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The study of ZpZp[u, v]-additive cyclic codes and
their application in obtaining Optimal and

MDSS codes
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Abstract

Let S = Zp[u, v]/〈u2, v2, uv − uv〉 be a semi-local ring, where p is a
prime number. In the present article, we determine the generating sets
of S and use them to construct the structures of ZpS-additive cyclic and
constacyclic codes. The minimal polynomials and spanning sets of ZpS-
additive cyclic and constacyclic codes are also determined. These codes
are identified as S[y]-submodules of the ring Sβ1,β2 = Zp[y]/〈yβ1 − 1〉×
S[y]/〈yβ2 − 1〉. Some results that represent the relationship between the
minimal polynomials of ZpS-additive cyclic codes and their duals have
been obtained. Furthermore, optimal ZpS-additive codes and maximum
distance separable codes have been evaluated (see Table 1). Finally, we
use MAGMA software to find the parameters of Optimal and MDSS
codes.

1 Introduction

Error-correcting codes were initially investigated over finite fields, but later
more general structures have been considered and implemented. Numerous
authors are interested in the study of codes over rings.

The study over mixed alphabet has introduced new options and paths to
be explored. In one such study, additive codes were defined by Delsarte in
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1973 in terms of association schemes (see for reference [15, 16]). In general, an
additive code is defined as a subgroup of the underlying abelian group. In the
special case of a binary Hamming scheme, when the underlying abelian group
is of order 2n, the only structure for the abelian group are those of the form
Zβ1

2 × Zβ2

4 with β1 + 2β2 = n. Therefore, the subgroup C of Zβ1

2 × Zβ2

4 is the
only additive code in a binary Hamming scheme.

In 2013, Aydogdu et al. [9] extended the study of Z2Z4-additive codes to
Z2Z2s -additive codes. Further, they studied Z2Z2[u]-additive codes and de-
fined mixed codes consisting of the binary part and non-binary part from the
ring Z2 + uZ2, u2 = 0 which is another generalization of Z2Z4-additive codes.
Aydogdu and Siap generalized Z2Z2s-additive codes to ZprZps -additive codes
in [10]. In 2019, Minjia Shi et al.[21] described Z2Z2[u, v]-additive cyclic code,
where u2 = v2 = 0, uv = vu which were the generalization of previously in-
troduced Z2Z4- additive cyclic codes. Later, Borges et al. [12] obtained some
interesting results on ZprZps-additive codes. Note that in Z2Z4-additive codes
and Z2Z2s -additive codes, Z2 is considered as Z4-algebra and Z2s -algebra re-
spectively. Also in Z2Z2[u]-additive code, Z2 is known as a Z2[u]-algebra and
Zpr is a Zps-algebra in ZprZps-additive codes.

In 2018, J. Gao et al. [17] gave the structural properties of additive cyclic
codes over ZpZp[u]. They also found the minimal generating sets of addi-
tive cyclic codes over Z2Z2[u, v] and determined the relationship between
the generators of the additive codes and their dual code. In 2019, Islam
et al. [18] studied the structural properties of the ring ZpZp[u, v], where
u2 = v2 = uv = vu = 0 and found ZpZp[u, v]-additive cyclic codes and
constacyclic codes. Furthermore, they determined the generator polynomials,
minimal spanning sets of additive cyclic and constacyclic codes over ZpZp[u, v].

In this article, we consider semi-local ring S = Zp + uZp + vZp + uvZp,
where u2 = v2 = 0, uv = vu with prime characteristic p and evaluate ZpS-
additive cyclic codes and constacyclic codes. We also find the optimal ZpS-
additive codes and maximum distance separable with respect to singleton
bound(MDSS) codes. It is to noted that the additive code of length (β1, β2) is
the subgroup of the commutative group Zβ1

p × Sβ2 . The ZpS-additive code is
a linear code over Zp if β2 = 0 and over S if β1 = 0. Clearly, we observe that
it is the generalization of linear code over Zp and S. Furthermore, we obtain
the generator polynomials and minimal spanning sets for ZpS-additive cyclic
codes and constacyclic codes. These codes are classified as S[y]-submodules
of the ring Sβ1,β2

= Zp[y]/〈yβ1 − 1〉 × S[y]/〈yβ2 − 1〉.
This paper is organized as follows: In Section 2, we present some basic

definitions and properties of the ring S = Zp + uZp + vZp + uvZp, where
u2 = 0, v2 = 0, uv = vu. We also define the Gray maps and include some
results. The generator polynomials and spanning sets for ZpS-additive cyclic
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codes are discussed in Section 3. A result which guarantees that a code to
be maximum distance separable with respect to singleton bound(MDSS) has
also been provided. Section 4 contains the results based on the relationship
between additive cyclic codes and their duals. Section 5 is devoted to the
study of ZpS-additive constacyclic codes and related results. In Section 6,
some examples of ZpS-additive cyclic codes, constacyclic codes and optimal
codes have been included. Section 7 brings the article to a conclusion.

Some of the concepts on ZpZp[u, v]-additive codes described in this paper
have been implemented by MAGMA which is a software package designed to
solve computationally hard problems in algebra, number theory, geometry and
combinatorics.

2 PRELIMINARIES

Let Zp = {0, 1, . . . , p− 1} be finite field and S = Zp+uZp+vZp+uvZp, where
u2 = 0, v2 = 0 and uv = vu be a non chain ring with characteristic p. Any
element z ∈ S can be written as z = a+ub+uc+uvd for all a, b, c, d ∈ Zp. An
element z = a+ub+uc+uvd ∈ S is a unit if a is a unit. The total number of
ideals in S are listed as I1 = {0}, I2 = 〈u〉, I3 = 〈v〉, I4 = 〈uv〉, I5 = 〈u+ av〉
and I6 = 〈u, v〉, where a is nonzero element of Zp. Since I6 = 〈u, v〉 is the
unique maximal ideal in S, the finite commutative ring S is a local ring. Let

ZpS = {(c, c
′
) | c ∈ Zp, c

′
∈ S}.

Define a map
θ : S −→ Zp

such that θ(a + ub + uc + uvd) = a. Clearly, θ is a well-defined onto ring
homomorphism. Let Zβ1

p be β1-tuples over Zp and Sβ2 be β2-tuples over S,

where β1 and β2 are positive integers. Let y = (y
′ | y”) ∈ Zβ1

p × Sβ2 be a

vector, where y
′

= (y
′

0, y
′

1, . . . , y
′

β1−1) and y” = (y”0 , y
”
1 , . . . , y

”
β2−1). For any

z = a+ ub+ uc+ uvd ∈ S, the S-scalar multiplication on Zβ1
p ×Sβ2 is defined

as follows:

zy = (θ(z)y
′

0, θ(z)y
′

1, . . . , θ(z)y
′

β1−1 | zy
”
0 , zy

”
1 , . . . , zy

”
β2−1) ∈ Zβ1

p × Sβ2 , (2.1)

where θ(z)y
′

i and zy”j are performed modp for all i = 0, 1, . . . , β1 − 1 and

j = 0, 1, . . . , β2−1. The Zβ1
p ×Sβ2 forms a S-module under usual addition and

multiplication defined in (2.1). Let Sβ1,β2
= Zp[y]/〈yβ1 − 1〉 × S[y]/〈yβ2 − 1〉.

