg(my) — 1. Now,

b3(hay f35 Vha, q2(y) + uvha, m2(y))
= (bama + da)(ha, f3,Vha,q2(y) + uvhe,m2(y))
= b3(maha, f3,vm2ha, g2(y) + vvmaha, r2(y))
+ds(hay f3,Vha, ¢2(y) + uvha,T2(y))
= bz(maha, f3,0) + da(ha, f3,ha, G2(y) + uvhe,2).

By Theorem 3.3, f1|mahg, f3, then b3(mahg, f3,0) € span(Sy). Also,
(hal f3avha1 QQ(y) + uvha1r2) € 'Span(s3)' Hence

cs - (f3,uai(y) +vg2(y) + uvra(y)) € span(S1 U Sy U Ss).
Again, we have to show
eq - (f1,vqa2(y) + wors(y)) € span(S1 U Sg U S7) C span(S).

Let us divide ¢4 by hg, and write ¢4 = bsha, + ds, where d5 = 0 or deg(ds) <
deg(ay) — deg(az) — 1. Therefore,

ca - (fr,va(y) +uvrs(y)) = (bsha, +ds) - ((fa,va2(y) +wors(y))
b4(ha2 f47 Uha2a2 (y) + uvha2r3 (y))
+ds(fa, vaz(y) + uors(y)).

Tt is clear that ds(fs,vas(y) + uvrs(y)) € span(Ss). It remains to show that
by(hay fa, Vhaya2(y) + uvhe,m3(y)) € span(Sy U Sy U S3).

Since $1 | ha,T3, we get hq,r3 = lgs1 and hence h,,r382 = 0. Again, by division
algorithm, we have by = bgsa + dg, where dg = 0 or deg(ds) < P2 —deg(s1) — 1.
Now,

b5 (hay fa, uvha,r3(y)) = (bes2 + de)(hay fa, uvhae,73(y))
= be(s2ha, f1, uvmaha,r3(y)) + d6(hay fa, uvha,3(y))
= b6(52hu2 f4, 0) + d6(ha2 f47 U’Uha2 7“3).

By Theorem 3.3, fi|sahq, f4 which implies bg(s2hq, f1,0) € span(Sy). Also,
(hay f1, uvhg,rs) € span(S7). Hence

¢y - (fa,vas(y) + uvrs(y)) € span(S1 U S U S7).
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Finally, we have to show that ¢4 - (f5,uvas(y)) € span(Ss). By division algo-
rithm, we have c5 = hq,br+d7, where dy = 0 or deg(d7) < deg(as)—deg(asz)—1.
Now,

(brhay + d7)(f5,uvas)
b7(has f5,0) + d7(fs5, uvas).

By Theorem 3.3, f1|hq, f5 which implies (hq, f5,0) € span(S1) and d7(f5, uvas) €
span(Ss). We conclude that ¢ € span(S), that is, S generates the code C.
Thus, S is the minimal spanning set for C' because none of the element of §
is a linear combination of the other and

cs(f5, uvas)

| C |: pﬁl7deg(f1)p10527deg(g)73deg(h1)7deg(a1)72deg(m1)7deg(a2)7deg(sl)7deg(a3)'

O

The following are immediate consequence of Theorem 3.4.

Corollary 3.1. Let C = ((f1(y),0)) be a Z,S-additive cyclic code of length
(B, B2) and fi(y) | y™ — 1. If

B1—deg(f1)—1

Sss= U - (hw)0,

i=0

then Sy forms a basis for C' with | C |= pfr—de9(f1),

Corollary 3.2. Let C' = ((f1(y),0), (f2, 9(y)+up1(y)+vq1(y) +uvri(y))) be a

Z,S-additive cyclic code of length (81, B2) and g(y)+upi (y)+vq: (y)+uvry (y)) |
B2 1. If

