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Quaternion Fractional Difference with
Quaternionic Fractional Order and

Applications to Fractional Difference Equation

Chao Wang, Weiyu Xie and Ravi P. Agarwal

Abstract

In this paper, we introduce the basic notions of the fractional summa-
tion, difference and q-difference with the quaternionic fractional order
for the quaternion-valued functions and establish some of their basic
properties. Based on this, the summation representations of solutions
for the nonlinear quaternion-valued fractional difference equation and
q-difference equation are obtained. In addition, several examples are
provided to illustrate the feasibility of our obtained results in each sec-
tion.

1 Introduction

The notion of quaternions which is a noncommutative extension of complex
numbers was initiated by Hamilton in 1843, since then quaternion theory has
been widely applied in differential geometry, fuid mechanics, attitude dynam-
ics, quantum mechanics (see [1]). In the aspect of operator theory, Colombo
et al. have established the theories of noncommutative functional calculus of
slice hyperholomorphic functions and S-spectrum, and introduced the notion
of quaternionic evolution operator, based on this, the fractional powers and
fractional diffusion processes of quaternionic operators were investigated (see
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[4, 5, 6]). With the development of the dynamical analysis on hybrid domains
(see [12, 13, 14]), dynamic equations on time scales and distinguished differ-
ence equations have been deeply developed and comprehensively studied under
the quaternionic background.

In [9], Li et al. studied the commutativity of quaternion-matrix-valued
functions and quaternion matrix dynamic equations on time scales, the au-
thors presented several applications including multidimensional rotations and
transformations of the submarine, the gyroscope, and the planet whose dy-
namical behaviors are depicted by quaternion dynamics on time scales. In
2021-2022, Wang and Li et al. applied the quaternion theory to fuzzy sets and
systems, the authors studied the Hyers-ulam-rassias stability of quaternion
multidimensional fuzzy nonlinear difference equations with impulses (see [10])
and established the quaternionic results of the fuzzy dynamic equations on
time scales (see [17]). In [15], Wang et al. developed the general theory of the
higher-order quaternion linear difference equations via the complex adjoint
matrix and the quaternion characteristic polynomial and these results have
been applied to investigate the global behaviour of quaternion Riccati rational
difference equation (see [20]). In the aspect of quaternionic dynamic equations
on time scales, in [16], the authors established a theoretical framework of the
quaternion hyper-complex space in which the new quaternion hyper-complex
exponent, the hyper-complex logarithm are introduced on time scales, addi-
tionally, the prominent algebraic and geometric rotation features of the polar
coordinates and hyper-complex space are demonstrated by comparing with the
traditional quaternion theory. Moreover, the fundamental solution matrix and
Cauchy properties of quaternion combined impulsive matrix dynamic equa-
tion on time scales were studied (see [18]). In [19], Wang, Qin and Agarwal
introduced the notion of quaternionic exponentially dichotomous operators,
through establishing S-spectral splitting and slice quaternionic Banach alge-
bra, the authors studied the Cauchy problem of the quaternionic evolution
equations.

On the other hand, the fractional difference and q-difference equations are
two important distinguished discrete dynamic equations. In 1966, Al-Salam
introduced some notions of fractional q-initegerals and q-derivatives, some ba-
sic properties of them were established (see [2]). In [7], Gray and Zhang
introduced a new definition of the fractional difference which provides an ef-
fective methods to study the fractional difference equations under this notion.
However, there is no possibility to consider fractional difference equations with
quaternionic fractional order since there is no notions of the fractional summa-
tion, difference and q-difference with the quaternionic fractional order for the
quaternion-valued functions. Motivated by the above, in this paper, we will ad-
dress the basic notions of the fractional summation, difference and q-difference
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with the quaternionic fractional order for the quaternion-valued functions and
establish some of their basic properties, which will be applied to study nonlin-
ear quaternion-valued fractional difference equation and q-difference equation.

2 Quaternion Fractional Difference with Quaternionic Frac-
tional Order

Throughout the paper, we denote the set of the quaternion numbers by H,
the set of the complex numbers by C, the set of the real numbers by R, the
set of the integers by Z, the set of the positive integers by N, the set of the
nonnegative integers by N0 and the set of the negative integers by Z−.

First, we will introduce some basic knowledge of quaternion algebra which
is needed in our discussion. The canonical basis for the real associative algebra
of quaternion H is given by the elements 1, i, j, k satisfying the relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

A quaternion q is denoted by q = q0 + q1i+ q2j+ q3k, ql ∈ R, l = 0, 1, 2, 3,
its conjugate is q = q0−q1i−q2j−q3k, while its norm is given by |q|2 = qq. The
real part and imaginary part of a quaternion will be denoted by the symbol
Re[q] and Im[q], respectively. Let S be the 2−dimensional sphere of purely
imaginary unit quaternions, i.e.

S = {q = q1i+ q2j + q3k|q2
1 + q2

2 + q2
3 = 1}.

To each quaternion q it is possible to associate an element on the sphere S:

Iq =

{
Im[q]
|Im[q]| if Im[q] 6= 0,

any element of S otherwise.

Given I ∈ S we denote by CI the hyper-complex plane R + IR containing
elements of the form x+ Iy, x, y ∈ R.

Remark 2.1. From [4], for any q = q0 +q1i+q2j+q3k ∈ H, where Im[q] 6= 0,
we can represent q by the following equivalent form

q = q0 +
√
q1

2 + q2
2 + q3

2

(
q1i+ q2j + q3k√
q1

2 + q2
2 + q3

2

)
.

Therefore, CIq = {R + IqR|Iq ∈ S}, the imaginary unit Iq determines the
complex plane CIq containing q.

Similar to the Gamma function of the complex version (see [3]), we intro-
duce the following notion.
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Definition 2.1. For any q ∈ CI and I ∈ S, we define the slice Gamma
function by

ΓI(q) =

∫ ∞
0

yq−1e−ydy, Re[q] > 0, (2.1)

which converges for all q ∈ CI .

Definition 2.2 ([11]). For any quaternion q ∈ H and q = q0 +q1i+q2j+q3k,

ql ∈ R, l = 0, 1, 2, 3. Let sgn(q) := Im(q)
|Im(q)| ∈ S, the function eq defined by

eq := eq0
(

cos |q|+ sgn(q) sin |q|
)

(2.2)

is called the quaternion natural exponential function.

Remark 2.2. From Definition 2.2, we notice that for any q ∈ CI and I ∈ S,
we have

|eq| =
∣∣eq0( cos |q|+ sgn(q) sin |q|

)∣∣ ≤ 2eq0 .

Lemma 2.1. For any q ∈ CI and I ∈ S, the following property holds

ΓI(q + 1) = qΓI(q), Re[q] > 0. (2.3)

Proof. Based on integration by parts, for Re[q] > 0, we have

ΓI(q + 1) =

∫ ∞
0

yqe−ydy =
[
− yRe[q]yIIm[q]e−y

]∞
0

+

∫ ∞
0

qyq−1e−ydy.

By Remark 2.2, it follows that

lim
y→∞

−yRe[q]yIIm[q]e−y = 0,

which implies that

ΓI(q + 1) = q

∫ ∞
0

yq−1e−ydy = qΓI(q).

This completes the proof.

Remark 2.3. We rewrite the formula (2.3) into the form

(q − 1)ΓI(q − 1) = ΓI(q). (2.4)

The Gamma function has poles at zero and at the negative integers. It is easy
to use the integral representation (2.1) to explicitly represent the poles and the
analytic continuation of Γ(q) for I ∈ S:

ΓI(q) =

∫ 1

0

yq−1e−ydy +

∫ ∞
1

yq−1e−ydy



QUATERNION FRACTIONAL DIFFERENCE EQUATION 275

=

∞∑
n=0

(−1)n

(n+ q)n!
+

∫ ∞
1

yq−1e−ydy.

