
DOI: 10.2478/auom-2024-0001
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Hv-module of functions over Hv-ring of
arithmetics and it’s fundamental module

M. Al Tahan and B. Davvaz

Abstract

After introducing the definition of hypergroups by Marty, the study
of hyperstructures and its connections with other fields has been of great
importance. In this paper, we continue the investigation between hy-
perstructure theory and number theory. More precisely, we define an
Hv-module of complex valued functions over the Hv-ring of arithmetics,
classify its complete parts, the strongly regular relations on it and iden-
tify its fundamental module.

1 Introduction

Algebraic hyperstructures represent a natural generalization of classical al-
gebraic structures and they were introduced by F. Marty [13] in 1934 at the
eighth Congress of Scandinavian Mathematicians. Where he generalized the
notion of a group to that of a hypergroup. Marty defined a hypergroups as
a non-empty set equipped with an associative and reproductive hyperopera-
tion. Hypergroups are considered as natural generalizations of groups because
in a group, the composition of two elements is an element whereas in a hy-
pergroup, the composition of two elements is a non-empty set. Since then,
many different kinds of hyperstructures (hyperring, hypermodule, hypervec-
tor space, ...) were widely studied from the theoretical point of view and for
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their applications to many subjects of pure and applied mathematics. For ap-
plications of hyperstructure theory, the reader may refer to [9]. A wider class
of hyperstructures is obtained when some axioms concerning the above hyper-
structures are replaced by their corresponding weak axioms, i.e., the equality
sign is replaced by non-empty intersection. This generalization of the well-
known algebraic hyperstructures (hypergroups, hyperrings, hypermodules) is
known as Hv-structures (Hv-groups, Hv-rings, Hv-modules) and it has been
introduced by T. Vougiouklis [16]. Many problems in life and in other sciences
can be expressed by models using Hv-structures (see [10]).

A connection between hyperstructures and arithmetic functions has been
established in 2010, by Asghari and Davvaz [3], where they defined a hyper-
group on the set of arithmetic functions. Later, the authors [1] generalized
the work in [3] by defining an Hv-ring of arithmetic functions and studying
its properties. Then in [2], they studied strongly regular relations of the de-
fined Hv-ring of arithmetic functions, characterized them and proved that it’s
fundamental ring is the ring of complex numbers under standard addition and
multiplication. In this paper, we extend the work of [1] and [2] to Hv-modules
and it is constructed as follows: After an Introduction, Section 2 presents def-
initions related to hyperstructure theory and fundamental relations. Section
3 presents the Hv-ring of arithmetics that is defined by the authors in [1] and
defines an Hv-module of functions over it. Section 4 classifies the complete
parts of the Hv-module of functions and finds it’s fundamental module. Fi-
nally, Section 5 characterizes the strongly regular relations on the Hv-module
of functions.

2 Preliminaries

In this section, we present some definitions related to hyperstructure theory
and fundamental relations that are used throughout the paper. The reader
may refer to [4, 6, 7, 8, 11, 12, 15] for more details.

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called
a binary hyperoperation on H, where P∗(H) is the family of all non-empty
subsets of H. The couple (H, ◦) is called a hypergroupoid. In this definition,
if A and B are two non-empty subsets of H and x ∈ H, then we define:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a:

1. semihypergroup if for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;
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2. quasi-hypergroup if for every x ∈ H, x ◦ H = H = H ◦ x (The latter
condition is called the reproduction axiom);

3. hypergroup if it is a semihypergroup and a quasi-hypergroup.

Hv-structures were introduced by T. Vougiouklis [15, 16] as a generaliza-
tion of the well-known algebraic hyperstructures. Some axioms of classical
algebraic hyperstructures are replaced by their corresponding weak axioms in
Hv-structures. Most of Hv-structures are used in the representation theory. A
hypergroupoid (H, ◦) is called an Hv-semigroup if (x◦ (y ◦z))∩ ((x◦y)◦z) 6= ∅
for all x, y, z ∈ H. A hypergroupoid (H, ◦) is called an Hv-group if it is a
quasi-hypergroup and an Hv-semigroup. A multivalued system (R,+, ·) is an
Hv-ring if (1) (R,+) is an Hv-group; (2) (R, ·) is is an Hv-semigroup; (3) · is
weak distributive with respect to +.
An Hv-ring R is called an Hv-field if R/γ? is a field.