Y

B1—deg(f1)—1

S = U ¥ w0k
1=0
B2—deg(g1)—1 '
S = U (s +upi(®) + vaa(y) + wori (y))},
1=0

then S1 U Sy forms a basis for C with | C' |= pPr—dea(1)pA(B2—deg(g1))

Proof. Let ¢ € C be a codeword and ¢; € S[y|, i =1, 2, 3, 4, 5. Then

c = c(f1(y),0) +c2- (f2(y), g(y) +upi(y) +va1(y) +uwvri(y))
c = (0(c1)f1(y),0) +ca- (f2(v), 9(y) + upi(y) + vai(y) + uvori(y)).
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If deg(6(c1)) < p1 —deg(f1) — 1, then 81 — deg(f1) € span(Si). Otherwise, by
division algorithm, deg(6(c1) = (yfil(;)l)b—i— d, where deg(d) < 81 —deg(f1) — 1.
Therefore,

B _
(0(c1)f1,0) = (((yfl(y)l)

This shows that (6(c1)f1,0) € span(Sy). Now, we have to prove

+d)f170) = (dflao) = d(flao)

c2 - (f2,9(y) +up1(y) +vq1(y) +vwvri(y)) € span(Si U S).

Since g(y) + upi(y) + vq1(y) + vori(y)) | y#2 — 1, there exists h such that
yP2 —1 = h(y)(g(y) + up1(y) + vq1(y) + uvri(y))). Using division algorithm,
we have two polynomials b (y) and d; (y) such that

co = hby + dy,
where deg(d;) = 0 or deg(dy) < B2 — deg(g) — 1. Therefore,

c2 - (f2,9(y) +upi(y) +va(y) +uvri(y))
(hby 4+ dv) - ((f2, 9(y) + up1(y) + vaq1(y) + wori(y))
= bi(hf2,0) + di(f2, 9(y) + up1(y) + va1(y) + wori(y)).

(y
Cleraly, di(f2,9(y) +up1(y) + ’U(h( ) +uvri(y)) € span(Sz). Hence, S1 US>
forms a basis for C' with | C' |= pf1—de9(f1) pa(Bz—deg(g1)), O

Corollary 3.3. Let

o - < (fl(y)70),(f2(y)7g(y)+Up1(y)+vq1(y)+uw1(y))’>
(f3(y), wa(y)

be a Z,S-additive cyclic code of length (B, B2), where a(y) | g(y) | (y*2 — 1)

and hy = ([271) , hi = ged(hgpi, hgqr, hgri, (yP2 — 1)), hy = %;1) I

B1—deg(f1)—1 .
Si = U & w0k
=0
B2—deg(g1)—1 ‘
o= U W (eg) Fupi ) +var(y) +uor ()
=0
Ba—deg(hy)—1 '
S5 o= U Y (hgfauhgpi(y) + vhgai(y) +uvhgr(y))};
1=0
deg(g)—deg(a)—1
Sy = U ' (), way)},

=0
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then S =51 U S, US3U Sy is a minimal generating set for the code C' and
‘ C |: p,Bl—deg(fl)p’?Bz—3deg(g)—3deg(h1)—deg(a).

Corollary 3.4. Let

_ (f1(9),0), (f2(y), uai(y) + vaa(y) + uvra(y)),
¢ - < (f5(y), wva(y) >

be a Z,S-additive cyclic code of length (f1,82) and
ha1 = @; my = ng(haquahalTZa (yﬂQ - 1)); mo = (yBQ_l) If

1 my
B1—deg(f1)—1 4
S1 = U & (hw,0k
i=0
Ba—deg(ar)—1
S = Uy (feouar(y) + vaaly) + wors(y)};
i=0
B2—deg(mq)—1 .
S = U W (haif2rvha,g2(y) + uvha,ma(y)};
i=0
deg(ar)—deg(a)=1
Si = U {y" - (f3(y), wva(y)},
i=0
then S =51 U S US3U Sy is a minimal generating set for the code C' and
| C |: p,81—deg(f1)p5ﬁg—2deg(a1)—2deg(m1)—deg(a).