The second function on the right-hand side is an entire function on the hyper-

complex plane CI , and the first shows that the poles are as claimed, with (−1)n

n!
being the residue at q = −n, n = 0, 1, 2, . . ..

Let q = Q0 + IQ1 (Re[q] = Q0 = 0), through (2.4), it follows that (−1 +
IQ1)ΓI(−1 + IQ1) = ΓI(IQ1). If Re[q] = Q0 (0 < Q0 ≤ 1), then −1 <
Q0 − 1 ≤ 0, by (2.4), we obtain (q − 1)ΓI(q − 1) = ΓI(q), thus, for Re[q] ≤ 0,
(2.4) is well-defined. From (2.4) we get

ΓI(q +m+ 1) = q(q + 1) · · · (q +m)ΓI(q), m ∈ N. (2.5)

Definition 2.3. Let α, β ∈ CI and I ∈ S. (α)β,I is defined by:

(α)β,I =


ΓI(α+β)

ΓI(α) , α, α+ β /∈ Z− ∪ {0},
1, α = β = 0,

0, α = 0, β /∈ Z− ∪ {0},
undefined, otherwise.

Definition 2.4. Let a, t ∈ Z, n ∈ N0, Ωn,a,t = [a− n, t]∩Z for a− n ≤ t, we
define the set of all quaternion-valued functions F : Ωn,a,t→H by

ΨΩn,a,t,H = {F |F : Ωn,a,t→H}.

Lemma 2.2. Let α ∈ CI (I ∈ S), a, t ∈ Z, F (·) ∈ ΨΩn,a,t,H, F (t) = f1(t) +
f2(t)i + f3(t)j + f4(t)k, fm : Ωn,a,t→R for m = 1, 2, 3, 4, ∇F (t) = F (t) −
F (t− 1), then

∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u) =
∇n−n0

ΓI(n− n0 + α)

×
t∑

u=a

(t− u+ 1)n+α−n0−1,IF (u), (2.6)

where n = max{0, n0}, n0 ∈ Z and 0 < Re(α+ n0) ≤ 1.

Proof. Since

∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u)
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=
∇n−n0

ΓI(n+ α)
∇n0

t∑
u=a

(t− u+ 1)n+α−1,IF (u).

By induction, we have

∇n0

t∑
u=a

(t− u+ 1)n+α−1,IF (u) =(n+ α− 1)(n+ α− 2) · · · (n+ α− n0)

×
t∑

u=a

(t− u+ 1)n+α−n0−1,IF (u).

Therefore

∇n−n0

ΓI(n+ α)
∇n0

t∑
u=a

(t− u+ 1)n+α−1,IF (u)

=
∇n−n0

ΓI(n+ α)
(n− 1 + α)(n− 2 + α) · · · (n− n0 + α)

t∑
u=a

(t− u+ 1)n+α−n0−1,I

× F (u)

=
∇n−n0(n− 1 + α)(n− 2 + α) · · · (n− n0 + α)

(n− 1 + α)(n− 2 + α) · · · (n− n0 + α)ΓI(n− n0 + α)

×
t∑

u=a

(t− u+ 1)n+α−n0−1,IF (u)

=
∇n−n0

ΓI(n− n0 + α)

t∑
u=a

(t− u+ 1)n+α−n0−1,IF (u).

This completes the proof.

Remark 2.4. If n = 0 or n = n0, (2.6) becomes:

∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u) =
1

ΓI(α)

t∑
u=a

(t− u+ 1)α−1,IF (u).

Lemma 2.3. (2.6) defined in Lemma 2.2 is independent of any I ∈ S.

Proof. From (2.6), we obtain

1

ΓI(α)

t∑
u=a

(t− u+ 1)α−1,IF (u)
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=
1

ΓI(α)

[
(t− a+ 1)α−1,IF (a) + (t− a)α−1,IF (a+ 1) + · · ·+ (2)α−1,IF (t− 1)

+ (1)α−1,IF (t)

]
=

1

ΓI(α)

[
ΓI(t− a+ α)

ΓI(t− a+ 1)
F (a) +

ΓI(t− a− 1 + α)

ΓI(t− a)
F (a+ 1) + · · ·+ ΓI(1 + α)

ΓI(2)

× F (t− 1) + ΓI(α)F (t)

]
=

1

ΓI(α)

[
(t− a− 1 + α)(t− a− 2 + α) · · · (1 + α)αΓI(α)

ΓI(t− a+ 1)
F (a)

+
(t− a− 2 + α) · · · (1 + α)αΓI(α)

ΓI(t− a)
F (a+ 1) + · · ·+ αΓI(α)

ΓI(2)
F (t− 1)

+ ΓI(α)F (t)

]
=

(t− a− 1 + α)(t− a− 2 + α) · · · (1 + α)α

(t− a)!
F (a)

+
(t− a− 2 + α) · · · (1 + α)α

(t− a− 1)!
F (a+ 1) + · · ·+ αF (t− 1) + F (t).

Hence, (2.6) is independent of any I ∈ S. This completes the proof.

By Lemmas 2.2-2.3, we can introduce the following notion of quaternionic
fractional αth-order summation of the quaternion-valued function F (t).

Definition 2.5. Let α ∈ CI (I ∈ S) and a, t ∈ Z, F (·) ∈ ΨΩn,a,t,H, the αth-
order summation of the quaternion-valued function F (t) over Ω0,a,t is defined
by

t

S
a

αF (t) =
∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u), (2.7)

where n = max{0, n0}, n0 ∈ Z, 0 < Re(α + n0) ≤ 1, F (t) = f1(t) + f2(t)i +
f3(t)j + f4(t)k, fm : Ωn,a,t→R for m = 1, 2, 3, 4, ∇F (t) = F (t)− F (t− 1).

Remark 2.5. According to Lemmas 2.2-2.3, the equality (2.7) is well-defined.

Example 2.1. Let a = 1, t = 3, α = 1
2 , F (t) = t+ 2ti+ 3tj + 4tk, then

3

S
1

1
2F (t) =

35

8

(
1 + 2i+ 3j + 4k

)
.
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In fact, based on Definition 2.5, n = max{0, n0} = 0, we have

3

S
1

1
2F (t) =

1

ΓI(
1
2 )

3∑
u=1

(4− u)− 1
2 ,I

[
u+ 2ui+ 3uj + 4uk

]
=

1

ΓI(
1
2 )

[
(3)− 1

2 ,I
+ 2(2)− 1

2 ,I
+ 3(1)− 1

2 ,I

](
1 + 2i+ 3j + 4k

)
=

1

ΓI(
1
2 )

[
ΓI(

5
2 )

ΓI(3)
+ 2

ΓI(
3
2 )

ΓI(2)
+ 3ΓI(

1

2
)

](
1 + 2i+ 3j + 4k

)
=

1

ΓI(
1
2 )

[
3ΓI(

1
2 )

8
+ ΓI(

1

2
) + 3ΓI(

1

2
)

](
1 + 2i+ 3j + 4k

)
=

35

8

(
1 + 2i+ 3j + 4k

)
.

Example 2.2. Let a = 1, t = 3, α = 1 + 1
3 i+ 2

3j + 2
3k, F (t) = t+ ti+ tj + tk,

then
3

S
1

1+ 1
3 i+

2
3 j+

2
3kF (t) =

1

3

(
− 1 + 20i+ 27j + 20k

)
.