Define a map
Φ : Zβ1

p × Sβ2 −→ Sβ1,β2
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d = (f | g) 7−→ d(y) = (f(y) | g(y)),

where (f | g) = (f0, f1, . . . , fβ1−1 | g0, g1, . . . , gβ2−1), f(y) = f0 + f1y +
· · · + fβ1−1y

β1−1 and g(y) = g0 + g1y + · · · + gβ2−1y
β2−1. For any h(y) =

h0 + h1y + · · ·+ hly
l ∈ S[y] and

d(y) = (f(y) | g(y)) ∈ Sβ1,β2
, define the S[y]-scalar multiplication

h(y) · d(y) = (θ(h(y)f(y) | h(y)g(y)), (2.2)

where θ(h(y)) = θ(h0) + θ(h1)y + · · · + θ(hl)y
l. Then Sβ1,β2 forms a S[y]-

module under usual addition and scalar multiplication of polynomials defined
in (2.2).

Definition 2.1. A non-empty subset C of Zβ1
p × Sβ2 is called a ZpS-additive

code if C is a subgroup of Zβ1
p ×Sβ2 , that is, C is isomorphic to Zn1

p ×Z4n2
p ×

Z3n3
p × Z2n4

p × Zn5
p , for some positive integers n1, n2, n3, n4 and n5.

If C is a ZpS-additive code isomorphic to Zn1
p × Z4n2

p × Z3n3
p × Z2n4

p ×
Zn5
p , then C is of type (β1, β2, n1, n2, n3, n4, n5). It is called ZpS-additive

linear code. For any z1 = (a0, a1, . . . , aβ1−1 | b0, b1, . . . , bβ2−1) and z2 =
(c0, c1, . . . , cβ1−1 | d0, d1, . . . , dβ2−1), the inner product is defined as

z1 · z2 = (uva0c0 + uva1c1 + · · ·+ uvaβ1−1cβ1−1 + b0d0

+b1d1 + · · ·+ bβ2−1dβ2−1)(modp)

= (uv

β1−1∑
i=0

aici +

β2−1∑
k=0

bkck)(modp).

Definition 2.2. A non-empty subset C of Zβ1
p × Sβ2 is called a ZpS-additive

cyclic code if

(i) C is additive code;

(ii) For any codeword z = (a0, a1, . . . , aβ1−1 | b0, b1, . . . , bβ2−1) ∈ C its cyclic
shift T (z) = (aβ1−1, a0, . . . , aβ1−2 | bβ2−1, b0, . . . , bβ2−2) ∈ C.

Definition 2.3. Let C be any ZpS-additive cyclic code. Then the dual code
of C with respect to the inner product defined as

C⊥ = {z2 ∈ Zβ1
p × Sβ2 | z1 · z2 = 0 for all z1 ∈ C}.

Let C be a linear code of length n and dimension k over S. The singleton
bound is given by dG(C) ≤ n−k+ 1, and MDS (maximum distance separable
code) code if equality holds.
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Lemma 2.1. Let C be a ZpS-additive code of type (β1, β2, n1, n2, n3, n4, n5).
Then

dG(C) ≤ (β1 + 4β2)− n1 − 4n2 − 3n3 − 2n4 − n5 + 1.

Proof. Let C be a ZpS-additive code of type (β1, β2, n1, n2, n3, n4, n5) and
C = Φ(C). Then dG(C) = dG(C). Suppose that C is a code of length β1 + 4β2
and dimension n1 + 4n2 + 3n3 + 2n4 +n5. Then applying the singleton bound
on C, we get

dG(C) ≤ (β1 + 4β2)− n1 − 4n2 − 3n3 − 2n4 − n5 + 1.

Lemma 2.2. Let C be a ZpS-additive code of type (β1, β2, n1, n2, n3, n4, n5).
Then

dG(C)− 1

4
≤ β1

4
+ β2 −

n1
4
− n2 −

3n3
4
− n4

2
− n5

4
.

Proof. Proof is directly followed by Lemma 2.1.

Definition 2.4. Let C be a ZpS-additive code. Then C is said to be a max-
imum distance separable with respect to singleton bound (MDSS) code if it
satisfies the equality

dG(C)− 1

4
=
β1
4

+ β2 −
n1
4
− n2 −

3n3
4
− n4

2
− n5

4
.

Theorem 2.1. Let C be any ZpS-additive cyclic code. Then C⊥ is also cyclic.

Proof. Let C be any ZpS-additive cyclic code and z2 = (c0, c1, . . . , cβ1−1 |
d0, d1, . . . , dβ2−1) ∈ C⊥. In order to show T (z2) ∈ C⊥, we have to prove that
z1·T (z2) = 0. Since C is cyclic, we have T l(z1) also in C, where l = lcm(β1, β2).
Now, we can write

0 = T l−1(z1) · z2
= (a1, a2, . . . , aβ1−1, a0 | b1, b2, . . . , bβ2−1, b0) · (c0, c1, . . . , cβ1−1 | d0,

d1, . . . , dβ2−1)

= (uva1c0 + uva2c1 + · · ·+ uvaβ1−1cβ1−2 + uva0cβ1−1 + b1d0

+b2d1 + · · ·+ bβ2−1dβ2−1 + b0dβ2−1)

= (uva0cβ1−1 + uva1c0 + · · ·+ uvaβ1−1cβ2−2 + uva0cβ2−1 + b0dβ2−1

+b1d0 + · · ·+ bβ2−1dβ2−2) + b0dβ2−1

0 = z1 · T (z2).

This implies that T (z2) ∈ C⊥. Hence C⊥ is ZpS-additive cyclic code.
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Definition 2.5. A subset C ⊆ Sβ1,β2 is called a ZpS-additive cyclic code
if and only if C is a subgroup of Sβ1,β2 and for all d(y) = (f(y) | g(y)) =
(f0 + f1y + · · · + fβ1−1y

β1−1 | g0 + g1y + · · · + gβ2−1y
β2−1) in C, we have

y ·d(y) = (fβ1−1+f0y+ · · ·+fβ1−2y
β1−1 | gβ2−1+g0y+ · · ·+gβ2−2y

β2−1) ∈ C.

Theorem 2.2. A code C is a ZpS-additive cyclic code if and only if C is a
S[y]-submodule of Sβ1,β2 .