Corollary 3.5. Let C = {(f1(y),0), (f2(v), vaz(y) + uvra(y)), (f;:,a(y)7 uva(y))
be a Z,S-additive cyclic code of length (B1,B2) and h,, = %, s1 =
ged(hg, s,

(yP2 — 1)), sy = (¥°2-1) If

S1 :
Pr—deg(fi)=1
s = U W (hw).0oh
=0
B2—deg(az)—1 ‘
Sy = U {y* - (f2,vaz(y) +uvrs(y)) };
1=0
Ba—deg(s1)—1 ‘
S3 = U ' (hasfo, uvha,rs(v))};
1=0
deg(az)—deg(a)—1

Sy = U - (), uway)},

=0
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then S =51 U S, US3U Sy is a minimal generating set for the code C' and
‘ C |: pﬁl7deg(f1)pSBg7deg(a2)7deg(sl)7deg(a)'

Theorem 3.5. Let C = ((f1(y),0), (f2(¥), 9(y) + up1(y) +va1(y) + uori(y)),
(f3(y), uva(y)) be a Z,S-additive cyclic code of length (81, 52), where f1(y) =
y+ 1 and foly) = fa(y) = g(y) = aly) = 1. Then ¥1(C) is mazimum
distance separable with respect to singleton bound (MDSS) of parameters [ +
489, p% dg), where

K = 1+ 482 — deg(f1) — deg(a) — deg(g) — 2deg(hq).

Proof. Obviously, dg(C) = 2. Therefore, we have

dg(C) — 1 = deg(f1(y) + deg(f2(y)) + deg(f3(y)) + deg(g(y)) + deg(a(y)).

Hence, C' is MDSS code. O

4 Duality of Z,Z,[u,v]-additive cyclic codes

In this section, we give the relationship between the generator polynomial of
C and dual code. Let f(y) € Sly] and deg(f(y)) = ¢. Then its reciprocal poly-

m—1
nomial can be defined as f*(y) = ydeg(f(y))f(i). Assume that w,,(y) = > ¥°

i=0
be a polynomial. Now, let m = lem{S, B2} and f(y) = (f(v), f (v)),g(y) =
(9(y),9 (y)) € 83,,3,- Define a map

S[y]
288, 8 X 88y 8y —>
C:88,,8 B1,8 <ym — 1>
such that
C(Ey).8y) = wf(yws(y™ )y —wo@) g (y)

+f (W)wa (yP)ym 719 W6 (yymod (y™ — 1).
Lemma 4.1. Let ni,ny € N. Then

y""? =1 = (y" — Dwn, (y™)

Proof. Let "2 —1=(z—1)(z™ ' +2"2 %+ -4 2+1)=(2— 1)wp, (). Putting
x=y"', we get the desired result. O
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Lemma 4.2. Let f, g € Zgl x 872 with associated polynomial f(y) = (f(y), f (v)),
gy) = (g(y), q (y)) € 83,,8,- Then fis orthogonal to g and all its shifts if and

only if
¢(fy), 9(y)) = 0.
Proof. The proof of the following results can be seen in [17]. O

Theorem 4.1. Let f(y) = (f(), f (1)), 9(y) = (9(v), 9 (¥)) € 83, 5, such that

(). 9(y) = 0. If f'(y) = 0 or g (y) = 0, then f(y)g"(y) = 0 mod(y* —1)
over Z,. If f(y) =0 or g(y) =0, then f (y)g *(y) = 0 mod(y?2 — 1) over S.

Proof. Suppose that either f(y) = (f(y), f (y)) = 0 or g(y) = (9(y), 9 (y)) = 0.
Then we need to show that f (y)g *(y) = 0 mod(y”* — 1). Since

((f(y), 8(y))
= [ @)y 49 @6 (y)mod(y™ - 1),

0

there exists a polynomial h(y) over Z, such that

F (o (P )y 17000 O () = h(y)mod(y™ — 1)
= h(y)y™-1).