Definition 2.1. [15] A non-empty set M is an Hv-module over an Hv-ring
R, if (M,+) is a commutative Hv-group and there exists a map ? : R×M →
P∗(M), (r, x) → r ? x such that (1) (r ? (x + y)) ∩ (r ? x + r ? y) 6= ∅; (2)
((r + s) ? x) ∩ (r ? x+ s ? x) 6= ∅; (3) ((rs) ? x) ∩ (r ? (s ? x)) 6= ∅.

An Hv-module over an Hv-field is called an Hv-vector space.
A non-empty subset of an Hv-module M over an Hv-ring R is called an

Hv-submodule of M if r ? x ∈ N and x + N = N for all r ∈ R, x ∈ N . Let
(M,+, R, ?) and (N,+′, R, ?′) be two Hv-modules over Hv-ring R,S respec-
tively and g : R → S be an Hv-ring homomorphism. Then f : M → N
is said to be an Hv-module homomorphism if f(x + y) ⊆ f(x) +1 f(y) and
f(r?x) ⊆ g(r)?′f(x) for all x, y ∈M and r ∈ R. If the equality holds then f is
called strong Hv-module homomorphism. Let (M,+, R, ?) and (N,+′, R, ?′) be
two Hv-module over the Hv-rings R,S. Then M and N are called isomorphic
Hv-modules, and written as M ∼= N , if there exists an Hv-ring isomorphism
g : R→ S and bijective function f : M → N such that f(x+y) = f(x)+1f(y)
and f(r ? x) = g(r) ?′ f(x) for all x, y ∈M and r ∈ R.

The main tools connecting the class of hyperstructures with the classical
algebraic structures are the fundamental relations. In [15], Vougiouklis defined
the notion of fundamental relations on Hv-rings and Hv-modules.

Definition 2.2. [16] For all n > 1, we define the relation γ on an Hv-ring
(R,+, ·) as follows: aγb ⇔ {a, b} ⊆ u where u is finite sum of finite products
of elements in R.

The relation γ is reflexive and symmetric. Denote by γ∗ the transitive
closure of γ. The γ? is called the fundamental equivalence relation on R and
R/γ? is the fundamental ring.
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Definition 2.3. For all n > 1, we define the relation ε on an Hv-module
(M,+, R, ?) over an Hv-ring R as follows: xεy if and only if there exist n ∈ N,
(m1, · · · ,mn) ∈Mn, (k1, · · · , kn) ∈ Nn, (xi1, · · · , xik) ∈ Rki such that

x, y ∈
n∑
i=1

m′i,m
′
i = mi or m′i =

ni∑
j=1

(
kij∏
k=1

xijk) ? mi.

The relation ε is reflexive and symmetric. Denote by ε∗ the transitive
closure of ε. The ε? is called the fundamental equivalence relation on M and
(M/ε∗,⊕, R/γ?,�) is the fundamental module. The operations “⊕” and “�”
are defined as follows: For all m,n ∈M , r ∈ R,

ε?(m)⊕ ε?(n) = ε?(s), where s ∈ m+ n,
γ?(r)� ε?(m) = ε?(s), where s ∈ r ·m.

3 Construction of Hv-module of functions over Hv-ring
of arithmetic functions

In this section, we use the Hv-ring of arithmetics defined by the authors
in [1] to define an Hv-module of functions over it.

An arithmetic function is a function whose domain is the set of natural
numbers and it’s codomain is the set of complex numbers.
Let I =]0, 1[ and M = {f :]0,∞[→ C; f |I = 0} and (G, ?, ◦) be the Hv-ring
of arithmetics defined by the authors with the following hyperoperations: For
all α, β ∈ G,

α ? β(n) = {α(d) + β(
n

d
) : d|n},

α ◦ β(n) = {α(d)β(
n

d
) : d|n}.

