
DOI: 10.2478/auom-2024-0014
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A simplified Proof of the Hopf Conjecture

Luca Sabatini

Abstract

The use of the barycentre map between two copies of Rn , the first
one with a metric without conjugate points, the second one with the
canonical flat metric, allows to prove in a simplified way the fact that
Riemannian tori without conjugate points are flat, as conjectured by
Hopf in 1948 and proved definitively by Burago and Ivanov in 1994.

1 Introduction

The flatness of a torus without conjugate points was proposed by E. Hopf in
1948 ([4]) and established by the same author in dimension n = 2 . D. Burago
and S. Ivanov definitively proved the statement for n dimensional tori in 1994
([1]). The main idea of the work of above cited authors is to show that the
Banach norm, induced by the metric g̃ without conjugate points in the univer-
sal covering (Rn, g̃) of a rational torus (Rn/Qn, g) , holds some “ roundness ”
property which makes flat the torus. To make so, they decomposed (Rn, g̃) in
1-dimensional sheets getting a rational foliation of this space. The roundness
of the norm comes from the use of the Birkhoff Ergodic Theorem and advanced
tools of integral geometry applied to the Busemann function along the rays of
this rational foliation. Classical arguments of density of Qn in Rn complete
the proof of the theorem.

In this paper we propose another proof of this theorem: we consider two
copies of Rn , one equipped by the canonical flat metric g̃0 , the other one
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with the metric g̃ without conjugate points, as in the cited work of Burago
and Ivanov. We build a C∞ equivariant map H : (Rn, g̃) → (Rn, g̃0) , the
barycentre map, such that the metric tensors of both copies of Rn appear
in its differential. We prove the constance of the tensor g̃ along the rays of
a rational foliation using still the Birkhoff Ergodic Theorem; usual density
arguments end the proof.

2 Rational foliations of Rn

Let (Rn, g̃0) and (Rn, g̃) be two copies of Rn , the first one equipped by the
canonical flat metric, the second one with a metric g̃ such that the length
of any geodesic is the distance between the end points, this metric has not
conjugate points. The spaces (Rn, g̃0) and (Rn, g̃) are respectively the uni-
versale coverings of the torus (Rn/Qn, g0) and of the torus (Rn/Qn, g) ; both
coverings have Qn as automorphisms group. Let Sn be the unit sphere of
(Rn, g̃) , a point p ∈ Sn is said to be rational is tp ∈ Qn for some positive
real number t. Busemann proved (see [2]) that for every p rational and for
every positive real number t there exists a Qn− invariant vector field up such
that, for every ỹ ∈ Rn ,

• its trajectories are geodesic in the direction p: expỹ tup(ỹ) = ỹ + tp ,

• there is a quasi-isometry between the two copies of Rn , i.e. for every
couple of points x̃ and ỹ , if ‖ • ‖ is the usual distance induced by the
canonical metric and d̃ is the distance induced by the metric g̃ , there
exists a positive constant c such that∣∣∣ ‖x̃− ỹ‖ − d̃(x̃, ỹ)

∣∣∣ ≤ c (2.1)

The foliation determined by up is called a rational foliation on the direc-
tion p.

3 The barycentre map

3.1 Regularization of the distance function

A previous result of K. Grove and K. Shiohama ([3]) concerning a suitable
regularization of the distance function, which will be necessary in the next
developments, is presented here in such a way to define in a suitable way the
barycentre map.
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Let (M, g) be any Riemannian manifold whose %M is the associated Rie-
mannian distance and inj(M, g) its injectivity radius, we denote by ωn the
volume of the canonical sphere; the result of Grove and Shiohama gives the

Lemma 3.1. For every r > 0 there exists a C∞ function %r : M×M → R+

such that, for every y, z ∈M

1. |%M (y, z)− %r(y, z)| ≤ r ;

2. ∀ γ ∈ Isom(M, g) one has %r(γy, γz) = %r(y, z);

3. | ∇%r | ≤ cosh(kr) ≤ 1 + c1k
2r2 , where −k2 is a lower bound of the

sectional curvature of (M, g).

Following the above cited authors, the construction of %r is as follows.

Let φ : [ 0,+∞ [ be a decreasing C∞−function satisfying φ = 1 in a neigh-
borhood of 0 and φ = 0 on [ 1,+∞ [ . For r sufficiently small one defines
first φr by

φr =
φ
(
t
r

)
ωn−1

∫ r

0
φ
(
s
r

)
sn−1ds

.

and one defines the regularized distance function %r by:

Definition 3.2.

%r(y, z) =

∫
B(0y,r)

%M
(
expy(v), z

)
φr (‖v‖) dv

=

∫ r

0

(∫
Uy

%y
(
expy(tu), z

)
du

)
φr(t) tn−1dt

where B(0y, r) and Uy are respectively the ball of radius r and the unit sphere
in the tangent space

(
TyM, gy

)
, both endowed with the canonical measure

associated to the Euclidean structure gy .

We emphasize here the fact that %r no more enjoys the symmetry property
(i.e. %r(y, z) 6= %r(z, y) ) but it still enjoys some of the distance function usual
properties.
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3.2 The barycentre of a measure in (Rn, g̃0)

Let µ be any positive measure on (Rn, g̃0) such that
∫
Rn(1 + ‖z̃‖) dµ(z̃) <

+∞ , the barycentre of the measure µ is the point bar(µ) of Rn defined by

bar(µ) =

∫
Rn z̃ dµ(z̃)∫
Rn dµ(z̃)

(3.1)

From its definition, it follows directly that that the barycentre satisfies the
equivariance property: for any isometry γ of Rn

bar(γ∗µ) = γ[ barµ ]. (3.2)

3.3 Definition and properties of the barycentre map

Let a > 0 be any strictly positive constant, we define a map ỹ → µỹ from
(Rn, g̃) to the space of finite measures of (Rn, g̃0) by

dµỹ(•) = e−a%r(y,•)dvg̃0(•) (3.3)

where dvg̃0(•) is the canonical measure on Rn . The assumptions a > 0 and
(2.1) imply that

∫
Rn

(1 + ‖z̃‖) dµỹ(z̃) ≤ ea[c+r+%(ỹ,0)]

∫
Rn

(1 + ‖z̃‖) e−a ‖z̃‖ dvg̃0(z̃) < +∞.