By proposition 4.1, y™%2 — 1 = (y%2 — 1)w,,(y??), we get
y Y

Fwymg () = W™ -1)
f (g ) = 0mod(y” —1).
Similarly, we can prove other case. O

Theorem 4.2. Let C = ((f1(y),0), (f2(y), 9(y) +up1(y) +va1(y) +uwvri(y)))
be a Z,S-additive cyclic code of length (b1, B2). If C+ = ((fi1(y),0), (f2, 5(y) +
up1(y) + vaqr (y) + wvri (y))) is the dual of C, then

(i) fi () ged(f1 (), f2(y)) = ha(y) (¥* — 1),
(it) 3*(¥)g(w) f1(y) = ha(y)(y™ — 1).
Proof. (i) Since (f1(y),0), (f2(y), 9(y) +up1(y) + vq1(y) + uvri(y)) € C and

-
(fi(y),0) € C+, by Proposition 4.2, we get

C((fl(y)v 0)7 (fl(y)a O)) =0,

C((f2(y), 9(y) +up1(y) +vaqi(y) +uvri(y)), (f1(y),0)) = 0.
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Using Theorem 4.1, we obtain f; W) fi" (y) =0, f2(y) fr" (y) = 0. Tt is obvious
that f1" (y) ged(f1(y), f2(y)) = 0 mod(y”* — 1). This implies that there exits a
polynomial hq(y) € Z,[y] such that

A7) ged(f1(y), f2(y) = ha(y)(y™ — 1).
),

(11) We know that (f1(y),0), (f2(y),9(y) + up1(y) + var(y) + wwri(y)) € C.
Then any element ¢(y) € C can be expressed as

—w f2(y) u f1(y)
W = i) fw) < T ) B )
9(y) +up1(y) +va1(y) + uvri(y))

- wo f1(y)
= O T L) ™)

x (f2(y),

This implies that

f1(y)
ng(fl (y)a f2

By Theorem 4.1, we get

— w f1(y) . - . o .
0 = W dh ), ey W W) +uny) +vay) +unly))
fl(y)

= wdlhily), ) YT W

This means that there exists a polynomial ha(y) € S[y] such that

AW 97" (y) = haly)(y® —1).

¢((0, uv W) 9W), (f2,3(y) +upr (y) + vq1 (y) + uor (y)) = 0.

5 Z,S-additive constacyclic codes

Definition 5.1. Let A\ be a unit in S. A non-empty subset C' of Zgl x 872 is
called a Z,S-additive \-constacyclic code of length (f1, B2) if

(1) C is additive code;

(i1) For any codeword z= (ag,a1,-..,a8,-1 | bo,b1,...,b5,—1) € C its cyclic
shift

T)\(Z) = (aﬂl,l,ao,. ce,aB, -2 | )\ng,l,bo,. . .,b52,2) eC.
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Let Sp, 6,0 = Zp[y]/(y? — 1) x S[y]/(y” — X). Then Sg, 5, » forms a
S[y]-module under usual addition and scalar multiplication defined in (2.1).

Theorem 5.1. A code C is a Z,S-additive constacyclic code of length (81, B2)
if and only if C is a Sly|-submodule of Sg, g, .

Proof. The proof is same as that of Theorem 2.2 O

Let B2 > 2 be any prime number. Since C' and S[y]/(y”2~! — \) are S[y]-
submodules of Sg, g, 1, we define a mapping

m:C — S[yl/ (W7 = N),

where 11 (f(y) | g(y)) = g(y). Clearly, 1 is a module homomorphism whose
image is S[y]-submodule of S[y]/(y2~1 — ) and ker(n;) is a submodule of C.
Further, 17(C) can easily be identified an ideal in the ring S[y]/(y®2~1 — ) (see
for reference [14]). Since n is odd and 7;(C) is an ideal in S[y]/{y*>~ — \),
71 (C) is an additive A-constacyclic code over S of length 55 — 1.