In fact, based on Definition 2.5, n = max{0, n0} = 0, we obtain

3

S
1

1+ 1
3 i+

2
3 j+

2
3kF (t) =

1

ΓI(1 + 1
3 i+ 2

3j + 2
3k)

3∑
u=1

(4− u) 1
3 i+

2
3 j+

2
3k,I

×
[
u+ ui+ uj + uk

]
=

1

ΓI(1 + 1
3 i+ 2

3j + 2
3k)

[
(3) 1

3 i+
2
3 j+

2
3k,I

+ 2(2) 1
3 i+

2
3 j+

2
3k,I

+ 3(1) 1
3 i+

2
3 j+

2
3k,I

](
1 + i+ j + k

)
=

1

ΓI(1 + 1
3 i+ 2

3j + 2
3k)

[
ΓI(

1
3 i+ 2

3j + 2
3k + 3)

ΓI(3)
+ 2ΓI(

1

3
i

+
2

3
j +

2

3
k + 2) + 3ΓI(

1

3
i+

2

3
j +

2

3
k + 1)

](
1 + i+ j + k

)
=

[
1

2

(1

3
i+

2

3
j +

2

3
k + 2

)(1

3
i+

2

3
j +

2

3
k + 1

)
+ 2
(1

3
i+

2

3
j +

2

3
k + 1

)
+ 3

](
1 + i+ j + k

)
=

1

3

(
− 1 + 20i+ 27j + 20k

)
.
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Example 2.3. Let a = 1, t = 3, α = − 1
3 + 2

3 i+
2
3j+

1
3k, F (t) = t+2ti+3tj+4tk,

then
3

S
1

− 1
3 + 2

3 i+
2
3 j+

1
3kF (t) =

1

18

(
− 145 + 145i+ 29j + 147k

)
.

Indeed, based on Definition 2.5, n = max{0, n0} = 1, we have

t

S
a

− 1
3 + 2

3 i+
2
3 j+

1
3kF (t) =

∇
ΓI(1− 1

3 + 2
3 i+ 2

3j + 1
3k)

3∑
u=1

(4− u)− 1
3 + 2

3 i+
2
3 j+

1
3k,I

×
[
u+ 2ui+ 3uj + 4uk

]
Based on Remark 2.4, it follows that

t

S
a

− 1
3 + 2

3 i+
2
3 j+

1
3kF (t)

=
1

ΓI(− 1
3 + 2

3 i+ 2
3j + 1

3k)

3∑
u=1

(4− u)− 4
3 + 2

3 i+
2
3 j+

1
3k,I

[
u+ 2ui+ 3uj + 4uk

]
=

1

ΓI(− 1
3 + 2

3 i+ 2
3j + 1

3k)

[
(3)− 4

3 + 2
3 i+

2
3 j+

1
3k,I

+ 2(2)− 4
3 + 2

3 i+
2
3 j+

1
3k,I

+ 3(1)− 4
3 + 2

3 i+
2
3 j+

1
3k,I

]
(1 + 2i+ 3j + 4k)

=
1

ΓI(− 1
3 + 2

3 i+ 2
3j + 1

3k)

[
ΓI(

5
3 + 2

3 i+ 2
3j + 1

3k)

ΓI(3)
+ 2ΓI(

2

3
+

2

3
i+

2

3
j +

1

3
k)

+ 3ΓI(−
1

3
+

2

3
i+

2

3
j +

1

3
k)

]
(1 + 2i+ 3j + 4k)

=

[
1

2
(
2

3
+

2

3
i+

2

3
j +

1

3
k)(−1

3
+

2

3
i+

2

3
j +

1

3
k) + (−1

3
+

2

3
i+

2

3
j +

1

3
k) + 3

]
=

1

18

(
− 145 + 145i+ 29j + 147k

)
.

Definition 2.6. Let α ∈ CI (I ∈ S) and a, t ∈ Z, F (·) ∈ ΨΩn,a,t,H, the αth-
order difference of the quaternion-valued function F (t) over Ω0,a,t is defined
by

t

∇
a

αF (t) =
t

S
a

−αF (t),

where F (t) = f1(t) + f2(t)i+ f3(t)j+ f4(t)k, fm : Ωn,a,t→R for m = 1, 2, 3, 4.

Example 2.4. Let a = 1, t = 4, α = 3
2 −

1
3 i−

2
3j −

2
3k, F (t) = t+ ti+ tj + tk,

then
4

∇
1

3
2−

1
3 i−

2
3 j−

2
3kF (t) = − 1

216

(
537 + 195i+ 81j + 195k

)
.
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In fact, based on Definition 2.6, we have

4

∇
1

3
2−

1
3 i−

2
3 j−

2
3kF (t) =

4

S
1

− 3
2 + 1

3 i+
2
3 j+

2
3kF (t).

Based on Definition 2.5, n = max{0, n0} = 2, then

4

∇
1

3
2−

1
3 i−

2
3 j−

2
3kF (t) =

4

S
1

− 3
2 + 1

3 i+
2
3 j+

2
3kF (t)

=
∇2

ΓI(2− 3
2 + 1

3 i+ 2
3j + 2

3k)

4∑
u=1

(5− u)− 1
2 + 1

3 i+
2
3 j+

2
3k,I

×
[
u+ ui+ uj + uk

]
.

Then by Remark 2.4, we have

4

∇
1

3
2−

1
3 i−

2
3 j−

2
3kF (t) =

4

S
1

− 3
2 + 1

3 i+
2
3 j+

2
3kF (t)

=
1

ΓI(− 3
2 + 1

3 i+ 2
3j + 2

3k)

4∑
u=1

(5− u)− 5
2 + 1

3 i+
2
3 j+

2
3k,I

×
[
u+ ui+ uj + uk

]
=

1

ΓI(− 3
2 + 1

3 i+ 2
3j + 2

3k)

[
(4)− 5

2 + 1
3 i+

2
3 j+

2
3k,I

+ 2(3)− 5
2 + 1

3 i+
2
3 j+

2
3k,I

+ 3(2)− 5
2 + 1

3 i+
2
3 j+

2
3k,I

+ 4(1)− 5
2 + 1

3 i+
2
3 j+

2
3k,I

]
(1 + i+ j + k)

=
1

ΓI(− 3
2 + 1

3 i+ 2
3j + 2

3k)

[
ΓI(

3
2 + 1

3 i+ 2
3j + 2

3k)

ΓI(4)

+
2ΓI(

1
2 + 1

3 i+ 2
3j + 2

3k)

ΓI(3)
+ 3ΓI(−

1

2
+

1

3
i+

2

3
j +

2

3
k)

+ 4ΓI(−
3

2
+

1

3
i+

2

3
j +

2

3
k)

]
(1 + i+ j + k)

=

[
1

6
(
1

2
+

1

3
i+

2

3
j +

2

3
k)(−1

2
+

1

3
i+

2

3
j +

2

3
k)(−3

2
+

1

3
i

+
2

3
j +

2

3
k) + (−1

2
+

1

3
i+

2

3
j +

2

3
k)(−3

2
+

1

3
i+

2

3
j

+
2

3
k) + 3(−3

2
+

1

3
i+

2

3
j +

2

3
k) + 4

]
(1 + i+ j + k)
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=− 1

216

(
537 + 195i+ 81j + 195k

)
.

Remark 2.6. Let α ∈ CI (I ∈ S), H(t) :=
t∑

u=a
(t− u+ 1)n+α−1,IF (u). Then

∇nH(t) = (n+ α− 1)(n+ α− 2) · · · (α+ 1)α

t∑
u=a

(t− u+ 1)α−1,IF (u).