The identity “i” in (G, ◦) is given as follows:

i(n) =

{
1, if n = 0;
0, otherwise.

(M,+) is an abelian group under the standard addition of functions. We
define · : G×M → P∗(M) as follows: for all α ∈ R, f ∈M ,

α · f(x) =

{
0, if 0 < x < 1;
{α(n)f( xn ) : n ≤ x}, if x ≥ 1.

It is clear that “·” is well defined.

Example 1. Let f(x) =

{
0, if 0 < x < 1;
x if x ≥ 1.

. Then, we have
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(1 · f)(x) =


0, if 0 < x < 1;
x if 1 ≤ x < 2;
{xk ,

x
k−1 , . . . , x} if k ≤ x < k + 1.

It is easy to see that h, f ∈ 1 · f where

h(x) =

 0, if 0 < x < 1;
x if 1 ≤ x < 2;
x
2 if x ≥ 2.

Example 2. Let f(x) =

{
0, if 0 < x < 1;
3, if x ≥ 1.

Then, we observe that (i · f)(x) =

{
0, if 0 < x < 1;
{3i(n), n ≤ x}, if 1 ≤ x < 2.

It is clear that

h(x) =

 0, if 0 < x < 1;
3, if 1 ≤ x < 2;
0, if x ≥ 2

.

is an element of (i · f)(x).

Remark 1. In general, 1 · f 6= f and i · f 6= f (Examples 1 and 2).

Remark 2. 1 · f = f if and only f(x) is constant when x ≥ 2.

Proposition 3.1. Let f ∈M . Then the following are true:

1. f ∈ 1 · f ,

2. f ∈ i · f ,

3. 0 · f = 0.

Proof. We prove (1), the other parts are similar. We have that

(1 · f)(x) =

{
0, if 0 < x < 1;
{f( xn ) : n ≤ x}, if x ≥ 1.

For all x ≥ 1, we have that n = 1 ≤ x. The latter implies that

f(x) =

{
0, if 0 < x < 1;
f(x), if x ≥ 1

is an element of (1 · f)(x).

Lemma 3.2. Let α ∈ G and f, g ∈M . Then α · (f + g) ⊆ α · f + α · g.
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Proof. We have

(α · (f + g))(x) =

{
0, if 0 < x < 1;
{α(n)(f( xn ) + g( xn )) : n ≤ x} if x ≥ 1.

On the other hand, we get

(α · f + α · g)(x) =

{
0, if 0 < x < 1;
{α(n)f( xn ) + α(m)g( xm ) : m,n ≤ x} if x ≥ 1.

Since {α(n)(f( xn ) + g( xn )) : n ≤ x} ⊆ {α(n)f( xn ) + α(m)g( xm ) : m,n ≤ x} for
all x ∈]0,∞[, it follows that α · (f + g) ⊆ α · f + α · g.

Lemma 3.3. Let α, β ∈ G and f ∈M . Then (α ? β) · f ⊆ α · f + β · f .

Proof. We have

((α ? β) · f)(x) = {(λ · f)(x) : λ ∈ α ? β}

=

{
0, if 0 < x < 1;
{(α(d) + β(nd ))f( xn ) : d|n, n ≤ x} if x ≥ 1.

On the other hand, we obtain

(α · f + β · f)(x) =

{
0, if 0 < x < 1;
{α(m)f( xm ) + β(n)f( xn ) : m,n ≤ x} if x ≥ 1.

Since {(α(d) + β(nd ))f( xn ) : d|n, n ≤ x} ⊆ {α(m)f( xm ) + β(n)f( xn ) : m,n ≤ x}
for all x ∈]0,∞[, it follows that (α ? β) · f ⊆ α · f + β · f .

Lemma 3.4. If α, β ∈ G and f ∈M , then α · (β · f) = (α ◦ β) · f .

Proof. We have

((α ◦ β) · f)(x) =

{
0, if 0 < x < 1;
{α(d)β(nd )f( xn ) : d|n, n ≤ x)} if x ≥ 1.

On the other hand, we observe that

(α · (β · f))(x) =

{
0, if 0 < x < 1;
{α(t)β(s)f( xts ) : t ≤ x, s ≤ x

t )} if x ≥ 1.