Theorem 5.2. Let

o - < (fl(y)70),(f2(y)7g(y)+up1(y)+vq1(y)+uvh(y))’>
(f3(y), uva(y)

be a Z,S-additive constacyclic code of length (81,82 — 1) and hy = w,
Ba—1_
hy = ged(hgp, hgqr, hyry, (Y%~ = \)), hy = L2 =2 If
Br1—deg(f1)—1 _
S1 = U ' (hw,0k
i=0
B2—deg(g)—2 _
Sy = U ¥ (2o 90) +up(v) + var () + wors (1)) };
i=0
527d€g(h1)72 ]
Sz = U {y" - (hg fo, uhgpi(y) + vhgqi(y) + wwhgri(y))};
i=0
deg(g)—deg(a)=1
Si = U ' (), way)},
i=0

then S =51 U So US3U Sy is a minimal generating set for the code C' and
|C|= pB1—deg(f1)p7(Bz—1)—3deg(g)—3d€g(h1)—deg(a))'

Proof. Proof is directly followed by Theorem 3.4. O
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6 Examples

Example 6.1. Let C be a Z3Z3u, v]-additive cyclic code of length (6,6). Then
C is Zs|u,v]-submodule of Se,6 = Zsly]/(y® — 1) x Sly]/(y® — 1) generated by
((£1(9),0), (f2(¥), 9(y) + up1(y) + var(y) + uori(y)), (fs(y), uai(y) + vaa(y) +
wora(y)), (fa(y), vaa(y) + wvrs(y)), (f5(y), uwvas(y))) as in Theorem 3.4. Let
us consider fi(y) = y* + 29> +y+2, foly) = v* +2y + 1, fs(y) =y + 1,
fa) =y+2, fs(y) =y+2,9(y) =y +1°+2y+2, a1(y) = (y+2)?, az(y) =
(y+2), as(y) = 1. Then hy = (y+1)*, hy = (y+1)*, ha = (y +2)°(y + 1),
hay = (y+1)%(y+2), mi = (y+1)*(y+2), ma = (y+2)*, ha, = (y+2)*(y+1)%,
=W+2?2(y+1)7° s2=(y+2), If

Sio= W (h@.0}  Sa= v (1)) +uw)}
i=0 =0

3 1
Sy = U{yi~(hgfz,uvhg)}; Sa=J{' - (), uar(y) + 0)};

=0
Sy = U{y (Pay f3(y), vha, b5 Se = {(f4(y), vaz(y) + 2uv)};
S7 = {(ha2f4( ), 2uvha,)};  Ss = {(f5(y), uvas(y))},

then S = S1U S92 US3USLU S5 USgUS7USs is a minimal generating set for
the code C and | C |= 31°

Example 6.2. Let C be a ZsZs|u, v]-additive cyclic code of length (8,8). Then
C is Zs[u,v]-submodule of Sss = Zs[y]/(y® — 1) x S[y]/(y® — 1) generated

y ((f1(),0), (f2(y), 9(y) + up1(y) + vqr(y) + uvri(y)), (f3(y), wvaly))) as in
Corollary 3.3. Let us consider fi(y) = y°> + y* +3y> + 2y + 2, faly) =
YAy +2y+1, f3y) =y*+ 1 9(y) =y° + 3y +y+3, aly) = y* +2. Then
hg =y> +3y*> +4y+ 3, hy = hy, ho = g(y). If

S

U{y 0} S2= U{y (f2:9(y) +u(l +v)};

2

Sy = U{yi-(hgfz,uthruvhg))}; Sy =J{w' - (fs(y), wva(y)},
=0

=0

then S = S1 U S U S3U Sy is a minimal generating set for the code C' and
| C |= 5.
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TABLE-1

