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On nonnil-S-Noetherian and
nonnil-u-S-Noetherian rings

Najib Mahdou, El Houssaine Oubouhou and Ece Yetkin Celikel

Abstract

Let R be a commutative ring with identity, and let S be a multiplica-
tive subset of R. Then R is called a nonnil-S-Noetherian ring if every
nonnil ideal of R is S-finite. Also, R is called a u-S-Noetherian ring if
there exists an element s € S such that for each ideal I of R, sI C K
for some finitely generated sub-ideal K of I. In this paper, we exam-
ine some new characterization of nonnil-S-Noetherian rings. Then, as
a generalization of nonnil-S-Noetherian rings and u-S-Noetherian rings,
we introduce and investigate the nonnilu-S-Noetherian rings class.

1 Introduction

Throughout this paper, it is assumed that all rings are commutative with non-
zero identity. If R is a ring, we denote by Nil(R) the ideal of all nilpotent
elements of R. Recall that an ideal I of R is said to be a nonnil ideal if
I ¢ Nil(R). A nonempty subset S of R is said to be a multiplicative subset if
1€ S, and for each a,b € S we have ab € S.

Badawi established the concept of nonnil-Noetherian rings in [2]. Remem-
ber that a commutative ring R is Nonnil-Noetherian if every nonnil ideal of R
is finitely generated. Many of the features of Noetherian rings are analogously
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proved for the Nonnil-Noetherian rings. In [2], the trivial extension construc-
tion is provided to give examples of nonnil-Noetherian rings which are not
Noetherian rings.

In [1], Anderson and Dumitrescu introduced the notion of S-Noetherian
rings as a generalization of Noetherian rings. Let R be a ring, S be a multi-
plicative set of R, and M be an R-module. We say that M is S-finite if there
exist a finitely generated submodule F' of M and s € S such that sM C F.
Also, we say that M is S-Noetherian if each submodule of M is S-finite. A
ring R is said to be S-Noetherian if it is S-Noetherian as an R-module (i.e., if
each ideal of R is S-finite). In addition, they gave various construction of the
S-variants of the well-known results for Noetherian rings: S-versions of Co-
hens result, the Eakin-Nagata theorem, the Hilbert Basis theorem, and under
certain supplementary hypothesis. In particular, they studied the transfer of
the S-Noetherian property to the ring of polynomials and the ring of formal
power series. In [10] a ring R is said to be a uniformly S-Noetherian (u-S-
Noetherian for abbreviation) provided there exists an element s € S such that
for any ideal I of R, sI C K for some finitely generated sub-ideal K of I.
Trivially, Noetherian rings are u-S-Noetherian, and u-S-Noetherian rings are
S-Noetherian.

In [8], Known and Lim introduced the notion of nonnil-S-Noetherian rings
as a generalization of both nonnil-Noetherian rings and S-Noetherian rings.
Let R be a ring, S be a multiplicative set of R. Then R is said to be a nonnil-
S-Noetherian ring if each nonnil ideal of R is S-finite. If S consists of units of
R, then the concept of S-finite ideals is the same as that of finitely generated
ideals; so if S consists of units of R, then the notion of nonnil-S-Noetherian
rings is identical to that of nonnil-Noetherian ring. Moreover, if Nil(R) = 0,
then the concept of nonnil-S-Noetherian rings is exactly the same as that of
S-Noetherian rings. Obviously, if S; C S; are multiplicative subsets, then any
nonnil-S7-Noetherian ring is nonnil-S3-Noetherian; and if S* is the saturation
of S in R, then R is a nonnil-S-Noetherian ring if and only if R is a nonnil-
S*-Noetherian ring. The nonnil-S-Noetherian rings was studied in [8] using
the Cohen-type theorem, the flat extension, the faithfully flat extension, the
polynomial ring extension and the power series ring extension.

Let A and B be two rings, J an ideal of B and let f : A — B be a ring
homomorphism. In this setting, we consider the following subring of A x B:

Al J={(a,fla)+j)|a€ A and j € J}

is called the amalgamation of A and B along J with respect to f. This con-
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struction is a generalization of the amalgamated duplication of a ring along
an ideal denoted by A <t I (introduced and studied by D’Anna and Fontana
in [4]). The interest of amalgamation resides, partly, in its ability to cover
several basic constructions in commutative algebra, pullbacks and trivial ring
extensions. See for instance [5, 7].