Since {α(d)β(nd )f( xn ) : d|n, n ≤ x)} = {α(d)β(nd )f( xn ) : d ≤ n, nd ≤
x
d} for all

x ∈]0,∞[, it follows that ((α ◦ β) · f)(x) = (α · (β · f))(x).

Theorem 3.5. (M,+, G, ·) is an Hv-module.

Proof. The proof follows from having “·” a well defined map and from Lemmas
3.2, 3.3 and 3.4.
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4 Complete parts in the Hv-module of functions over Hv-
ring of arithmetics and its fundamental module

In this section, we characterize the complete parts in the Hv-module of
functions and find its fundamental module.

Complete parts were introduced and studied for the first time by
M. Koskas [12]. Later, this topic was analyzed by P. Corsini [5] and Y. Sureau
[14] mostly in the general theory of hypergroups.

Definition 4.1. Let (M,+, R, ·) be an R-Hv-module and A ⊆M . Then A is
a complete part in M if the following implication holds:

A ∩ P 6= ∅ ⇒ P ⊆ A.

Here, P is given as:

P =
n∑
i=1

m′i,m
′
i = mi or m′i =

ni∑
j=1

(
kij∏
k=1

xijk) ·mi.

where mi ∈M and xijk ∈ R.

Let K = [1, 2[, g : K → C and Ag = {f ∈M : f |K = g}.

Lemma 4.2. Ag is a complete part in M .

Proof. Let P =
k1∏
j=1

α1,j · f1 + . . . +
km∏
j=1

αm,j · fm and f ∈ Ag ∩ P . For every

h ∈ P , we have that h|K =
k1∏
j=1

α1,j(1)f1|K + . . .+
km∏
j=1

αm,j(1)fm|K = f |K = g.

Thus, P ⊆ Ag.

Lemma 4.3. Let L = {g : K → C} and S 6= ∅ ⊆ G. Then A =
⋃
g∈S

Ag is a

complete part in M .

Proof. Let f ∈ A ∩ P . Then there exists g ∈ S such that f |K = g. The
latter implies that f ∈ Ag ∩ P . Lemma 5.4 asserts that P ⊆ Ag. Therefore,
P ⊆ A.

Lemma 4.4. Let A be a complete part in M . Then there exists S ⊆ L such
that A =

⋃
g∈S

Ag.

Proof. If S = L then M =
⋃
g∈S

Ag. Let A be a complete part in M . Then

there exists S ⊆ L such that A ⊆
⋃
g∈S

Ag. Suppose, to get contradiction, that
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there is no S ⊆ G satisfying A =
⋃
g∈S

Ag. Then there exist g ∈ G, f, h ∈ M

such that f |K = h|K = g such f ∈ A and h is not in A. Let α(n) = n and

β(n) =

{
0, if n = 2 ;
n, otherwise.

It is easy to see that f ∈ α ·h+β · (f −h). Having f ∈ A∩ (α ·h+β · (f −h))
and A a complete part in M imply that f ∈ α · h+ β · (f − h) ⊆ A. We have
that

h(x) =

 0, if 0 < x < 1;
α(1)h(x) + β(1)(f − h)(x) = f(x) if x ∈ K;
α(1)h(x) + β(2)(f − h)(x2 ) otherwise.

is an element of (h+ β · (f − h))(x). We get now that h ∈ h+ β · (f − h) ⊆ A.
The latter is a contradiction.

Theorem 4.5. Let A ⊆ M . Then A is a complete part in M if and only if
there exists S ⊆ L such that A =

⋃
g∈S

Ag.

Proof. The proof follows from Lemmas 4.3 and 4.4.

Next, we identify the fundamental module of the Hv-module of functions.

Definition 4.6. Let (M,+, R, ·) be an R-Hv-module. The heart of M , de-
noted as wM , is defined as follows:

wM = {m ∈M : ε?(m) = 0},

where 0 is the zero of the module M/ε?.

Let I =]0, 1[, J =]0, 2[ and F = {g : J → C : g|I = 0}.