Proof. Let C be a ZpS-additive cyclic code. Then we show that for any d(y) ∈
C and h(y) ∈ S[y], h(y)d(y) ∈ C. Assume that d(y) = (f(y) | g(y)) ∈ C,
where f(y) = (f0 + f1y + · · · + fβ1−1y

β1−1) and g(y) = (g0 + g1y + · · · +
gβ2−1y

β2−1). Now,

yd(y) = (fβ1−1 + f0y + · · ·+ fβ1−2y
β1−1 | gβ2−1 + g0y + · · ·+ gβ2−2y

β1−1),

represents the cyclic shift T (d(y)) of d(y). Also, C is ZpS- additive cyclic
code, so yid(y) ∈ C for all i ∈ N . It follows that h(y) · d(y) ∈ C. This implies
that C is S[y]- submodule of Sβ1,β2

. The Converse of this lemma is directly
followed by Definition 2.5.

Let us define the Gray map

φ1 : S −→ Z4
p (2.3)

such that φ1(a+ub+vc+uvd) = (a+b+c+d, c+d, b+d, d) for all a, b, c, d ∈ S.
Again, define another Gray map

Ψ : Zp × S :−→ Zp × Z4
p (2.4)

such that Ψ(c | c′) = (c, φ1(c
′
)). An extension of the map Ψ in (2.4) is defined

as

Ψ1 : Zβ1
p × Sβ2 :−→ Znp (2.5)

such that Ψ1(y = (y
′ | y”)) = ((y

′ | φ1(y”)), where y = (y
′

0, y
′

1, . . . , y
′

β1−1 |
y”0 , y

”
1 , . . . , y

”
β2−1) ∈ Zβ1

p × Sβ2 .

Definition 2.6. Let y = (y
′ | y”) ∈ Zβ1

p × Sβ2 , where y
′ ∈ Zβ1

p and y” ∈ Sβ2 .
Then the Gray weight of y is defined as

wG(y) = wH(y
′
) + wH(φ1(y”)),

where wH denotes the Hamming weight.
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Definition 2.7. Let y, z ∈ Zβ1
p ×Sβ2 . Then the Gray distance between y and

z is defined as

dG(y, z) = wG(y− z) = dH((y
′
| φ1(y”), (z

′
| φ1(z”))).

Definition 2.8. Let y, z ∈ Zβ1
p ×Sβ2 . Then the Lee distance between y and z

is defined as
dL(y, z) = wL(y− z).

3 ZpS-additive cyclic codes

In this section, we obtain the set of generators for ZpS-additive cyclic codes
as S[y]-submodules of Sβ1,β2 . Here, C will always denote a ZpS-additive cyclic
code. Since C and S[y]/〈yβ2 − 1〉 are S[y]-submodules of Sβ1,β2

, we define a
mapping

η : C −→ S[y]/〈yβ2 − 1〉

such that η(f(y) | g(y)) = g(y). Clearly, η is a module homomorphism whose
image is S[y]-submodule in S[y]/〈yβ2 − 1〉 and ker(η) is a submodule of C.
Further, η(C) can easily be identified as an ideal in the ring S[y]/〈yβ2 − 1〉
(see for reference [14]). Since n is odd and η(C) is an ideal in S[y]/〈yβ2 − 1〉,
η(C) = 〈g(y) + up1(y) + vq1(y) + uvr1(y), ua1(y) + vq2(y) + uvr2(y), va2(y) +
uvr3(y), uva3(y)〉 with ai | gi | (yβ2 − 1)(modp), for i = 1, 2, 3.

ker(η) = {(f(y), 0) ∈ C | f(y) ∈ Zp[y]/〈yβ1 − 1〉}.

Now, let J

J = {f(y) ∈ Zp[y]/〈yβ1 − 1〉 | (f(y), 0) ∈ ker(η)}.

It is clear that J is an ideal in the ring Zp[y]/(yβ1−1) and hence a cyclic code.
Therefore, by the well-known result on generators of binary cyclic codes, we
have J = 〈f(y)〉. Now, for any element (h(y), 0) ∈ ker(η), we have h(y) ∈
J = 〈f(y)〉 and it can be written as h(y) = m1(y)f(y) for some polynomial
m1(y) ∈ Zp[y]/(yβ1 − 1). Thus, (h(y), 0) = (m1(y)f(y), 0). This implies that
ker(η) is a submodule of C generated by an element of the form (f(y), 0),
where f(y) | (yβ1 − 1)(modp). By the first isomorphism theorem for rings, we
have

C

ker(η)
∼= 〈g(y) + up1(y) + vq1(y) + uvr1(y), ua1(y) + vq2(y) + uvr2(y),

va2(y) + uvr3(y), uva3(y)〉.
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This implies that any ZpS-additive cyclic code can be generated as a S[y]-
submodule of Sβ1,β2 by (f1(y), 0) and (f2(y), g(y)+up1(y)+vq1(y)+uvr1(y))
(f3(y), ua1(y) + vq2(y) +uvr2(y)), (f4(y), va2(y) +uvr3(y)) and (f5, uva3(y)).
Hence, any element in C can be expressed as d1(y) × (f1(y), 0) + d2(y) ×
(f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)) + d3(y) × (f3(y), ua1(y) + vq2(y) +
uvr2(y))+d4(y)×(f4(y), va2(y)+uvr3(y))+d5(y)×(f5, uva3(y)), where d1(y),
d2(y), d3(y), d4(y) and d5(y) are polynomials in the ring S[y].

Theorem 3.1. If C = 〈(f1(y), 0), (f2(y), g(y)+up1(y)+vq1(y)+uvr1(y))(f3(y),
ua1(y)+vq2(y)+uvr2(y)), (f4(y), va2(y)+uvr3(y)), (f5(y), uva3(y))〉 is a ZpS-
additive cyclic code, then deg(fi(y)) < deg(f1(y)), where i = 2, 3, 4, 5.

Proof. Suppose that deg(fi(y)) ≥ deg(f1(y)). Then we can assume that

deg(fi(y))− deg(f1(y)) = t

and the code with generators is of the form

C
′

= 〈(f1(y), 0), ((f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),

(f3(y), ua1(y) + vq2(y) + uvr2(y)), (f4(y), va2(y) + uvr3(y)),

(f5, uva3(y))− yt · (f1(y), o)〉
= 〈(f1(y), 0), (f2(y)− ytf1(y), g(y) + up1(y) + vq1(y) + uvr1(y)),

(f3(y)− ytf1(y), ua1(y) + vq2(y) + uvr2(y)), (f4(y)− ytf1(y), va2(y)

+uvr3(y)), (f5(y)− ytf1(y), uva3(y))〉.

This implies that C
′ ⊆ C. Now, for any

((l1(y), g1(y) + 2a1(y) + up(y)), (l2(y), ug2(y) + 2a2(y)))

= ((l1(y) + ytf(y), (g1(y) + 2a1(y) + up(y)), (l2(y) + ytf(y),

ug2(y) + 2a2(y)))− (ytf(y), 0).

This shows that C ⊆ C ′ . Finally, we get C = C
′
.

Theorem 3.2. Let C = 〈(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))〉
be a ZpS-additive cyclic code of length (β1, β2) and g(y) + up1(y) + vq1(y) +

uvr1(y) | (yβ2 − 1). If l(y) = (yβ2−1)
g(y)+up1(y)+vq1(y)+uvr1(y)

, then f1 | lf2.