Following the relation (3.1), previous inequality gives sense to the definition:

H̃(ỹ) = bar(µỹ) =

∫
Rn z̃ e

−a%r(ỹ,z̃) dvg̃0(z̃)∫
Rn e−a%r(ỹ,z̃) dvg̃0(z̃)

(3.4)

which is valid for every ỹ ∈ (Rn, g̃) and thus defines a map: H̃ : (Rn, g̃) →
(Rn, g̃0) called the “ barycentre map ”. The regularity of %r implies the

Lemma 3.3. The regularized barycentre map is C∞ ((Rn, g̃), (Rn, g̃0)) ; more-
over we have:

g̃0

(
∇ỹH̃(u),v

)∫
Rn

dµỹ(z̃) = a

∫
Rn

g̃0

(
H̃(ỹ)− z̃,v

)
· g̃ (∇%r(ỹ, z̃),u) dµỹ(z̃)

(3.5)



A SIMPLIFIED PROOF OF HOPF CONJECTURE. 269

Proof: The functions ỹ 7→ z̃ e−a%r(ỹ,z̃) and ỹ 7→ e−a%r(ỹ,z̃) are C∞ (for
any fixed value of z̃ ). Moreover, for every point ỹ0 ∈ (Rn, g̃) , the derivatives
of these functions are uniformly bounded on the unit ball B(ỹ0, 1) ⊂ (Rn, g̃0)
by functions which are both independent from ỹ ∈ BRn(ỹ0, 1) and integrable
with respect to z̃ . For any unit tangent vector u ∈ T (Rn, g̃) we have, indeed,

∥∥∥−a z̃ d%r(u) e−a%r(ỹ,z̃)
∥∥∥ ≤ a‖z̃‖e−a%̃r(ỹ,z̃) ≤ a‖z̃‖e−a[%̃(ỹ,z̃)−r] ≤

a‖z̃‖e−a[%̃(ỹ0,z̃)−r−1] ≤ a‖z̃‖e−a[‖ỹ0−z̃‖−c−r−1] = a‖z̃‖ea(c+r+1)e−‖ỹ0−z̃‖

The use of the Lebesgue-dominate-derivability theorem to the function H̃
defined by the equality (3.4) proves that H̃ does admit derivatives in any
direction u and that

g̃0

(
∇ỹH̃(u),v

)∫
Rn

dµỹ(z̃) =
a∫

Rn dµỹ(z̃)
· (3.6)

·
(
−
∫
Rn

g̃0

(
H̃(ỹ),v〉

)
· g̃ (∇%r(ỹ, z̃),u) dµỹ(z̃)

∫
Rn

dµỹ(z̃)

+

∫
Rn

g̃0 (z̃,v) dµỹ(z̃) ·
∫
Rn

g̃ (∇%r(ỹ, z̃),u) dµỹ(z̃)

)
=

a

∫
Rn

g̃0

(
H̃(ỹ)− z̃,v

)
· g̃ (∇%r(ỹ, z̃),u) dµỹ(z̃)

The same kind of argument proves that, for any vector field U on BM̃ (ỹ0, 1)

the function ỹ 7→ dH̃
∣∣∣
ỹ

(U) is continuous (by Lebesgue dominated continuity

theorem) and thus that H̃ is C1 . The proof that the barycentre map is C∞

follows iterating the previous argument. �

4 Proof of the Hopf Conjecture

Let p be a rational point of the unite sphere and up the corresponding vector
field and let γỹ be the corresponding geodesic starting from ỹ for which
expỹ tup(ỹ) = ỹ + t · up . The invariance of the barycentre map implies that

H̃(ỹ + t · up) = H̃(ỹ) + t · up

and it represents also the geodesic in (Rn, g̃0) starting from the barycenter.
We go to evaluate the average value along the geodesics starting form ỹ and
H̃(ỹ) of (3.6) of the derivatives to respect of ỹ of both sides as the limits
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lim
T→+∞

1

T

∫ +∞

0

D

[∫
Rn

Fi(ỹ + up · t, H̃(ỹ) + up · t)dvg̃0
]
dt

being Fi , i = 1, 2 the integrand functions of the equality (3.6). The regularity
of the barycentre map and of the integrand functions of both sides of (3.6)
allows to jump the limits within the integrals getting the following limits

lim
T→+∞

Fi(ỹ + up · T, H̃(ỹ) + up · T )− Fi(ỹ, H̃(ỹ))

T
;

the direct computation proves that both limits are equal to zero. From the
Birkhoff Ergodic theorem it follows that the derivatives of these functions are
identically zero along the above defined geodesics, so the integrand functions
are constant along them. If up and v are not orthogonal via the metric g̃0 ,
we deduce that

g̃(p,up) = g̃0

(
∇ỹH̃(up),v

)
· g̃0 (up,v)

−1

which is constant along the ray of the rational foliation induced by the di-
rection p. Taking a system of rational unit vectors pi , i = 1, 2, · · · , n as a
base of (Rn, g̃) , the density of Qn in Rn gets that the tensor g̃ is constant
almost everywhere, and thanks to the equivariance of the map that the torus
(Rn/Qn, g) is flat. �
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