Proposition 4.7. Let f, g ∈M and ρ be a relation on M defined as follows:

fρg ⇔ f |J = g|J .

Then ρ is an equivalence relation on M .

Proof. The proof is straightforward.

Theorem 4.8. The fundamental relation ε on M coincides with ρ. Moreover,
ε = ε?.

Proof. Let f |J = g|J , α(n) = n and
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β(n) =

{
0, if n = 2 ;
n, otherwise.

It is easy to see that f, g ∈ α · h+ β · (f − h). Thus, fεg.
For the converse, suppose that fεg. Then f, g ∈ f1 + . . . + fm or f, g ∈

k1∏
j=1

α1,j ·f1+. . .+
km∏
j=1

αm,j ·fm. If f, g ∈ f1+. . .+fm then f = g = f1+. . .+fm

and hence, f |J = g|J . If f, g ∈
k1∏
j=1

α1,j · f1 + . . .+
km∏
j=1

αm,j · fm then it is easy

to see that f |J = g|J =
k1∏
j=1

α1,j(1)f1|J + . . . +
km∏
j=1

αm,j(1)fm|J . Proposition

4.7 asserts that ε is transitive. Thus, ε? = ε.

Proposition 4.9. The heart of M , wM = ε(0) = A0. Moreover, it is an
Hv-submodule of M .

Proof. Since ε?(f) ⊕ ε?(0) = ε?(f), it follows that ε?(0) is the zero of the
module M/ε?. We have that wM = {f ∈ M : ε?(f) = ε?(0)} = {f ∈
M : f |J = 0}. Since f |J = 0 and K = [1, 2[⊂ J =]0, 2[, it follows that
wM = A0. Since (wM ,+) is a subgroup of (M,+), it suffices to show that
α ·wM ⊆ wM for all α ∈ R. Let α ∈ R, f ∈ wM . We have that α · f |I = 0 and
α · f |J\I = α(1)f |J\I = 0.

The authors in [2] proved that the fundamental relation γ = γ? on the
Hv-ring (G, ?, ◦) is given as follows: For all α, β ∈ G,

αγβ ⇔ α(1) = β(1).

Moreover, they showed that the fundamental ring of the Hv-ring (G, ?, ◦) is, up
to isomorphism, the ring of complex numbers (C,+, ·) under standard addition
and multiplication. Thus, (G, ?, ◦) is an Hv-field.

Remark 3. (M,+, G, ·) is an Hv-vector space over the Hv-field (G, ?, ◦).

Theorem 4.10. (F,+,C, ·) is the fundamental module of (M/ε?,⊕, G/γ?,�)
(up to isomorphism).

Proof. Let ψ : G/γ? → C be the ring isomorphism defined by the authors
in [2] as ψ(α) = α(1) and φ : (M/ε,⊕, G/γ?,�) → (F,+,C, ·) be defined as
φ(ε?(f)) = f |J . We prove that φ is a module isomorphism.
Theorem 4.8 asserts that φ is well defined and one-to-one. For every g ∈ F ,
we define

f(x) =

{
g(x), x ∈ J ;
0, otherwise.
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Now, we conclude that f ∈ M and that φ(f) = g. Thus, φ is onto. We have
that φ(ε?(f) ⊕ ε?(g)) = φ(ε?(f + g)) = (f + g)|J = φ(ε?(f)) + φ(ε?(g)) and
φ(γ?(α) � ε?(f)) = φ(ε?(h)) = h|J with h ∈ α · f . Since h|J = α(1)f |J , it
follows that φ(γ?(α)� ε?(f)) = ψ(γ?(α)) · φ(ε?(f)).

5 Strongly regular relations on the Hv-module of func-
tions

In this section, we classify the strongly regular relations on M .

Definition 5.1. LetR be an equivalence relation on anHv-module (M,+, S, ·),
A,B ⊆M . Then

1. ARB means that for every a ∈ A, there exists b ∈ B such that aRb and
for every b′ ∈ B, there exists a′ ∈ A such that a′Rb′;

2. ARB means that for every a ∈ A and for every b ∈ B, we have aRb.

Definition 5.2. LetR be an equivalence relation on anHv-module (M,+, S, ·),
a, b, c ∈M and r ∈ S. Then R is called:

1. regular relation on M if aRb implies that (a+ c)R(b+ c) and r · aRr · b;

2. strongly regular relation on M if aRb implies that (a + c)R(b + c) and

r · aRr · b.