Optimal and near-optimal codes from Z,S-additive cyclic codes.

p | (B1,B2)

Generators

[n, k,d]

3 (4.4

W) =y =1 fly) =y + 27 +y+ 1= f3(y),

gy =y*+lLaly)=l,pp=q=r1=1

20,10, 8]

3] (54

i) =y’ -1, oly) =y "+ +y* +y+1=fi(y),

a)=v*+Lay =l pp=qg=r=1

21,10, 9]

51 (44

) =y =1 foly) =* + > +y+1,
g(y):y2+3y+27p1:2:(]177"1:1

20,8, 10]

5] (5.2)

) =v"—1 foly) =y " +° + v +y+1,
gy)=y+1,pr=rm=1,¢=0

[13,4,9]

5 (54)

)=y -1 iy =y*+ ¥+ > +y+1
g(y) =y* +3y+2,p=2=¢q, 11 =1

21,8, 11]

51 (79

fly)=y"—1,9() =v*+3y+2,
L) =+ +y*+P+ 2 +y+1
p1:2:q1,’['1:1

23,8, 13]

hy) =y =1, foly) = f3(y) = fa(y) =0,
W) =P +y*+y+1,
9(y) =y° —1=a1(y) = az(y)
as(y) =y° +3y° +2y+4

28, 4, 20]

fiy) =v° =1, foly) = f3(y) = fa(y) =0,
W) =y + P+ +y+1,
9(y) =y° —1=a1(y) = az(y)
az(y) =y +3y°> + 2y + 4

29,4, 21]

fily) =4° =1, foly) = f3(y) = fa(y) =0,
W) =v"+v' +v* + > +y+1,
9(y) =y° — 1= ai(y) = az(y)
as(y) = y* + 49> + 6y% + 5y + 2

30,2, 26]

Niy) =v° =1, foly) = f3(y) = fa(y) =0,

Y
9(y) =y° —1=a1(y) = az(y)
(y) = y* + 49> + 6y + 5y + 2
5

29,2, 25]

fy) =y =1, f2(y) = f3(y) = faly) =0,
f5(jv) =yt +yP+ i +y+1,

37,3, 29]

fiy) =v° =1, faly) = f3(y) = fa(y) =0,
W=y +y*+y+2+y+1,

9(y) =y® —1=a1(y) = az(y)

az(y) = y° + 2y* +6y> +y> + 5y + 6

38,3, 30]
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TABLE-2
The list of MDSS codes.
p | (B1,52) Generators [n, k, d]
31 (33) | fily)=y—1, faly) = fa(y) =g(y) =1L =aly) | [15,8, 2]
3] (44) | Ly =y—1, faly) = f3(y) = g(y) =1 =aly) | [20, 11, 2|
3] B4) | iy =y—1 foly) = fs(y) = gly) =1 =a(y) | [19, 10, 2|
50 43) | iy =y—1 foly) = fsly) =gly) =1 =aly) | [16,9, 2|
50 (45 | fily)=y—1, faly) = faly) =g(y) =1 =aly) | [24, 13, 2]
50 (47 | Aily)=y—1, faly) = f3(y) = gly) =1 =aly) | [32, 17, 2|

7 CONCLUSION

In the present article, we describe the structure of semi local ring S = Z,, +
uZy, + vy + uvZy,, where u? = v2 = 0, wv = vu with prime characteris-
tic p and characterization of Z,Z,[u, v]-additive cyclic codes and constacyclic
codes have been given. The algebraic structure of Z,S have also been stud-
ied. We also obtain optimal Z,S-additive cyclic codes that have a number of
advantages over linear codes, including the fact that they are more efficient.
Finally, we obtain the maximum distance separable with respect to single-
ton bound(MDSS) codes. In future work, it will be an interesting problem
to generalize this over Z,Z,[us,...,ux], where u? = 0, u;u; = uju; for all
i,j€{1,2,...,k}.
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