In fact, since ∇H(t) = H(t)−H(t− 1) and

(t− u+ 1)n+α−m,I − (t− u)n+α−m,I

=
ΓI(t− u+ 1 + n+ α−m)

ΓI(t− u+ 1)
− ΓI(t− u+ n+ α−m)

ΓI(t− u)

=
(t− u+ n+ α−m)ΓI(t− u+ n+ α−m)− (t− u)ΓI(t− u+ n+ α−m)

(t− u)ΓI(t− u)

=
(n+ α−m)ΓI(t− u+ n+ α−m)

ΓI(t− u+ 1)
= (n+ α−m)(t− u+ 1)n+α−m−1,I ,

for 1 ≤ m ≤ n, we have

∇H(t) =H(t)−H(t− 1)

=

t∑
u=a

(t− u+ 1)n+α−1,IF (u)−
t−1∑
u=a

(t− u)n+α−1,IF (u)

=(t− t+ 1)n+α−1,IF (t) +

t−1∑
u=a

[
(t− u+ 1)n+α−1,I − (t− u)n+α−1,I

]
× F (u)

=ΓI(n+ α)F (t) + (n+ α− 1)

t−1∑
u=a

(t− u+ 1)n+α−2,IF (u)

=(n+ α− 1)

[
ΓI(n+ α− 1)F (t) +

t−1∑
u=a

(t− u+ 1)n+α−2,IF (u)

]

=(n+ α− 1)

t∑
u=a

(t− u+ 1)n+α−2,IF (u)

and

∇2H(t) =∇(∇H(t)) = ∇H(t)−∇H(t− 1)
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=(n+ α− 1)

[ t∑
u=a

(t− u+ 1)n+α−2,IF (u)−
t−1∑
u=a

(t− u)n+α−2,IF (u)

]

=(n+ α− 1)

{
ΓI(n+ α− 1)F (t) +

t−1∑
u=a

[
(t− u+ 1)n+α−2,I

− (t− u)n+α−2,I

]
F (u)

}
=(n+ α− 1)(n+ α− 2)

[
ΓI(n+ α− 2)F (t) +

t−1∑
u=a

(t− u+ 1)n+α−3,I

× F (u)

]
=(n+ α− 1)(n+ α− 2)

t∑
u=a

(t− u+ 1)n+α−3,IF (u).

By induction, one has

∇n−1H(t) = (n+ α− 1)(n+ α− 2) · · · (α+ 1)

t∑
u=a

(t− u+ 1)α,IF (u),

thus

∇nH(t) =∇(∇n−1H(t)) = ∇n−1H(t)−∇n−1H(t− 1)

=(n+ α− 1)(n+ α− 2) · · · (α+ 1)

[ t∑
u=a

(t− u+ 1)α,IF (u)

−
t−1∑
u=a

(t− u)α,IF (u)

]
=(n+ α− 1)(n+ α− 2) · · · (α+ 1)

{
(t− t+ 1)α,IF (t)

+

t−1∑
u=a

[
(t− u+ 1)α,I − (t− u)α,I

]
F (u)

}
=(n+ α− 1)(n+ α− 2) · · · (α+ 1)α

[
ΓI(α)F (t)

+

t−1∑
u=a

(t− u+ 1)α−1,IF (u)

]

=(n+ α− 1)(n+ α− 2) · · · (α+ 1)α

t∑
u=a

(t− u+ 1)α−1,IF (u).
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By Remark 2.6, the following result can be established.

Remark 2.7. Let α ∈ CI (I ∈ S) and a, t ∈ Z, F (·) ∈ ΨΩn,a,t,H, F (t) =
f1(t) + f2(t)i+ f3(t)j + f4(t)k, fm : Ωn,a,t→R for m = 1, 2, 3, 4, then

t

S
a

αF (t) =

t∑
u=a

(t− u+ 1)α−1,IF (u)

ΓI(α)
,

t

∇
a

αF (t) =

t∑
u=a

(t− u+ 1)−α−1,IF (u)

ΓI(−α)
.

In fact, by Definition 2.5, we have

t

S
a

αF (t) =
∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u).

By Remark 2.6, one has

t

S
a

αF (t) =
∇n

ΓI(n+ α)

t∑
u=a

(t− u+ 1)n+α−1,IF (u) =
∇nH(t)

ΓI(n+ α)

=

(n+ α− 1)(n+ α− 2) · · · (α+ 1)α
t∑

u=a
(t− u+ 1)α−1,IF (u)

ΓI(n+ α)

=

(n+ α− 1)(n+ α− 2) · · · (α+ 1)α
t∑

u=a
(t− u+ 1)α−1,IF (u)

(n+ α− 1)ΓI(n+ α− 1)

=

(n+ α− 2) · · · (α+ 1)α
t∑

u=a
(t− u+ 1)α−1,IF (u)

ΓI(n+ α− 1)

= . . . =

α
t∑

u=a
(t− u+ 1)α−1,IF (u)

αΓI(α)

=

t∑
u=a

(t− u+ 1)α−1,IF (u)

ΓI(α)
.

Similarly, the result of the αth−order difference of F (t) can be obtained.

3 Properties of Fractional Difference for Quaternion-valued
Functions

In 1988, Gray and Zhang established the following results of the real-valued
function with the fractional difference.
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Theorem 3.1 ([7]). Let f, g : Ωn,a,t → R, a, t ∈ Z, then one has the following
results.

(i) For any α ∈ C, p ∈ N0 and p− α ∈ C\(Z− ∪ {0}), one has

t

∇
a

αf(t) =
∇p

Γ(p− α)

t∑
u=a

(t− u+ 1)p−α−1f(u).

(ii) For α, β ∈ C, one obtain the following results:

(1) if α, β ∈ N0, then

t

∇
a

α
t

∇
a

βf(t) =
t

∇
a

α+βf(t);

(2) if α ∈ C and β ∈ C\N, then

t

∇
a

α
t

∇
a

βf(t) =
t

∇
a

α+βf(t);

(3) if α ∈ C\N0 and β ∈ N, then

t

∇
a

α
t

∇
a

βf(t) =
t

∇
a

α+βf(t)+
1

Γ(−α)

β∑
l=1

a−1∑
v=a−l

(−1)l
(
β

l

)
(t−l−v+1)−α−1f(v),

where
(
β
l

)
= Γ(β+1)

Γ(β−l+1)Γ(l+1) .

(iii) For α ∈ C\Z−, one has

t

∇
a

α
t

∇
a

−αf(t) = f(t).

(iv) For c, α ∈ C, one has

t

∇
a

α
[
cf(t) + g(t)

]
= c

t

∇
a

αf(t) +
t

∇
a

αg(t).

(v) (Leibniz Rule) If m ∈ N0, then

∇m
[
f(t)g(t)

]
=

m∑
n=0

(
m

n

)
[∇m−nf(t− n)][∇ ng(t)];

if α ∈ C\N0, then

t

∇
a

α
[
f(t)g(t)

]
=

t−a∑
n=0

(
α

n

)[
t−n
∇
a

α−nf(t− n)

]
[∇ ng(t)].
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Now we establish the following properties of fractional difference with
quaternionic fractional order which is essentially different from Theorem 3.1.

Theorem 3.2. Let F,G : Ωn,a,t → H, a, t ∈ Z, then the following results hold.

(i) For any α ∈ CI (I ∈ S), p ∈ N0 and p− α ∈ CI\(Z− ∪ {0}), one has

t

∇
a

αF (t) =
∇p

ΓI(p− α)

t∑
u=a

(t− u+ 1)p−α−1,IF (u).