Proof. Let η(l(y)(f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)) = η(l(y)f2(y), 0).
This implies that l(y)f2(y), 0) ∈ ker(η). Hence, f1(y) | l(y)f2(y).

Theorem 3.3. Let

C =

〈 (f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),
(f3(y), ua1(y) + vq2(y) + uvr2(y)), (f4(y), va2(y) + uvr3(y)),

(f5(y), uva3(y))

〉
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be a ZpS-additive cyclic code of length (β1, β2) and ai | g | (yβ2 − 1) for

i = 1, 2, 3. If hg = (yβ2−1)
g , H1 = gcd(hgp1, hgq1,

hgr1, (y
β2−1)), H2 = (yβ2−1)

H1
, ha1 = (yβ2−1)

a1
, I1 = gcd(ha1q2, ha1r2, (y

β2−1)),

I2 = (yβ2−1)
I1

, ha2 =
(yβ2−1)
a2

, J1 = gcd(ha2r3, (y
β2 − 1)), J2 = (yβ2−1)

J1
, ha3 = (yβ2−1))

a3
, then

(i) f1 | H2hgf2,

(ii) f1 | I2ha1f3,

(iii) f1 | J2ha2f4,

(iv) f1 | ha3f5.

Proof. (i) Since H1 | hgp1, H1 | hgq1 andH1 | hgr1, hgp1 = b1H1, hgq1 = b2H1

and hgr1 = b3H1 for some polynomials b1, b2, b3 ∈ S[y]. Now,

η(H2hg(f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)))

= η(H2hgf2(y), H2hgg(y) + uH2hgp1(y) + vH2hgq1(y) + uvH2hgr1(y))

= η(H2hgf2(y), uH2H1b1(y) + vH2H1b2(y) + uvH2H1b3(y))

= η(H2hgf2(y), 0)

= 0.

This implies that

(H2hg(f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))) = (H2hgf2(y), 0) ∈ C.

Therefore, (H2hgf2(y), 0) ∈ ker(η) = 〈(f1, 0)〉. Hence f1 | H2hgf2.

(ii) Since I1 | ha1q2 and I1 | ha1r2, ha1q2 = c1I1 and ha1r2 = c2I1 for some
polynomials c1, c2 ∈ S[y]. Now,

η(I2ha1(f3(y), ua1(y) + vq2(y) + uvr2(y)))

= η(I2ha1f3(y), I2ha1(ua1(y) + vq2(y) + uvr2(y)))

= η(I2ha1f3(y), I2ha1ua1(y) + vI2ha1q2(y) + uvI2ha1r2(y)))

= η(I2ha1f3(y), uI2I1a1(y) + vI2I2c1(y) + uvI1I2c2(y)))

= η(I2ha1f3(y), 0)

= 0.

This implies that (I2ha1(f3(y), ua1(y)+vq2(y)+uvr2(y))) = ((I2ha1(f3(y), 0) ∈
C. Therefore, (I2ha1f3(y), 0) ∈ ker(η) = 〈(f1, 0)〉. Hence f1 | I2ha1f3.
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(iii) Since J1 | ha2r3, so ha2r3 = d1J1 for some polynomials d1 ∈ S[y].
Now,

η(J2ha2(f4(y), va2(y) + uvr3(y)))

= η(J2ha2f4(y), I2ha1va2(y) + uvr3(y)))

= η(J2ha2f4(y), J2ha2va2(y) + uvI2ha2r3(y)))

= η(J2ha2f4(y), vJ2J1a2(y) + uvJ1J2d1(y)))

= η(J2ha2f4(y), 0)

= 0.

This implies that (J2ha2(f4(y), va2(y) + uvr3(y))) = ((J2ha2(f4(y), 0) ∈ C.
Therefore,
(J2ha2f4(y), 0) ∈ ker(η) = 〈(f1, 0)〉. Hence f1 | J2ha2f4.

(iv) Let η(ha3(f5(y), uva3)) = η(ha3f5(y), 0). This implies that (ha3f5(y), 0) ∈
ker(η). Hence, f1 | ha3f5.

Theorem 3.4. Let

C =

〈
(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),

(f3(y), ua1(y) + vq2(y) + uvr2(y)), (f4(y), va2(y) + uvr3(y)),
(f5(y), uva3(y))

〉

be a ZpS-additive cyclic code of length (β1, β2) and ai | g | (yβ2 − 1) for

i = 1, 2, 3. Suppose that hg = (yβ2−1)
g , h1 = gcd(hgp1, hgq1, hgr1, (y

β2 − 1)),

h2 = (yβ2−1)
h1

, ha1 = (yβ2−1)
a1

, m1 = gcd(ha1q2, ha1r2, (y
β2 − 1)), m2 = (yβ2−1)

m1
,

ha2 = (yβ2−1)
a2

, s1 = gcd(ha2r3, (y
β2 − 1)), s2 = (yβ2−1)

s1
, ha3 = (yβ2−1))

a3
.

Further, assume that

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(g)−1⋃
i=0

{yi · (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))};

S3 =

β2−deg(h1)−1⋃
i=0

{yi · (hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y))};
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S4 =

deg(g)−deg(a1)−1⋃
i=0

{yi · (f3(y), ua1(y) + vq2(y) + uvr2(y)};

S5 =

β2−deg(m1)−1⋃
i=0

{yi · (ha1f3(y), vha1q2(y) + uvha1r2(y)};

S6 =

deg(a1)−deg(a2)−1⋃
i=0

{yi · (f4(y), va2(y) + uvr3(y)};

S7 =

β2−deg(s1)−1⋃
i=0

{yi · (ha2f4(y), uvha2r3(y)};

S8 =

deg(a2)−deg(a3)−1⋃
i=0

{yi · (f5(y), uva3(y)}.

Then S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 is a minimal generating set
for the code C and

| C |= pβ1−deg(f1)p10β2−deg(g)−3deg(h1)−deg(a1)−2deg(m1)−deg(a2)−deg(s1)−deg(a3).

Proof. Let c ∈ C be a codeword and ci ∈ S[y], i = 1, 2, 3, 4, 5. Then

c = c1 · (f1(y), 0) + c2 · (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))

+c3 · (f3(y), ua1(y) + vq2(y) + uvr2(y)) + c4 · (f4(y), va2(y) + uvr3(y))

+c5 · (f5(y), uva3(y)).

c = (θ(c1)f1(y), 0) + c2 · (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))

+c3 · (f3(y), ua1(y) + vq2(y) + uvr2(y)) + c4 · (f4(y), va2(y) + uvr3(y))

+c5 · (f5(y), uva3(y)).

If deg(θ(c1)) ≤ β1− deg(f1)− 1, then β1− deg(f1) ∈ span(S1). Otherwise, by

division algorithm, deg(θ(c1) = (yβ1−1)
f1(y)

b+d, where deg(d) ≤ β1−deg(f1)− 1.