This paper consists of three sections including introduction. In Section 2,
we look at several new nonnil-S-Noetherian ring properties. First, we estab-
lish the Eakin-Nagata-Formanek Theorem for nonnil-S-Noetherian ring. After
that we show that the polynomial ring R[X] is a nonnil-S-Noetherian ring if
and only if it is S-Noetherian, and we also give a characterisation when a
ring is nonnil-S-Noetherian by using the polynomial ring. In the case when
R is a ¢-ring, R is a nonnil-S-Noetherian ring if and only if R/Nil(R) is a
S-Noetherian domain with S = S + Nil(R). The characterize of the amal-
gamation A >/ J to be nonnil-S-Noetherian provided that is a ¢-ring which
brings this section to a close.

However, in the definition of nonnil-S-Noetherian rings, the choice of s € S
such that sI C K C I with K finitely generated is dependent on the nonnil
ideal I. This dependence sets many obstacles to the further study of nonnil-S-
Noetherian rings. The main motivation of section 3 of this work is to introduce
and study a uniform version of nonnil-S-Noetherian rings. In fact, if there
exists an element s € S such that for any nonnil ideal I of R, sI C K for some
finitely generated sub-ideal K of I, we say that a ring R is nonnil uniformly
S-Noetherian (nonnil-u-S-Noetherian for short). Trivially, nonnil-Noetherian
and nonnil-u-S-Noetherian rings are nonnil-S-Noetherian.

2  On nonnil-S-Noetherian rings

Let R be a commutative ring and .S be a multiplicative set of R. Then if there
exists s € SNNil(R), so there exists a positive integre n such that 0 = s € S.
Hence in this paper we always assume that S N Nil(R) = 0. If Nil(R) is a
prime ideal of R, Then a nonnil ideal I is S-finite if and only if there is s € S
and a nonnil finitely generated ideal F' such that sI C F' C I.

Recall that a ring R is called a ¢-von Neumann regular ring if R/Nil(R) is
a field by [12, Theorem 4.1]. We begin this section with the following theorem,
which defines when each S-Noetherian (Resp., u-S-Noetherian) R-module is
Noetherian, for each multiplicative subset S of R.

Theorem 2.1. Let R be a ring. Then the following conditions are equivalent:
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1. For every multiplicative subset S C R\ Nil(R), an R—module is S-
Noetherian if and only if it is Noetherian,

2. For every multiplicative subset S C R\ Nil(R), an R-module is u-S-
Noetherian if and only if it is Noetherian,

3. R is a ¢p-von Neumann regular ring.

Proof. (1) = (2) Straightforward.

(2) = (3) Let a € R\ Nil(R). Set S = {a™ | n € N}. Consider the follow-
ing R-module M = @, R/aR. Since aM = 0, M is u-S-Noetherian. Then
M is Noetherian and consequently R/aR = 0, so a is a unit, hence every non
nilpotent element in R is a unit, thus (R, Nil(R)) is a local ring. Therefore,
R is a ¢-Von Neumann regular ring.

(3) = (1) Let S be a multiplicative subset S of R. Then S C R\ Nil(R) =
U(R), so every element in S is a unit. Therefore an R-module M is S-
Noetherian if and only if it is Noetherian. O

In order to generalize some known results on nonnil-S-Noetherian rings.
We start with recalling the following definitions.

Definition 2.2. Let R be a commutative ring, S C R be a multiplicative set,
and M an R-module.

1. An ascending chain (Ny,), cn of submodules of M is called S-stationary
if there exists a positive integer k and s € S such that for each n >
ki, SNn - Nk.

2. Let Q be a family of submodules of M. An element N € Q is said to be
S-mazximal if there exists s € S such that for each L € Q, if N C L then
sL C N.

Now, we will give Eakin-Nagata-Formanek Theorem for nonnil-S-Noetherian
rings for any multiplicative subset S of R.

Theorem 2.3. Let R be a ring and let S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. BEvery nonempty family of nonnil-ideals has an S—maximal element,
2. R is nonnil-S-Noetherian,

3. Fvery ascending chain of nonnil-ideals of R is S-stationary,
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4. For every nonnil-ideal I of R, R/I is a S-Noetherian ring with S = S+1.

Proof. (1) = (2) Let I be a nonnil ideal of R. Set {2 be the set of S-finite
nonnil ideals of R wich are included in I. Since [ is a nonnil ideal of R, there
exists a € R\ Nil(R) such that a € I. Hence aR € €, so € is nonempty. By
assumption ) has an S-maximal element L. Therefore, there exists s; € S
such that if J € Q and L C J, then s;J C L. On the other hand L is S-finite,
then there exists s € S, x1,..,2, € L such that s L C F = xR+ .. + z,R.
Now, our aim is to prove that sysof C F. For this, let a € I. If o € F, then
siseoa € F. If a ¢ F, set Q = L+ aR, then Q@ C I and @ is S-finite nonnil
ideal of R. Hence @ € (). Since L C @, then by S-maximality of L, so@ C L.
Therefore, s1soa € s155Q C s1L C F. Hence sI C F C [ for s = s189 € S.
Thus R is a nonnil-S-Noetherian ring.