(ii) For α, β ∈ CI (I ∈ S), the following results hold:

(1) if α, β ∈ N0, then

t

∇
a

α
t

∇
a

βF (t) =
t

∇
a

α+βF (t);

(2) if α ∈ CI and β ∈ CI\N, then

t

∇
a

α
t

∇
a

βF (t) =
t

∇
a

α+βF (t);

(3) if α ∈ CI\N0 and β ∈ N, then

t

∇
a

α
t

∇
a

βF (t) =
t

∇
a

α+βF (t)

+
1

ΓI(−α)

β∑
l=1

a−1∑
v=a−l

(−1)l
(
β

l

)
(t− l − v + 1)−α−1,IF (v).

(iii) For α ∈ CI\Z− (I ∈ S), we have

t

∇
a

α
t

∇
a

−αF (t) = F (t).

(iv) For C ∈ H, α ∈ CI (I ∈ S), we have

t

∇
a

α
[
CF (t) +G(t)

]
=
t

∇
a

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)



+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i
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+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j

+ (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
a

αG(t).

Proof. Let C = c1 + c2i + c3j + c4k, F (t) = f1(t) + f2(t)i + f3(t)j + f4(t)k,
G(t) = g1(t)+g2(t)i+g3(t)j+g4(t)k, similar to the proof of Theorem 3.1, the
results of (i)-(iii) can be proved on the hyper-complex plane CI immediately.
Now we only prove (iv), it follows that

t

∇
a

α
[
CF (t) +G(t)

]
=
t

∇
a

α
[
(c1 + c2i+ c3j + c4k)(f1(t) + f2(t)i+ f3(t)j + f4(t)k) + g1(t) + g2(t)i

+ g3(t)j + g4(t)k
]

=
t

∇
a

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)

+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i

+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j + (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
a

α
[
g1(t) + g2(t)i+ g3(t)j + g4(t)k

]
=
t

∇
a

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)

+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i

+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j + (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
a

αG(t).

The proof is completed.
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Particularly, if C ∈ R, we have

t

∇
a

α
[
CF (t) +G(t)

]
= C

t

∇
a

αF (t) +
t

∇
a

αG(t).

Theorem 3.3. Let F (·), G(·) ∈ ΨΩn,a,t,H, a, t ∈ Z, F (t) = f1(t) + if2(t) +
jf3(t)+kf4(t) and G(t) = g1(t)+ig2(t)+jg3(t)+kg4(t), where fl, gl : Ωn,a,t →
R, 1 ≤ l ≤ 4.

(i) If m ∈ N0, then

∇m
[
F (t)G(t)

]
=

m∑
n=0

(
m

n

)
[∇m−nf1(t− n)][∇ ng1(t)]−

m∑
n=0

(
m

n

)
[∇m−nf2(t− n)]

× [∇ ng2(t)]−
m∑
n=0

(
m

n

)
[∇m−nf3(t− n)][∇ ng3(t)]

−
m∑
n=0

(
m

n

)
[∇m−nf4(t− n)][∇ ng4(t)]

+

{ m∑
n=0

(
m

n

)
[∇m−nf1(t− n)][∇ ng2(t)] +

m∑
n=0

(
m

n

)
[∇m−nf2(t− n)]

× [∇ ng1(t)] +

m∑
n=0

(
m

n

)
[∇m−nf3(t− n)][∇ ng4(t)]−

m∑
n=0

(
m

n

)
× [∇m−nf4(t− n)][∇ ng3(t)]

}
i

+

{ m∑
n=0

(
m

n

)
[∇m−nf1(t− n)][∇ ng3(t)] +

m∑
n=0

(
m

n

)
[∇m−nf3(t− n)]

× [∇ ng1(t)]−
m∑
n=0

(
m

n

)
[∇m−nf2(t− n)][∇ ng4(t)]

+

m∑
n=0

(
m

n

)
[∇m−nf4(t− n)][∇ ng2(t)]

}
j

+

{ m∑
n=0

(
m

n

)
[∇m−nf1(t− n)][∇ ng4(t)] +

m∑
n=0

(
m

n

)
[∇m−nf4(t− n)]

× [∇ ng1(t)] +

m∑
n=0

(
m

n

)
[∇m−nf2(t− n)][∇ ng3(t)]
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−
m∑
n=0

(
m

n

)
[∇m−nf3(t− n)][∇ ng2(t)]

}
k. (3.8)

(ii) If α ∈ CI\N0 (I ∈ S), then

t

∇
a

α
[
F (t)G(t)

]
=

t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf1(t− n)∇ ng1(t)−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf2(t− n)∇ ng2(t)

−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf3(t− n)∇ ng3(t)−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf4(t− n)

×∇ ng4(t) +

{ t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf1(t− n)∇ ng2(t) +

t−a∑
n=0

(
α

n

)

×
t−n
∇
a

α−nf2(t− n)∇ ng1(t) +

t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf3(t− n)∇ ng4(t)

−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf4(t− n)∇ ng3(t)

}
i

+

{ t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf1(t− n)∇ ng3(t) +

t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf3(t− n)

×∇ ng1(t)−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf2(t− n)∇ ng4(t) +

t−a∑
n=0

(
α

n

)

×
t−n
∇
a

α−nf4(t− n)∇ ng2(t)

}
j +

{ t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf1(t− n)∇ ng4(t)

+

t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf4(t− n)∇ ng1(t) +

t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf2(t− n)

×∇ ng3(t)−
t−a∑
n=0

(
α

n

)
t−n
∇
a

α−nf3(t− n)∇ ng2(t)

}
k. (3.9)

Proof. Since F (t) = f1(t) + if2(t) + jf3(t) +kf4(t) and G(t) = g1(t) + ig2(t) +
jg3(t) + kg4(t), one has

F (t)G(t) =f1(t)g1(t)− f2(t)g2(t)− f3(t)g3(t)− f4(t)g4(t) + [f1(t)g2(t)

+ f2(t)g1(t) + f3(t)g4(t)− f4(t)g3(t)]i+ [f1(t)g3(t) + f3(t)g1(t)
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− f2(t)g4(t) + f4(t)g2(t)]j + [f1(t)g4(t) + f4(t)g1(t) + f2(t)g3(t)

− f3(t)g2(t)]k := R.

Similar to the proof of (iv) and (v) in Theorem 3.1, we have ∇m
[
F (t)G(t)

]
=

∇mR and
t

∇
a

α
[
F (t)G(t)

]
=

t

∇
a

αR, then the results follow. The proof is com-

pleted.

In what follows, some properties of the fractional difference of the quaternion-
valued functions for the limit case will be established.

Theorem 3.4 ([7]). Let f, g : Ω0,−∞,t → R, t ∈ Z, where Ω0,−∞,t = (−∞, t]∩
Z.

(i) For any α ∈ C, p ∈ N0 and p−α ∈ C\(Z− ∪{0}), if
t

∇
−∞

αf(t) exists, then

t

∇
−∞

αf(t) = lim
a→−∞

∇p

Γ(p− α)

t∑
u=a

(t− u+ 1)p−α−1f(u).

(ii) If one of the following conditions (C1)− (C3) holds, then

t

∇
−∞

α
t

∇
−∞

βf(t) =
t

∇
−∞

α+βf(t) and
t

∇
−∞

α
t

∇
−∞
−αf(t) = f(t).

(C1) α, β ∈ N0;

(C2) α ∈ C and β ∈ C\N0,
t

∇
−∞

βf(t), lim
a→−∞
b→−∞

t

∇
a

α
t

∇
b

βf(t) and

t

∇
−∞

α+β−nf(t) exist, where n = max{0, n1, n2} for 0 < Re(n1 − α) ≤ 1

and 0 < Re(n2 − α− β) ≤ 1;

(C3) α ∈ C\N0 and β ∈ N,
t

∇
−∞

αf(t) and
t

∇
−∞

α
t

∇
−∞

βf(t) exist.