Therefore,

(θ(c1)f1, 0) = ((
(yβ1 − 1)

f1(y)
b+ d)f1, 0) = (df1, 0) = d(f1, 0).

This shows that (θ(c1)f1, 0) ∈ span(S1). Now, we have to prove

c2 · (f2, g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ span(S1 ∪ S2 ∪ S3) ⊂ span(S).
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Let us divide c2 by hg and write c2 = b1hg + d1, where d1 = 0 or deg(d1) ≤
β2 − deg(g)− 1. Therefore,

c2 · (f2, g(y) + up1(y) + vq1(y) + uvr1(y))

= (b1hg + d1) · ((f2, g(y) + up1(y) + vq1(y) + uvr1(y))

= b1(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y)) + d1(f2, g(y) + up1(y) + vq1(y)

+uvr1(y)).

Cleraly, d1(f2, g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ span(S2). It remains to
show that b1(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y)) ∈ span(S1 ∪ S2 ∪ S3).
Since h1 | hgp1, h1 | hgq1, h1 | hgr1, hgp1 = l1h1, hgq1 = l2h1 and hgr1 = l3h1.
Hence, hgp1h2 = hgq1h2 = hgr1h2 = 0. Again, by division algorithm, we have
b1 = b2h2 + d2, where d2 = 0 or deg(d2) ≤ β2 − deg(h1)− 1. Now,

b1(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y))

= (b2h2 + d2)(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y))

= b2(h2hgf2, uh2hgp1(y) + vh2hgq1(y) + uvh2hgr1(y))

+d2(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y)).

= b2(h2hgf2, 0) + d2(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1).

By Theorem 3.3, f1|h2hgf2, then b2(h2hgf2, 0) ∈ span(S1). Also,
(hgf2, uhgp1(y) + vhgq1(y) + uvhgr1) ∈ span(S3). Then,

c2 · (f2, g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ span(S1 ∪ S2 ∪ S3).

Again, we have to show

c3 · (f3, ua1(y) + vq2(y) + uvr2(y)) ∈ span(S1 ∪ S4 ∪ S5) ⊂ span(S).

Let us divide c3 by ha1 and write c3 = b3ha1 + d3, where d3 = 0 or deg(d3) ≤
deg(g)− deg(a1)− 1. Therefore,

c3 · (f3, ua1(y) + vq2(y) + uvr2(y))

= (b3ha1 + d3) · ((f3, ua1(y) + vq2(y) + uvr2(y))

= b3(ha1f3, uha1a1(y) + vha1q2(y) + uvha1r2(y))

+d3(f3, ua1(y) + vq2(y) + uvr2(y)).

Obviuosly, d3(f3, ua1(y) + vq2(y) + uvr2(y)) ∈ span(S4). It remains to show
that
b3(ha1f3, uha1a1(y) + vha1q2(y) + uvha1r2(y)) ∈ span(S1 ∪ S2 ∪ S3). Since

m1 | ha1q2 and m1 | ha1r2, so ha1q2 = l4m1 and ha1r2 = l5m1. Hence,
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ha1q2m2 = ha1r2m2 = 0. Again, by division algorithm, we have b3 = b4m2 +
d4, where d4 = 0 or deg(d4) ≤ β2 − deg(m1)− 1. Now,

b3(ha1f3, vha1q2(y) + uvha1r2(y))

= (b4m2 + d4)(ha1f3, vha1q2(y) + uvha1r2(y))

= b3(m2ha1f3, vm2ha1q2(y) + uvm2ha1r2(y))

+d4(ha1f3, vha1q2(y) + uvha1r2(y))

= b3(m2ha1f3, 0) + d4(ha1f3, vha1q2(y) + uvha1r2).

By Theorem 3.3, f1|m2ha1f3, then b3(m2ha1f3, 0) ∈ span(S1). Also,
(ha1f3, vha1q2(y) + uvha1r2) ∈ span(S3). Hence

c3 · (f3, ua1(y) + vq2(y) + uvr2(y)) ∈ span(S1 ∪ S4 ∪ S5).

Again, we have to show

c4 · (f4, vqa2(y) + uvr3(y)) ∈ span(S1 ∪ S6 ∪ S7) ⊂ span(S).

Let us divide c4 by ha2 and write c4 = b5ha2 + d5, where d5 = 0 or deg(d5) ≤
deg(a1)− deg(a2)− 1. Therefore,

c4 · (f4, va2(y) + uvr3(y)) = (b5ha2 + d5) · ((f4, va2(y) + uvr3(y))

= b4(ha2f4, vha2a2(y) + uvha2r3(y))

+d5(f4, va2(y) + uvr3(y)).

It is clear that d5(f4, va2(y) + uvr3(y)) ∈ span(S4). It remains to show that

b4(ha2f4, vha2a2(y) + uvha2r3(y)) ∈ span(S1 ∪ S2 ∪ S3).

Since s1 | ha2r3, we get ha2r3 = l6s1 and hence ha2r3s2 = 0. Again, by division
algorithm, we have b5 = b6s2 +d6, where d6 = 0 or deg(d6) ≤ β2−deg(s1)−1.
Now,

b5(ha2f4, uvha2r3(y)) = (b6s2 + d6)(ha2f4, uvha2r3(y))

= b6(s2ha2f4, uvm2ha3r3(y)) + d6(ha2f4, uvha2r3(y))

= b6(s2ha2f4, 0) + d6(ha2f4, uvha2r3).

By Theorem 3.3, f1|s2ha2f4 which implies b6(s2ha2f4, 0) ∈ span(S1). Also,
(ha2f4, uvha2r3) ∈ span(S7). Hence

c4 · (f4, va2(y) + uvr3(y)) ∈ span(S1 ∪ S6 ∪ S7).
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Finally, we have to show that c4 · (f5, uva3(y)) ∈ span(S8). By division algo-
rithm, we have c5 = ha3b7+d7, where d7 = 0 or deg(d7) ≤ deg(a2)−deg(a3)−1.
Now,

c5(f5, uva3) = (b7ha3 + d7)(f5, uva3)

= b7(ha3f5, 0) + d7(f5, uva3).

By Theorem 3.3, f1|ha3f5 which implies (ha3f5, 0) ∈ span(S1) and d7(f5, uva3) ∈
span(S8). We conclude that c ∈ span(S), that is, S generates the code C.
Thus, S is the minimal spanning set for C because none of the element of S
is a linear combination of the other and

| C |= pβ1−deg(f1)p10β2−deg(g)−3deg(h1)−deg(a1)−2deg(m1)−deg(a2)−deg(s1)−deg(a3).

The following are immediate consequence of Theorem 3.4.

Corollary 3.1. Let C = 〈(f1(y), 0)〉 be a ZpS-additive cyclic code of length
(β1, β2) and f1(y) | yβ1 − 1. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)},

then S1 forms a basis for C with | C |= pβ1−deg(f1).