Proposition 5.3. Let R be a strongly regular relation on M . If 0R = A0 then
R = ε.

Proof. Let f, g ∈ M such that fRg. Since R is a strongly regular relation on
M , it follows that (f −g)R0. The latter implies that f −g ∈ 0R = A0. We get
now that (f − g)|J = 0 and by applying Theorem 4.8, we deduce that R ⊆ ε.

For the converse, let f, g ∈ M such that fεg. Then f |J = g|J . The latter
implies that (f − g)|J = 0 = 0|J . We get now that f − g ∈ ε(0) = A0 = 0R.
Thus, (f − g)R0. Since R is strongly regular relation on M , it follows that
fRg. Thus, ε ⊆ R.

Proposition 5.4. Let N ⊆ F be a fixed non-empty set and R be the relation
defined by:

fRg ⇔ f |J = g|J +
∑

fλ∈N,cλ∈C
cλfλ.

Then R is strongly regular relation on M containing ε.
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Proof. It is easy to see that R is an equivalence relation on M . Let fRg,
h ∈ M and α ∈ R. Then (f + h)|J = f |J + h|J = g|J +

∑
fλ∈N,cλ∈C

cλfλ +

h|J = (g + h)|J +
∑

fλ∈N,cλ∈C
cλfλ. Thus, (f + h)R(g + h). Let u ∈ α · f, v ∈

α · g. Then u|J = α(1)f |J and v|J = α(1)g|J . We get now that u|J =

v|J + α(1)
∑

fλ∈N,cλ∈C
cλfλ = v|J +

∑
fλ∈N,mλ=α(1)cλ∈C

mλfλ. Thus, α · fRα · g.

Therefore, R is a strongly regular relation on M .

Proposition 5.5. Let R be a strongly regular relation on M . Then there
exists N ⊆ F such that

fRg ⇔ f |J = g|J +
∑

fλ∈N,cλ∈C
cλfλ.

Proof. If 0R = A0 then R = ε by Proposition 5.3. Thus, N = {0}. Suppose
0R 6= A0. Set N = {fλ = hλ|J : hλ ∈ 0R} 6= ∅. Since R is a strongly regular
relation on M , it follows that

∑
hλ ∈ 0R and α · hλ ⊆ 0R. It is easy to see

that
∑
cλhλ ∈ 0R for all cλ ∈ C. We can write 0R as 0R = {

∑
cλhλ : cλ ∈ C}

where hλ ∈ 0R. Let fRg. Then (f−g)R0. We get that (f−g)|J =
∑
cλhλ|J =∑

cλfλ.

Theorem 5.6. Let R be an equivalence relation on M . Then R is a strongly
regular relation on M if and only if there exists N ⊆ F such that

fRg ⇔ f |J = g|J +
∑

fλ∈N,cλ∈C
cλfλ.

Proof. The proof follows from Propositions 5.4 and 5.5.

Proposition 5.7. Let N ⊆ F be a fixed non-empty set Q =
∑

fλ∈N,cλ∈C
cλfλ.

Then Q is a submodule of F . Moreover, (F/Q,+,C, ·) is a module.

Proof. The proof is straightforward.

We define the operations on (M/R,⊕, G/γ?,�) as follows: For all α ∈
G, f, g ∈M ,

R(f)⊕R(g) = R(f + g) and γ?(α)�R(f) = R(h) such that h ∈ α.f.

Proposition 5.8. Let N ⊆ F be a fixed non-empty set and and R be the
strongly relation defined by:

fRg ⇔ f |J = g|J +
∑

fλ∈N,cλ∈C
cλfλ.

Then (M/R,⊕, G/γ?,�) is a module.



Hv-MODULE OF FUNCTIONS OVER Hv-RING OF ARITHMETICS AND IT’S
FUNDAMENTAL MODULE 16

Proof. The proof is straightforward.