(iii) For c, α ∈ C, if
t

∇
−∞

αf(t) and
t

∇
−∞

αg(t) exist, then

t

∇
−∞

α[cf(t) + g(t)] = c
t

∇
−∞

αf(t) +
t

∇
−∞

αg(t).

(iv) If α ∈ C\N0, lim
a→−∞
b→−∞

t−a∑
n=0

(
α
n

)[t−n
∇
b

α−nf(t−n)

]
∇ ng(t) and lim

b→−∞

t

∇
b

α−nf(t)

exist for any fixed t, then

t

∇
−∞

αf(t)g(t) =

∞∑
n=0

(
α

n

)[
t−n
∇
−∞

α−nf(t− n)

]
[∇ ng(t)].
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Theorem 3.5. Let F,G : Ω0,−∞,t → H, t ∈ Z, F (t) = f1(t)+if2(t)+jf3(t)+
kf4(t) and G(t) = g1(t) + ig2(t) + jg3(t) + kg4(t), where fl, gl : Ω0,−∞,t → R,
1 ≤ l ≤ 4.

(i) For any α ∈ CI (I ∈ S), p ∈ N0 and p − α ∈ CI\(Z− ∪ {0}), if
t

∇
−∞

αfl(t)

exists for 1 ≤ l ≤ 4, then

t

∇
−∞

αF (t) = lim
a→−∞

∇p

ΓI(p− α)

t∑
u=a

(t− u+ 1)p−α−1,IF (u).

(ii) If one of the following conditions (D1)− (D3) holds, then

t

∇
−∞

α
t

∇
−∞

βF (t) =
t

∇
−∞

α+βF (t) and
t

∇
−∞

α
t

∇
−∞
−αF (t) = F (t).

(D1) α, β ∈ N0;

(D2) α ∈ CI (I ∈ S) and β ∈ CI\N0 (I ∈ S),
t

∇
−∞

βfl(t),

lim
a→−∞
b→−∞

t

∇
a

α
t

∇
b

βfl(t) and
t

∇
−∞

α+β−nfl(t) exist for 1 ≤ l ≤ 4, where n =

max{0, n1, n2} for 0 < Re(n1 − α) ≤ 1 and 0 < Re(n2 − α− β) ≤ 1;

(D3) α ∈ CI\N0 (I ∈ S) and β ∈ N,
t

∇
−∞

αfl(t) and
t

∇
−∞

α
t

∇
−∞

βfl(t)

exist for 1 ≤ l ≤ 4.

(iii) For C ∈ H, α ∈ CI (I ∈ S), if
t

∇
−∞

αfl(t) and
t

∇
−∞

αgl(t) for 1 ≤ l ≤ 4,

then

t

∇
−∞

α
[
CF (t) +G(t)

]

=
t

∇
−∞

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)

+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i

+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j + (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
−∞

αG(t).
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Proof. Let C = c1 + c2i + c3j + c4k, F (t) = f1(t) + f2(t)i + f3(t)j + f4(t)k,
G(t) = g1(t)+g2(t)i+g3(t)j+g4(t)k, similar to the proof of Theorem 3.4, the
results of (i)-(ii) can be proved on the hyper-complex plane CI immediately.
Now we only prove (iii), it follows that

t

∇
−∞

α
[
CF (t) +G(t)

]
=

t

∇
−∞

α
[
(c1 + c2i+ c3j + c4k)(f1(t) + f2(t)i+ f3(t)j + f4(t)k)

+ g1(t) + g2(t)i+ g3(t)j + g4(t)k
]

=
t

∇
−∞

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)

+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i

+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j + (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
−∞

α
[
g1(t) + g2(t)i+ g3(t)j + g4(t)k

]

=
t

∇
−∞

α
[
(c1 c2 c3 c4)


f1(t)
−f2(t)
−f3(t)
−f4(t)

+ (c1 c2 c3 c4)


f2(t)
f1(t)
f4(t)
−f3(t)

 i

+ (c1 c2 c3 c4)


f3(t)
−f4(t)
f1(t)
f2(t)

 j + (c1 c2 c3 c4)


f4(t)
f3(t)
−f2(t)
f1(t)

 k
]

+
t

∇
−∞

αG(t).

This completes the proof.

Particularly, for C ∈ R, we have

t

∇
−∞

α
[
CF (t) +G(t)

]
= C

t

∇
−∞

αF (t) +
t

∇
−∞

αG(t).

Theorem 3.6. Let α ∈ CI\N0 (I ∈ S), t ∈ Z, F (·), G(·) ∈ ΨΩ0,−∞,t,H, F (t) =
f1(t)+ if2(t)+jf3(t)+kf4(t) and G(t) = g1(t)+ ig2(t)+jg3(t)+kg4(t), where
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fl, gl : Ω0,−∞,t → R, 1 ≤ l ≤ 4. If

lim
a→−∞
b→−∞

t−a∑
n=0

(
α

n

)
t−n
∇
b

α−nfu(t− n)∇ ngv(t) and lim
b→−∞

t

∇
b

α−nfu(t)

exist for any fixed t and 1 ≤ u, v ≤ 4, then

t

∇
−∞

α
[
F (t)G(t)

]
=

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf1(t− n)∇ ng1(t)−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf2(t− n)∇ ng2(t)

−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf3(t− n)∇ ng3(t)−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf4(t− n)∇ ng4(t)

+

{ ∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf1(t− n)∇ ng2(t) +

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf2(t− n)∇ ng1(t)

+

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf3(t− n)∇ ng4(t)−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf4(t− n)∇ ng3(t)

}
i

+

{ ∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf1(t− n)∇ ng3(t) +

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf3(t− n)∇ ng1(t)

−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf2(t− n)∇ ng4(t) +

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf4(t− n)∇ ng2(t)

}
j

+

{ ∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf1(t− n)∇ ng4(t) +

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf4(t− n)∇ ng1(t)

+

∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf2(t− n)∇ ng3(t)−
∞∑
n=0

(
α

n

)
t−n
∇
−∞

α−nf3(t− n)∇ ng2(t)

}
k.

Proof. Similar to the proof process of (iii) and (iv) in Theorem 3.4, the desired
result is immediate, we omit the proof here.

4 Solution Representation of Nonlinear Quaternion-valued
Fractional Difference Equation

Consider the following nonlinear quaternion-valued fractional difference equa-
tion

t

∇
a

−αy(t) = F
(
t− 1, y(t− 1)

)
(4.10)
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with the initial condition:

y(a− 1) = y0 ∈ H, (4.11)

where α ∈ CI\Z− (I ∈ S), a, t ∈ Z.

Theorem 4.1. Let a, t ∈ Z, a < t. The solution of (4.10) with the initial
condition (4.11) has the following summation representation

y(t) =

t∑
u=a+1

(t− u− 1− α)(t− u− 2− α) · · · (−α)

(t− u)!
F (u− 1, y(u− 1))

+
(t− a− 1− α)(t− a− 2− α) · · · (−α)

(t− a)!
F (a− 1, y0).

Proof. By Theorem 3.2 (iii), one has

t

∇
a

α
t

∇
a

−αy(t) =
t

∇
a

αF (t− 1, y(t− 1))

and by Remark 2.7, we have

y(t) =

t∑
u=a

(t− u+ 1)−α−1,I

ΓI(−α)
F (u− 1, y(u− 1)).