Corollary 3.2. Let C = 〈(f1(y), 0), (f2, g(y)+up1(y)+vq1(y)+uvr1(y))〉 be a
ZpS-additive cyclic code of length (β1, β2) and g(y)+up1(y)+vq1(y)+uvr1(y)) |
yβ2 − 1. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(g1)−1⋃
i=0

{yi · (f2, g(y) + up1(y) + vq1(y) + uvr1(y))},

then S1 ∪ S2 forms a basis for C with | C |= pβ1−deg(f1)p4(β2−deg(g1)).

Proof. Let c ∈ C be a codeword and ci ∈ S[y], i = 1, 2, 3, 4, 5. Then

c = c1 · (f1(y), 0) + c2 · (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))

c = (θ(c1)f1(y), 0) + c2 · (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)).
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If deg(θ(c1)) ≤ β1− deg(f1)− 1, then β1− deg(f1) ∈ span(S1). Otherwise, by

division algorithm, deg(θ(c1) = (yβ1−1)
f1(y)

b+d, where deg(d) ≤ β1−deg(f1)− 1.

Therefore,

(θ(c1)f1, 0) = ((
(yβ1 − 1)

f1(y)
b+ d)f1, 0) = (df1, 0) = d(f1, 0).

This shows that (θ(c1)f1, 0) ∈ span(S1). Now, we have to prove

c2 · (f2, g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ span(S1 ∪ S2).

Since g(y) + up1(y) + vq1(y) + uvr1(y)) | yβ2 − 1, there exists h such that
yβ2 − 1 = h(y)(g(y) + up1(y) + vq1(y) + uvr1(y))). Using division algorithm,
we have two polynomials b1(y) and d1(y) such that

c2 = hb1 + d1,

where deg(d1) = 0 or deg(d1) ≤ β2 − deg(g)− 1. Therefore,

c2 · (f2, g(y) + up1(y) + vq1(y) + uvr1(y))

= (hb1 + d1) · ((f2, g(y) + up1(y) + vq1(y) + uvr1(y))

= b1(hf2, 0) + d1(f2, g(y) + up1(y) + vq1(y) + uvr1(y)).

Cleraly, d1(f2, g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ span(S2). Hence, S1 ∪ S2

forms a basis for C with | C |= pβ1−deg(f1)p4(β2−deg(g1)).

Corollary 3.3. Let

C =

〈
(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),

(f3(y), uva(y)

〉
be a ZpS-additive cyclic code of length (β1, β2), where a(y) | g(y) | (yβ2 − 1)

and hg = (yβ2−1)
g , h1 = gcd(hgp1, hgq1, hgr1, (y

β2 − 1)), h2 = (yβ2−1)
h1

. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(g1)−1⋃
i=0

{yi · (f2, g(y) + up1(y) + vq1(y) + uvr1(y))};

S3 =

β2−deg(h1)−1⋃
i=0

{yi · (hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y))};

S4 =

deg(g)−deg(a)−1⋃
i=0

{yi · (f3(y), uva(y)},
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then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and

| C |= pβ1−deg(f1)p7β2−3deg(g)−3deg(h1)−deg(a).

Corollary 3.4. Let

C =

〈
(f1(y), 0), (f2(y), ua1(y) + vq2(y) + uvr2(y)),

(f3(y), uva(y)

〉
be a ZpS-additive cyclic code of length (β1, β2) and

ha1 = (yβ2−1)
a1

, m1 = gcd(ha1q2, ha1r2, (y
β2 − 1)), m2 = (yβ2−1)

m1
. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(a1)−1⋃
i=0

{yi · (f2, ua1(y) + vq2(y) + uvr2(y))};

S3 =

β2−deg(m1)−1⋃
i=0

{yi · (ha1f2, vha1q2(y) + uvha1r2(y))};

S4 =

deg(a1)−deg(a)−1⋃
i=0

{yi · (f3(y), uva(y)},

then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and

| C |= pβ1−deg(f1)p5β2−2deg(a1)−2deg(m1)−deg(a).

Corollary 3.5. Let C = 〈(f1(y), 0), (f2(y), va2(y) + uvr2(y)), (f3(y), uva(y)〉
be a ZpS-additive cyclic code of length (β1, β2) and ha2 = (yβ2−1)

a2
, s1 =

gcd(ha2r3,

(yβ2 − 1)), s2 = (yβ2−1)
s1

. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(a2)−1⋃
i=0

{yi · (f2, va2(y) + uvr3(y))};

S3 =

β2−deg(s1)−1⋃
i=0

{yi · (ha2f2, uvha2r3(y))};

S4 =

deg(a2)−deg(a)−1⋃
i=0

{yi · (f3(y), uva(y)},
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then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and

| C |= pβ1−deg(f1)p3β2−deg(a2)−deg(s1)−deg(a).

Theorem 3.5. Let C = 〈(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),
(f3(y), uva(y)〉 be a ZpS-additive cyclic code of length (β1, β2), where f1(y) =
y + 1 and f2(y) = f3(y) = g(y) = a(y) = 1. Then Ψ1(C) is maximum
distance separable with respect to singleton bound (MDSS) of parameters [β1 +
4β2, p

K , dG], where

K = β1 + 4β2 − deg(f1)− deg(a)− deg(g)− 2deg(h1).

Proof. Obviously, dG(C) = 2. Therefore, we have

dG(C)− 1 = deg(f1(y) + deg(f2(y)) + deg(f3(y)) + deg(g(y)) + deg(a(y)).

Hence, C is MDSS code.

4 Duality of ZpZp[u, v]-additive cyclic codes

In this section, we give the relationship between the generator polynomial of
C and dual code. Let f(y) ∈ S[y] and deg(f(y)) = t. Then its reciprocal poly-

nomial can be defined as f∗(y) = ydeg(f(y))f( 1
y ). Assume that ωm(y) =

m−1∑
i=0

yi

be a polynomial. Now, let m = lcm{β1, β2} and f(y) = (f(y), f
′
(y)),g(y) =

(g(y), g
′
(y)) ∈ Sβ1,β2 . Define a map

ζ : Sβ1,β2
× Sβ1,β2

−→ S[y]

〈ym − 1〉

such that

ζ(f(y),g(y)) = uvf(y)ω m
β1

(yβ1)ym−1−deg(g(y))g∗(y)

+f
′
(y)ω m

β2
(yβ2)ym−1−deg(g

′
(y))g

′∗(y)mod(ym − 1).

Lemma 4.1. Let n1, n2 ∈ N. Then

yn1n2 − 1 = (yn1 − 1)ωn2
(yn1)

Proof. Let xn2−1=(x−1)(xn2−1+xn2−2+ · · ·+x+1)=(x−1)ωn2
(x). Putting

x=yn1 , we get the desired result.
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Lemma 4.2. Let f, g ∈ Zβ1
p ×S

β2 with associated polynomial f(y) = (f(y), f
′
(y)),

g(y) = (g(y), g
′
(y)) ∈ Sβ1,β2

. Then f is orthogonal to g and all its shifts if and
only if

ζ(f(y), g(y)) = 0.

Proof. The proof of the following results can be seen in [17].