(2) = (3) Let (I,)nen be an ascending chain of nonnil ideals of R. Let
I = |],cnIn is a nonnil ideal of R. Since by hypothesis I is S-finite, then
there exists s € S and a4, ..,a, € I such that sI C F' = Ra; + .. + Ra,. Hence
there exists k € N such that F C I. So sl,, C sI C F C I for any n > k.
Thus, (I5,)nen is S-stationary.

(3) = (4) Let I be a nonnil ideal of R. Let Ly/I C Ly/I C ... be an
ascending chain of non zero ideal of R/I. Then Ly C L C Ly, C ... is an
ascending chain of nonnil ideal of R. Hence by hypothesis there exists s € .S
and k € N such that sL,+1 C L,, for every n > k. So sL,4+1/I C L,,/I for
every n > k. Hence (L, /I)nen is S-stationary. Thus, R/I is S-Noetherian.

(4) = (1) Let 2 be a non empty set of nonnil-ideal of R which is not
satisfying the property in (1). Then for every I € Q and every s € S
there exists J € Q such that I C J and sJ Q I. Let I € Q and set
©={JeQ|ICJ} Then © is also does not have an S-maximmal ele-
ment. Hence A = {J/I | J € O} is a set of ideals of R/I wich is also does
not have an S-maximmal element, which contraduces the fact that R/N is
S-Neotherian. O

Let R be a ring, M an R—module and R o M the set of pairs (r, m) with
component-by-component addition and multiplication defined by: (r,m)(b, f) =
(rb,rf + bm), is a unitary commutative ring called the trivial extension (or
idealization) of R by M.

The following example shows that the polynomial ring over a nonnil-S-
Noetherian ring need not be nonnil-S-Noetherian.
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Example 2.4. Let K be a field and E be a K -vector space of infinite dimen-
sional and set R = K o« E. Then R is a nonnil-S-Noetherian ring for every
multiplicative subset S of R, and if 0 ¢ S we have R[X] is not a nonnil-S-
Noetherian ring.

Proof. We have Nil(R) = 0 «x E is a maximal ideal of R, so the unique nonnil
ideal of R is R. Then R is a nonnil-S-Noetherian ring for every multiplicative
subset S of R. If SN Nil(R) = (), then S C U(R). Since F is a K-vector space
infinite dimensional, Nil(R) = 0 « E is not a finitely generated ideal of R by
[2, Lemma 3.2]. By absurdity, assume that R[X] is not a nonnil-S-Noetherian
ring. Then, the nonnil ideal Nil(R) + X R[X] of R[X] is finitely generated.
Therefore:
Nil(R) + X = PR[X]| + --- + P,R[X].

As a result, we get
Nil(R) = PA(0)R+ --- + P,(0)R.

Thus Nil(R) is a finitely generated ideal of R, which is absurd since Nil(R) is
not a finitely generated ideal of R. O

We next shows that the polynomial ring R[X] is nonnil-S-Noetherian if
and only if it is S-Noetherian.

Theorem 2.5. Let R be a ring and S be a multiplicative subset of R. Then
the following statements are equivalent:

1. R[X] is a nonnil-S-Noetherian ring,
2. R[X] is an S-Noetherian ring.

Proof. (1) = (2). Let P be a prime ideal of R[X]. If Nil(R[X]) € P, then
P is a nonnil ideal of R[X] so it is S-finite. If P = Nil(R[X]) = Nil(R)[X].
Since the nonnil ideal Nil(R) + X R[X] of R[X] is S-finite, there exists s € S
and Py,---, P, € R[X] such that:
s(Nil(R) + XR[X]) € PLR[X] + ---+ P,R[X] C Nil(R) + X R[X].
As a result, we get
sNil(R) € P1(0)R+ --- + P,(0)R C Nil(R).

Therefore,

sNil(R)[X] C PL(0)R[X] + - - - + P,(0)R[X] C Nil(R)[X].
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Thus in all cases P is an S-finite ideal of R[X]. Then R[X] is S-Noetherian
by [1, Corollary 5].

(1) = (2) Straightforward. O

Let R be a ring and S be a multiplicative subset of R. Recall that S is an
anti-Archimedean subset of R if N,>18"RN S # 0, for all s € S. As a direct
corollary of Theorem 2.5 and [1, Proposition 9], we deduce [8, Theorem 3].