On the other hand, since

y(t) =
1

ΓI(−α)

[ t∑
u=a+1

(t− u+ 1)−α−1,IF (u− 1, y(u− 1)) + (t− a+ 1)−α−1,I

× F (a− 1, y(a− 1))

]
=

1

ΓI(−α)

[ t∑
u=a+1

ΓI(t− u− α)

ΓI(t− u+ 1)
F (u− 1, y(u− 1)) +

ΓI(t− a− α)

ΓI(t− a+ 1)

× F (a− 1, y0)

]
=

1

ΓI(−α)

[ t∑
u=a+1

(t− u− 1− α)(t− u− 2− α) · · · (−α)ΓI(−α)

ΓI(t− u+ 1)

× F (u− 1, y(u− 1)) +
(t− a− 1− α)(t− a− 2− α) · · · (−α)ΓI(−α)

ΓI(t− a+ 1)
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× F (a− 1, y0)

]
=

t∑
u=a+1

(t− u− 1− α)(t− u− 2− α) · · · (−α)

(t− u)!
F (u− 1, y(u− 1))

+
(t− a− 1− α)(t− a− 2− α) · · · (−α)

(t− a)!
F (a− 1, y0),

the solution of (4.10) with the initial condition (4.11) has the following sum-
mation representation

y(t) =

t∑
u=a+1

(t− u− 1− α)(t− u− 2− α) · · · (−α)

(t− u)!
F (u− 1, y(u− 1))

+
(t− a− 1− α)(t− a− 2− α) · · · (−α)

(t− a)!
F (a− 1, y0).

The proof is completed.

Remark 4.1. In Theorem 4.1, the solution of (4.10) can be obtained by the
following iteration algorithm. Since the initial condition is provided on the
point a− 1, we obtain the solution at the point a,

y(a) =
1

ΓI(−α)

a∑
u=a

ΓI(a− u− α)

ΓI(a− u+ 1)
F (u− 1, y(u− 1))

=
1

ΓI(−α)

[
ΓI(−α)

ΓI(1)
F (a− 1, y(a− 1))

]
=F (a− 1, y0)

and then the solution at the point a+ 1 is obtained by

y(a+ 1) =
1

ΓI(−α)

a+1∑
u=a

ΓI(a+ 1− u− α)

ΓI(a+ 1− u+ 1)
F (u− 1, y(u− 1))

=
1

ΓI(−α)

[
ΓI(1− α)

ΓI(2)
F (a− 1, y0) +

ΓI(−α)

ΓI(1)
F (a, y(a))

]
=

1

ΓI(−α)

[
− αΓI(−α)F (a− 1, y0) + ΓI(−α)F (a, y(a))

]
=− αF (a− 1, y0) + F (a, y(a)).

By iteration process, the solution at the point a+ 2 is given by

y(a+ 2) =
1

ΓI(−α)

a+2∑
u=a

ΓI(a+ 2− u− α)

ΓI(a+ 2− u+ 1)
F (u− 1, y(u− 1))
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=
1

ΓI(−α)

[
ΓI(2− α)

ΓI(3)
F (a− 1, y0) +

ΓI(1− α)

ΓI(2)
F (a, y(a))

+
ΓI(−α)

ΓI(1)
F (a+ 1, y(a+ 1))

]
=

1

ΓI(−α)

[
(1− α)(−α)ΓI(−α)

2!
F (a− 1, y0) + (−α)ΓI(−α)F (a, y(a))

+ ΓI(−α)F (a+ 1, y(a+ 1))

]
=

(1− α)(−α)

2!
F (a− 1, y0) + (−α)F (a, y(a)) + F (a+ 1, y(a+ 1)).

Repeating the same process, we have

y(a+ n) =
1

ΓI(−α)

a+n∑
u=a

ΓI(a+ n− u− α)

ΓI(a+ n− u+ 1)
F (u− 1, y(u− 1))

=
1

ΓI(−α)

[
ΓI(n− α)

ΓI(n+ 1)
F (a− 1, y0) +

ΓI(n− 1− α)

ΓI(n)
F (a, y(a))

+ · · ·+ ΓI(−α)

ΓI(1)
F (a+ n− 1, y(a+ n− 1))

]
=

1

ΓI(−α)

[
(n− 1− α)(n− 2− α) · · · (−α)ΓI(−α)

n!
F (a− 1, y0)

+
(n− 2− α)(n− 3− α) · · · (−α)

(n− 1)!
ΓI(−α)F (a, y(a))

+ · · ·+ ΓI(−α)F (a+ n− 1, y(a+ n− 1))

]
=

(n− 1− α)(n− 2− α) · · · (−α)

n!
F (a− 1, y0)

+
(n− 2− α)(n− 3− α) · · · (−α)

(n− 1)!
F (a, y(a))

+ · · ·+ F (a+ n− 1, y(a+ n− 1)).

Example 4.1. Consider the following quaternion fractional difference equa-
tion with the initial value y(1) = 1 + i+ j + k,

t

∇
2

− 1
2−

1
3 i+

2
3 j+

2
3ky(t) = (t− 1)y(t− 1)(1 + 2i+ 3j + 4k).

By Theorem 4.1, we have the following summation representation of its solu-
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tion

y(t) =

t∑
u=3

(t− u− 1
2 + 1

3 i−
2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!
(u− 1)y(u− 1)

× (1 + 2i+ 3j + 4k) +
(t− 5

2 + 1
3 i−

2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!

× (−8 + 4i+ 3j + 6k).

In fact, for F (t − 1, y(t − 1)) = (t − 1)y(t − 1)(1 + 2i + 3j + 4k), a = 2,
α = − 1

2 −
1
3 i+ 2

3j + 2
3k, y0 = 1 + i+ j + k, by Theorem 4.1 we have

y(t) =

t∑
u=3

(t− u− 1
2 + 1

3 i−
2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!
F (u− 1, y(u− 1))

+
(t− 5

2 + 1
3 i−

2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!
F (1, y(1))

=

t∑
u=3

(t− u− 1
2 + 1

3 i−
2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!
(u− 1)y(u− 1)

× (1 + 2i+ 3j + 4k) +
(t− 5

2 + 1
3 i−

2
3j −

2
3k) · · · ( 1

2 + 1
3 i−

2
3j −

2
3k)

(t− u)!

× (−8 + 4i+ 3j + 6k).

5 Solution Representation of Nonlinear Quaternion-valued
Fractional q-Difference Equation

Definition 5.1 ([2]). Let 0 < q < 1, qZ = {qv : v ∈ Z} ∪ {0}, f : qZ→R.
Then a q-analogue of the integral is defined by∫ ∞

x

f(t)d(t; q) = x(1− q)
∞∑
k=1

q−kf(xq−k) for x ∈ qZ.

Moreover, the q-derivative of f is defined by

Dqf(t) =

{
f(t)−f(qt)

t−qt , t 6= 0,

lim
t→0

(Dqf)(t), t = 0,
D0
qf = f, Dn

q f = Dq(D
n−1
q f).

According to (1.11) in [2], we introduce the q-Gamma function of the
quaternionic version.
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Definition 5.2. Let α ∈ CI\(Z− ∪ {0}), I ∈ S. The q-Gamma function is
defined by

Γq,I(α) =
e(qα)

e(q)(1− q)α−1
,

where e(u) =
∞∏
n=0

(1− uqn)−1 and this function Γq,I(α) satisfies Γq,I(α+ 1) =

[α]Γq,I(α) for [α] = 1−qα
1−q ; Γq,I(α+ 1) = [1][2] . . . [α] if α ∈ N.

According to (2.1) in [2], we introduce the notion of the αth-order fractional
q-difference of the quaternion-valued function F (x).