Theorem 4.1. Let f(y) = (f(y), f
′
(y)), g(y) = (g(y), g

′
(y)) ∈ Sβ1,β2

such that

ζ(f(y), g(y)) = 0. If f
′
(y) = 0 or g

′
(y) = 0, then f(y)g∗(y) = 0 mod(yβ1 − 1)

over Zp. If f(y) = 0 or g(y) = 0, then f
′
(y)g

′∗(y) = 0 mod(yβ2 − 1) over S.

Proof. Suppose that either f(y) = (f(y), f
′
(y)) = 0 or g(y) = (g(y), g

′
(y)) = 0.

Then we need to show that f
′
(y)g

′∗(y) = 0 mod(yβ2 − 1). Since

0 = ζ(f(y),g(y))

= f
′
(y)ω m

β2
(yβ2)ym−1−deg(g

′
(y))g

′∗(y)mod(ym − 1),

there exists a polynomial h(y) over Zp such that

f
′
(y)ω m

β2
(yβ2)ym−1−deg(g

′
(y))g

′∗(y) = h(y)mod(ym − 1)

= h(y)(ym − 1).

By proposition 4.1, ymβ2 − 1 = (yβ2 − 1)ωm(yβ2), we get

f
′
(y)ymg

′∗(y) = h
′
(y)(yβ2 − 1)

f
′
(y)g

′∗(y) = 0 mod(yβ2 − 1).

Similarly, we can prove other case.

Theorem 4.2. Let C = 〈(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y))〉
be a ZpS-additive cyclic code of length (β1, β2). If C⊥ = 〈(f̄1(y), 0), (f̄2, ḡ(y)+
up̄1(y) + vq̄1(y) + uvr̄1(y))〉 is the dual of C, then

(i) f̄1
∗
(y) gcd(f1(y), f2(y)) = h1(y)(yβ1 − 1),

(ii) ḡ∗(y)g(y)f1(y) = h2(y)(yβ2 − 1).

Proof. (i) Since (f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ C and
(f̄1(y), 0) ∈ C⊥, by Proposition 4.2, we get

ζ((f1(y), 0), (f̄1(y), 0)) = 0,

ζ((f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)), (f̄1(y), 0)) = 0.
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Using Theorem 4.1, we obtain f1(y)f̄1
∗
(y) = 0, f2(y)f̄1

∗
(y) = 0. It is obvious

that f̄1
∗
(y) gcd(f1(y), f2(y)) = 0 mod(yβ1 − 1). This implies that there exits a

polynomial h1(y) ∈ Zp[y] such that

f̄1
∗
(y) gcd(f1(y), f2(y)) = h1(y)(yβ1 − 1).

(ii) We know that (f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)) ∈ C.
Then any element c(y) ∈ C can be expressed as

c(y) = uv
f2(y)

gcd(f1(y), f2(y))
× (f1(y), 0) + uv

f1(y)

gcd(f1(y), f2(y))
× (f2(y),

g(y) + up1(y) + vq1(y) + uvr1(y))

=
(
0, uv

f1(y)

gcd(f1(y), f2(y))
g(y)

)
.

This implies that

ζ((0, uv
f1(y)

gcd(f1(y), f2(y))
g(y)), (f̄2, ḡ(y) + up̄1(y) + vq̄1(y) + uvr̄1(y)) = 0.

By Theorem 4.1, we get

0 = uv
f1(y)

gcd(f1(y), f2(y))
g(y) · (ḡ(y) + up̄1(y) + vq̄1(y) + uvr̄1(y))∗

=
f1(y)

gcd(f1(y), f2(y))
g(y)ḡ∗(y).

This means that there exists a polynomial h2(y) ∈ S[y] such that

f1(y)g(y)ḡ∗(y) = h2(y)(yβ2 − 1).

5 ZpS-additive constacyclic codes

Definition 5.1. Let λ be a unit in S. A non-empty subset C of Zβ1
p × Sβ2 is

called a ZpS-additive λ-constacyclic code of length (β1, β2) if

(i) C is additive code;

(ii) For any codeword z = (a0, a1, . . . , aβ1−1 | b0, b1, . . . , bβ2−1) ∈ C its cyclic
shift

Tλ(z) = (aβ1−1, a0, . . . , aβ1−2 | λbβ2−1, b0, . . . , bβ2−2) ∈ C.
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Let Sβ1,β2,λ = Zp[y]/〈yβ1 − 1〉 × S[y]/〈yβ2 − λ〉. Then Sβ1,β2,λ forms a
S[y]-module under usual addition and scalar multiplication defined in (2.1).

Theorem 5.1. A code C is a ZpS-additive constacyclic code of length (β1, β2)
if and only if C is a S[y]-submodule of Sβ1,β2,λ.

Proof. The proof is same as that of Theorem 2.2

Let β2 > 2 be any prime number. Since C and S[y]/〈yβ2−1 − λ〉 are S[y]-
submodules of Sβ1,β2,λ, we define a mapping

η1 : C −→ S[y]/〈yβ2−1 − λ〉,

where η1(f(y) | g(y)) = g(y). Clearly, η1 is a module homomorphism whose
image is S[y]-submodule of S[y]/〈yβ2−1−λ〉 and ker(η1) is a submodule of C.
Further, η(C) can easily be identified an ideal in the ring S[y]/〈yβ2−1−λ〉 (see
for reference [14]). Since n is odd and η1(C) is an ideal in S[y]/〈yβ2−1 − λ〉,
η1(C) is an additive λ-constacyclic code over S of length β2 − 1.

Theorem 5.2. Let

C =

〈
(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)),

(f3(y), uva(y)

〉
be a ZpS-additive constacyclic code of length (β1, β2 − 1) and hg = (yβ2−1−λ)

g ,

h1 = gcd(hgp1, hgq1, hgr1, (y
β2−1 − λ)), h2 = (yβ2−1−λ)

h1
. If

S1 =

β1−deg(f1)−1⋃
i=0

{yi · (f1(y), 0)};

S2 =

β2−deg(g)−2⋃
i=0

{yi · (f2, g(y) + up1(y) + vq1(y) + uvr1(y))};

S3 =

β2−deg(h1)−2⋃
i=0

{yi · (hgf2, uhgp1(y) + vhgq1(y) + uvhgr1(y))};

S4 =

deg(g)−deg(a)−1⋃
i=0

{yi · (f3(y), uva(y)},

then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and

| C |= pβ1−deg(f1)p7(β2−1)−3deg(g)−3deg(h1)−deg(a)).