Corollary 2.6. Let R be a ring and S C R an anti-Archimedean multiplicative
subset of R. Then the following statements are equivalent:

1. R[Xy,---,X,] is nonnil-S-Noetherian for every n € N*,
2. R[Xy,---,X,] is S-Noetherian for every n € N*,
8. R is S-Noetherian.

By using the polynomial ring, the following Theorem characterizes rings
that are nonnil-S-Noetherian.

Theorem 2.7. Let R be a ring and S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. R is a nonnil-S-Notherian ring,

2. R[X]/X"t'R[X] is a nonnil-S-Notherian ring with S = S + X"T'R[X]
For every integer n > 0,

3. R[X]/X"R[X] is a nonnil-S-Notherian ring with S = S + X"t R[X]
For some integer n > 0.

Proof. Let n € N and set U = X + X""1R[X]. Then R[X]/X" " R[X] =
R[U =R+ RU +---+ RU" since U = 0.

(1) = (2) Let I be a nonnil prime ideal of R[U]. Then two cases are
possibles:

Case 1: U € I. Set Ay = {f(0) | f(U) € I}, then Ap is an ideal of R.
Assume that Ag € Nil(R). So for any f(U) = ap + a;U +--- 4+ a, U™ € I,
there exists a positive integer m such that ag* = 0. Thus,

(f(U))m(n+1) = (ap+a U+---+ anUn)m(n+1)
= (@l 4+ b U+ -+ b, U™t
= (U(by +boU +---+ b, U Hntt
= 0
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which is impossible. So Ag is a nonnil ideal of R. Hence there exists s €
S and z1,---,x,, € Ao such that sAg C F = 1R+ --- + x,,R. On the
other hand we have I C Ay + URJ[U], for the converse. Let ag € Ay, so
ap +ar U+ -+ +a,U" € I for some a1, -+ ,a, € R. Then ag € I since
ao+arU+ - +a,U" =ap+U(ay +aU + -+ +a, U 1) € Tand U € I.
Hence Ay C I, and consequently I = Ay + UR[U]. Therefore

sI C sAg + sUR[U] C 2, R[U] + 22R[U] + - - - + 2, R[U] + UR[U] C I.

Thus, I is S-finite.

Case 2: U ¢ I. Set A = { the coefficient of f(U) | f(U) € I}. Then
A is a nonnil ideal of R, so there exists s € S and rq,--- , 7, € A such that
SACriR4+roR+ -+ rnR, so for every a; € A, sa; = Z;n:l rjr; for some
ri € R. Hence for every f(U) = Y1, a;U" € I we have:

sfU) = Y saU
1=1

n m
_ irTi
= 22U
i=1 j=1

= ZTjZT;Ui
j=1 =1
€ rR[Ul+rRU|+ -+ r,R[U].

Thus sI C riR[U]+7oR[U]+ -+ 71, R[U]. Now, let f(U) =xo+xU+---+
x,U™ € I. Then

UrfU)=U"zo+x1U~+- - +2,U") =20U" € 1.

Since U ¢ I and [ is a prime ideal of R[U], we get 2o € I. Therefore 21U +
co+x, U™ € 1, hence (21U + -+ + 2, U") U = 2,U™ € I. Since U ¢ I and
I is a prime ideal of R[U], z; € I. Continuing this procedure yields that z; € T
for every i € {0,1,--- ,n}. Hence A C I. Since r; € A for alli = 1,--- ,m,
then all r; € I. Therefore

sI CriR[U] 4+ reRU]+ -+ rny R[U] C I.

Hence in both cases we have [ is S-finite. Thus, every nonnil prime ideal of
R[U] is S-finite. Therefore R[U] is a nonnil-S-Noetherian ring by [8, Theorem
1].
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(2) = (3) Straightforward.

(3) = (1) Let I; C I, C --- be any ascending chain of nonnil ideals of R.
then, 1 R[U] C I,R[U] C --- is an ascending chain of nonnil ideals of R[U].
So by Theorem 2.3 there exists s € S and a positive positive integer k such
that sl,,+1 R[U] C I,,R[U] for every m > k. Hence sl,,+1 C I,,. Thus Ris a
nonnil-S-Noetherian ring by Theorem 2.10. O

As a consequence of the previous Theorem, we have the following two
corollaries.

Corollary 2.8. Let R be a ring, X1, Xo, -+, Xk a finite indeterminates over
R, ni,ng9,--- ,ng € N and S be a multiplicative subset of R. Then R is a
nonnil-S-Noetherian ring if and only if

R[X1,-, Xp]/(XP o XYY s @ nonnil-S-Noetherian ring with S =
S+ (XIqul’ . 7X]?k+1).