Definition 5.3. Let α ∈ CI\(Z− ∪ {0}), 0 < q < 1, F : qZ→H, F (x) =

f1(x) + f2(x)i + f3(x)j + f4(x)k, fm : qZ→R, m = 1, 2, 3, 4, the αth-order
fractional q-difference of the quaternion-valued function F (x) is defined by

S0
qF (x) = F (x), S−αq F (x) =

q−
1
2α(α−1)

Γq,I(α)

∫ ∞
x

(t− x)α−1F (tq1−α)d(t; q),

where

(t− x)α−1 = tα−1 e
(
qα−1x
t

)
e
(
x
t

) .

Theorem 5.1 ([2]). Let 0 < q < 1.

(i) If c1, c2 ∈ C, α ∈ C\(Z− ∪ {0}), f1, f2 : qZ→R, then

Sαq
(
c1f1(x) + c2f2(x)

)
= c1S

α
q f1(x) + c2S

α
q f2(x).

(ii) If α, β ∈ C\(Z− ∪ {0}), f : qZ→R, then

Sαq S
β
q f(x) = Sα+β

q f(x).

Similar to the proof of Theorem 5.1, the properties can be extended to the
quaternionic version immediately.

Theorem 5.2. Let 0 < q < 1.

(i) If c1, c2 ∈ CI , α ∈ CI\(Z− ∪ {0}), F,G : qZ→H, then

Sαq
(
c1F (x) + c2G(x)

)
= c1S

α
q F (x) + c2S

α
q G(x).

(ii) If α, β ∈ CI\(Z− ∪ {0}), F : qZ→R, then

Sαq S
β
q F (x) = Sα+β

q F (x).
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Consider the following nonlinear quaternion-valued fractional q-difference
equation

Sαq y(t) = F
(
t, y(t)

)
(5.12)

with the initial condition:
y(a) = q0 ∈ H. (5.13)

where α ∈ CI\(Z− ∪ {0}), 0 < q < 1, t < a <∞ and F : qZ→H.

Theorem 5.3. Let α ∈ CI\(Z− ∪{0}), 0 < q < 1, t < a <∞ and F : qZ→H,
the summation representation of solution of (5.12) with the initial condition
(5.13) is given by

y(t) =
q−

1
2α(α−1)

Γq,I (α)
a(1− q)

ln t−ln a
ln q −1∑
k=0

qk(tqk − t)(α−1)F (tq1−α+k, y(tq1−α+k))

+

ln t−ln a
ln q −1∏
n=0

(
1− (qα−1τ/t)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (τ/t)qn

)−1

q0.

Proof. By Theorem 5.2 (ii), we have

y(t) =S−αq Sαq y(t)

=S−αq F (t, y(t))

=
q−

1
2α(α−1)

Γq,I (α)

∫ ∞
t

(τ − t)α−1F (τq1−α, y(τq1−α))d(τ ; q)

=
q−

1
2α(α−1)

Γq,I (α)

∫ a

t

(τ − t)α−1F (τq1−α, y(τq1−α))d(τ ; q)

+
q−

1
2α(α−1)

Γq,I (α)

∫ ∞
a

(τ − t)α−1F (τq1−α, y(τq1−α))d(τ ; q).

On the other hand, since

(τ − t)α−1 =τα−1

∞∏
n=0

(
1− (qα−1τ/t)qn

)−1

∞∏
n=0

(
1− (τ/t)qn

)−1
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=τα−1

∞∏
n=0

(
1− (qα−1τ/a)qn

)−1

∞∏
n=0

(
1− (τ/a)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (qα−1τ/t)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (τ/t)qn

)−1

=(τ − a)α−1

ln t−ln a
ln q −1∏
n=0

(
1− (qα−1τ/t)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (τ/t)qn

)−1

,

through using the initial condition y(a) = q0 and t < a, we have

y(t) =
q−

1
2α(α−1)

Γq,I (α)

∫ a

t

(τ − t)(α−1)F (τq1−α, y(τq1−α))d(τ ; q)

+

ln t−ln a
ln q −1∏
n=0

(
1− (qα−1τ/t)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (τ/t)qn

)−1

q0

=
q−

1
2α(α−1)

Γq,I (α)
a(1− q)

ln t−ln a
ln q −1∑
k=0

qk(tqk − t)(α−1)F (tq1−α+k, y(tq1−α+k))

+

ln t−ln a
ln q −1∏
n=0

(
1− (qα−1τ/t)qn

)−1

ln t−ln a
ln q −1∏
n=0

(
1− (τ/t)qn

)−1

q0.

The proof is completed.

6 Conclusion and Further Discussion

The real, associative algebra of quaternions H = HR is given by

HR =

{
a+

3∑
l=1

vlel : a, v1, v2, v3 ∈ R
}
,

where the imaginary units e1, e2, e3 satisfy e2
1 = e2

2 = e2
3 = −1, e1e2 =

−e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.
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Each quaternion q = a+
3∑
l=1

vlel may be decomposed as q = Sc(q)+Vec(q),

where Sc(q) = a is the scalar part of q and Vec(q) = v =
3∑
l=1

vlel is the vector

part of q.

For q = a + v = a +
3∑
l=1

vlel ∈ HR and z ∈ C, we define the quaternionic

power zq ∈ HC by

zq := za
[

cos(|v| log z) +
v

|v|
sin(|v| log z)

]
, (6.14)

where

HC =

{
a+

3∑
l=1

vlel : a, v1, v2, v3 ∈ C
}
.

This definition of zq allows for the usual differentiation and integration rules:

d

dz
zq = qzq−1 and

∫
zqdz =

zq+1

q + 1
+ const., q 6= −1. (6.15)

Now, we introduce the quaternionic Gamma function Γ by setting

Γ(q) :=

∫ ∞
0

ta−1 cos(|v| log t)e−tdt+
v

|v|

∫ ∞
0

ta−1 sin(|v| log t)e−tdt (6.16)

Based on (6.14), we can write (6.16) into the following more succinct from

Γ(q) :=

∫ ∞
0

tq−1e−tdt, Sc(q) > 0. (6.17)

Indeed, based on (6.14), we have

za−1zqz−ae−z =

[
za−1 cos(|v| log z)e−z +

v

|v|
za−1 sin(|v| log z)e−z

]
.

Integrating the both sides of above equation, we have∫ ∞
0

za−1zqz−ae−zdz =

∫ ∞
0

za−1 cos(|v| log z)e−zdz

+
v

|v|

∫ ∞
0

za−1 sin(|v| log z)e−zdz∫ ∞
0

zq−1e−zdz =

∫ ∞
0

za−1 cos(|v| log z)e−zdz
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+
v

|v|

∫ ∞
0

za−1 sin(|v| log z)e−zdz

=Γ(q).

i.e Γ(q) =
∫∞

0
tq−1e−tdt.

Moreover, integration by parts in the integral (6.17), where we use the
differentiation formula (6.15), produces the functional equation

Γ(q + 1) = qΓ(q), Sc(q) > 0.

Therefore, by using the properties of the usual quaternion Gamma function
in [8] or the slice Gamma function of this paper on the hyper-complex plane CI ,
the basic notions of the fractional summation, difference and q-difference with
the quaternionic fractional order for the quaternion-valued functions and their
basic properties are consistent. Moreover, the summation representations of
solutions for the nonlinear quaternion-valued fractional difference equation and
q-difference equation can be used to transform these two types of fractional
difference equation into the corresponding sum equation, for which we can
use the methods of functional analysis such as the fixed point theorems and
Lyapunov functionals to study the qualitative properties of solutions in the
future.
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