Proof. Proof is directly followed by Theorem 3.4.
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6 Examples

Example 6.1. Let C be a Z3Z3[u, v]-additive cyclic code of length (6, 6). Then
C is Z3[u, v]-submodule of S6,6 = Z3[y]/〈y6 − 1〉 × S[y]/〈y6 − 1〉 generated by
〈(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)), (f3(y), ua1(y) + vq2(y) +
uvr2(y)), (f4(y), va2(y) + uvr3(y)), (f5(y), uva3(y))〉 as in Theorem 3.4. Let
us consider f1(y) = y4 + 2y3 + y + 2, f2(y) = y2 + 2y + 1, f3(y) = y + 1,
f4(y) = y+2, f5(y) = y+2, g(y) = y4 +y3 +2y+2, a1(y) = (y+2)2, a2(y) =
(y + 2), a3(y) = 1. Then hg = (y + 1)2, h1 = (y + 1)2, h2 = (y + 2)3(y + 1),
ha1 = (y+1)3(y+2), m1 = (y+1)3(y+2), m2 = (y+2)2, ha2 = (y+2)2(y+1)3,
s1 = (y + 2)2(y + 1)3, s2 = (y + 2), If

S1 =

1⋃
i=0

{yi · (f1(y), 0)}; S2 =
1⋃
i=0

{yi · (f2(y), g(y) + uv)};

S3 =

3⋃
i=0

{yi · (hgf2, uvhg)}; S4 =

1⋃
i=0

{yi · (f3(y), ua1(y) + v)};

S5 =

1⋃
i=0

{yi · (ha1f3(y), vha1}; S6 = {(f4(y), va2(y) + 2uv)};

S7 = {(ha2f4(y), 2uvha2)}; S8 = {(f5(y), uva3(y))},

then S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 is a minimal generating set for
the code C and | C |= 315

Example 6.2. Let C be a Z5Z5[u, v]-additive cyclic code of length (8, 8). Then
C is Z5[u, v]-submodule of S8,8 = Z5[y]/〈y8 − 1〉 × S[y]/〈y8 − 1〉 generated
by 〈(f1(y), 0), (f2(y), g(y) + up1(y) + vq1(y) + uvr1(y)), (f3(y), uva(y))〉 as in
Corollary 3.3. Let us consider f1(y) = y5 + y4 + 3y3 + 2y + 2, f2(y) =
y3 + y2 + 2y+ 1, f3(y) = y2 + 1, g(y) = y5 + 3y4 + y+ 3, a(y) = y2 + 2. Then
hg = y3 + 3y2 + 4y + 3, h1 = hg, h2 = g(y). If

S1 =

2⋃
i=0

{yi · (f1(y), 0)}; S2 =

2⋃
i=0

{yi · (f2, g(y) + u(1 + v)};

S3 =

4⋃
i=0

{yi · (hgf2, uhg + uvhg))}; S4 =

2⋃
i=0

{yi · (f3(y), uva(y)},

then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and
| C |= 514.
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TABLE-1

Optimal and near-optimal codes from ZpS-additive cyclic codes.

p (β1, β2) Generators [n, k, d]
3 (4,4) f1(y) = y4 − 1, f2(y) = y3 + 2y2 + y + 1 = f3(y), [20, 10, 8]

g(y) = y2 + 1, a(y) = 1, p1 = q1 = r1 = 1
3 (5,4) f1(y) = y5 − 1, f2(y) = y4 + y3 + y2 + y + 1 = f3(y), [21, 10, 9]

g1(y) = y2 + 1, a(y) = 1, p1 = q1 = r1 = 1
5 (4,4) f1(y) = y4 − 1, f2(y) = y3 + y2 + y + 1, [20, 8, 10]

g(y) = y2 + 3y + 2, p1 = 2 = q1, r1 = 1
5 (5,2) f1(y) = y5 − 1, f2(y) = y4 + y3 + y2 + y + 1, [13, 4, 9]

g(y) = y + 1, p1 = r1 = 1, q1 = 0
5 (5,4) f1(y) = y5 − 1, f2(y) = y4 + y3 + y2 + y + 1 [21, 8, 11]

g(y) = y2 + 3y + 2, p1 = 2 = q1, r1 = 1
5 (7,4) f1(y) = y7 − 1, g(y) = y2 + 3y + 2, [23, 8, 13]

f2(y) = y6 + y5 + y4 + y3 + y2 + y + 1
p1 = 2 = q1, r1 = 1

5 (4,6) f1(y) = y4 − 1, f2(y) = f3(y) = f4(y) = 0, [28, 4, 20]
f5(y) = y3 + y2 + y + 1,

g(y) = y6 − 1 = a1(y) = a2(y)
a3(y) = y3 + 3y2 + 2y + 4

5 (5,6) f1(y) = y5 − 1, f2(y) = f3(y) = f4(y) = 0, [29, 4, 21]
f5(y) = y4 + y3 + y2 + y + 1,
g(y) = y6 − 1 = a1(y) = a2(y)
a3(y) = y3 + 3y2 + 2y + 4

7 (6,6) f1(y) = y6 − 1, f2(y) = f3(y) = f4(y) = 0, [30, 2, 26]
f5(y) = y5 + y4 + y3 + y2 + y + 1,
g(y) = y6 − 1 = a1(y) = a2(y)
a3(y) = y4 + 4y3 + 6y2 + 5y + 2

7 (5,6) f1(y) = y5 − 1, f2(y) = f3(y) = f4(y) = 0, [29, 2, 25]
f5(y) = y4 + y3 + y2 + y + 1,
g(y) = y6 − 1 = a1(y) = a2(y)
a3(y) = y4 + 4y3 + 6y2 + 5y + 2

7 (5,8) f1(y) = y5 − 1, f2(y) = f3(y) = f4(y) = 0, [37, 3, 29]
f5(y) = y4 + y3 + y2 + y + 1,
g(y) = y8 − 1 = a1(y) = a2(y)

a3(y) = y5 + 2y4 + 6y3 + y2 + 5y + 6
7 (6,8) f1(y) = y6 − 1, f2(y) = f3(y) = f4(y) = 0, [38, 3, 30]

f5(y) = y5 + y4 + y3 + y2 + y + 1,
g(y) = y8 − 1 = a1(y) = a2(y)

a3(y) = y5 + 2y4 + 6y3 + y2 + 5y + 6
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TABLE-2

The list of MDSS codes.

p (β1, β2) Generators [n, k, d]
3 (3,3) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [15, 8, 2]
3 (4,4) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [20, 11, 2]
3 (3,4) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [19, 10, 2]
5 (4,3) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [16, 9, 2]
5 (4,5) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [24, 13, 2]
5 (4,7) f1(y) = y − 1, f2(y) = f3(y) = g(y) = 1 = a(y) [32, 17, 2]

7 CONCLUSION

In the present article, we describe the structure of semi local ring S = Zp +
uZp + vZp + uvZp, where u2 = v2 = 0, uv = vu with prime characteris-
tic p and characterization of ZpZp[u, v]-additive cyclic codes and constacyclic
codes have been given. The algebraic structure of ZpS have also been stud-
ied. We also obtain optimal ZpS-additive cyclic codes that have a number of
advantages over linear codes, including the fact that they are more efficient.
Finally, we obtain the maximum distance separable with respect to single-
ton bound(MDSS) codes. In future work, it will be an interesting problem
to generalize this over ZpZp[u1, . . . , uk], where u2i = 0, uiuj = ujui for all
i, j ∈ {1, 2, . . . , k}.
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