Theorem 5.9. Let N ⊆ F be a fixed non-empty set and and R be the strongly
relation defined by:

fRg ⇔ f |J = g|J +
∑

fλ∈N,cλ∈C
cλfλ.

Then (M/R,⊕, G/γ?,�) ∼= (F/Q,+,C, ·)

Proof. Let ψ : G/γ? −→ C be the ring isomorphism defined by the authors
in [2] as ψ(γ?(α)) = α(1) and χ : M/R −→ F/Q be the map such that
χ(R(f)) = f |J +Q. Theorem 5.6 asserts that χ is well defined and one-to-one.
First, we show that χ is an onto map. Let h+Q ∈ F/Q. Then h : J → C. It
is easy to see that χ(R(f)) = h+Q where f ∈M is defined as follows:

f(x) =

{
h(x), x ∈ J ;
0, otherwise.

Finally, we need to show that χ is module homomorphism. We have that
χ(R(f) ⊕ R(g)) = χ(R(f + g)) = (f + g)|J + Q = f |J + Q + g|J + Q =
χ(R(f)) + χ(R(g)). Moreover, χ(γ?(α) � R(f)) = χ(R(α · f)) = α(1)f |J +
Q. Since α(1)f |J + Q = α(1)(f |J + Q), it follows that χ(γ?(α) � R(f)) =
ψ(γ?(α))χ(R(f)).

Next, we present two examples of different strongly regular relations on
M .

Example 3. Let h(x) =

{
0, 0 < x < 1;
1, 1 ≤ x < 2

and N = {h} ⊂ F . We define R

on M as follows:
fRg ⇔ f |[1,2[ = g|[1,2[ + c; c ∈ C.

Then R is a strongly regular relation on M . Moreover, 0R = {f ∈M : f |[1,2[ =
c, c ∈ C} 6= A0 and (M/R,⊕, R/γ?,�) ∼= (F/ < h >,+,C, ·).

Example 4. Let h(x) =

{
0, 0 < x < 1;
x2, 1 ≤ x < 2

, k(x) =

{
0, 0 < x < 1;
x, 1 ≤ x < 2

and

N = {h, k} ⊂ F . We define R on M as follows:

fRg ⇔ f |[1,2[ = g|[1,2[ + ax+ bx2; a, b ∈ C.

Then R is a strongly regular relation on M . Moreover, 0R = {f ∈M : f |[1,2[ =
ax+ bx2; a, b ∈ C} 6= A0 and (M/R,⊕, R/γ?,�) ∼= (F/ < h, k >,+,C, ·).

Finally, we present a regular relation on M that is not a strongly regular
relation.
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Proposition 5.10. Let R be the relation defined by:

fRg ⇔ f |[1,3[ = g|[1,3[.

Then R is a regular relation on M that is not a strongly regular relation.

Proof. It is clear that R is an equivalence relation on M . Let fRg, h ∈M,α ∈
G. It is clear that f + hRg + h. We need to show that α · fRα · g. For every
f1 ∈ α · f , f1|[1,3[ = α(1)f[1,3[ or f1|[1,2[ = α(1)f[1,2[ and f1|[2,3[ = α(2)f[1, 32 [.

Similarly, for g1 ∈ α · g we have: g1|[1,3[ = α(1)g[1,3[ or g1|[1,2[ = α(1)g[1,2[ and

g1|[2,3[ = α(2)g[1, 32 [. It is easy to see that α · fRα · g. Thus, R is a regular
relation on M .

Remark 4. The regular relation defined in Proposition 5.10 is not a strongly
regular relation on M . Let

α(n) =

{
1, n = 1;
2, otherwise

, f(x) =

{
0, 0 < x < 1;
1, x ≥ 1

and

f1(x) =

 0, 0 < x < 1;
1, 1 ≤ x < 2;
2, x ≥ 2.

We observe that {f, f1} ⊆ α·f . Since f |[1,3[ 6= f1|[1,3[, it follows that α·fRα·f
is not satisfied. Thus, R is not a strongly regular relation on M .
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