Proof. It is easy to show that R[Xy, -, Xp]/(X7' T, Xl =

(R[X1,- -, Xp_a] /(X H ,X;Lf11+1))[Xk]/(XZ’“+1) via the isomorphism

i (RIX1,- -, Xy /(XPH o XD X)X ) —

R[Xy, - Xl /(XT - XG0, with o300, X+ ) = 20, fiXi+
(X{“‘H, e ,X,?"’Jrl). Therefore,

R[X1,-, X3 ]/(X{ o XY s a nonnil-S-Noetherian ring if and only

if R is nonnil-S-Noetherian. O

Corollary 2.9. Let R be a ring and S be a multiplicative subset of R < R.
Set S’ the trace of S in R. Then R < R is a nonnil-S-Noetherian ring if and
only if R is a nonnil-S’-Noetherian ring.

Proof. Let S be a multiplicative subset of R o« R and S’ its trace in R.
Then S and S’ « 0 have the same saturation. On the other hand we have
R o R = R[X]/(X?) via the isomorphism (a,b) — a4+ bX. Then by Theorem
2.7, we get R o« R is a nonnil-S-Noetherian ring if and only if R is a nonnil-
S’-Noetherian ring. O
Recall that a prime ideal P of R is called a divided prime if it is comparable
to every ideal of R. Set H = {R | R is a commutative ring and Nil(R) is
a divided prime ideal of R}. If R € H, then R is called a ¢-ring. For a ring
R € H, we have the following result.

Theorem 2.10. Let R be a ¢—ring and S a multiplicative subset of R. Then
R is a nonnil-S-Noetherian ring if and only if R/Nil(R) is an S-Noetherian
domain with S = S + Nil(R).
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Proof. Assume that R is a is a nonnil-S-Noetherian ring. Set A = R/Nil(R)
and let @ be a non zero ideal of A. Then @ = J/Nil(R) for some nonnil ideal
J of R, hence there exists s € S and a finitely generated ideal F' of R such
that sP C F' C P. Since F' is a finitely generated ideal of R, L = F//Nil(R) is
a finitely generated ideal of A. Thus 5Q C L C @, hence A is an S-Noetherian
domain.

Conversely, Assume that A = R/Nil(R) is a is a S-Noetherian ring. Let
I be a nonnil ideal of R, since Nil(R) is a divided ideal of R, Nil(R) C I.
Then J = I/Nil(R) is an ideal of A, so there exists s € S and 41, ,i, € T
such that 5J C (iy + Nil(R),- - ,in + Nil(R)) C J. Let « be a non nilpotent
element of I. Then sx + Nil(R) = ¢191 + - -+ + ¢pin + Nil(R) in A for some
c1,+ -+ ,¢n € R. Hence there is w € Nil(R) such that sz +w = ¢4+ - - + cpin
in R. Since sx € I\ Nil(R), Nil(R) C Rsz, so w = sxf for some f € Nil(R).
Hence sx+w = sz+sxf = sx(14+f) = c1i1+- - -+cpin in R. Since f € Nil(R),
1+ f is aunit of R. Thus sx € i1R+---+i, R, Hence sI C iyR+---+i, R C I.
Thus I is S-finite. Therefore R is a Nonnil-S-Noetherian ring. O

Assume that R is ¢-ring, and set ¢ : R — Ry (r) such that ¢(r) = | for
every r € R. Then R/Nil(R) = ¢(R)/Nil(¢(R)) by [2, Lemma 1.1]. We have
the following corollary as a direct consequence of this result and the previous
Theorem.

Corollary 2.11. Let R be a ¢-ring. Then the following statements are equiv-
alent:

1. R is a Nonnil-S-Noetherian ring,

2. R/Nil(R) is an S-Noetherian domain, with S = S + Nil(R),

3. ¢(R)/Nil(¢(R)) is an S’-Noetherian domain, with S’ = ¢(S)+Nil(p(R)),
4. ¢(R) is a Nonnil-¢(S)-Noetherian ring.

The next corollary studies when the amalgamated duplication A >t [ is a
nonnil-S-Noetherian ring, provided A > [ is a ¢-ring.

Corollary 2.12. Let A be a ring, I an ideal of A such that A< I is a ¢-ring.
Let S be a multiplicative subset of A I. Set S’ the trace of S in A. Then
A< I is a nonnil-S-Noetherian ring if and only if A is a nonnil-S’-Noetherian
7ing.

Proof. By [6, Theorem 2.1], it follows immediately that I C Nil(A). Hence
Nil(Ax I) = Nil(A) < I, therefore A<t I/Nil(Awx I) 2 A/Nil(A). Thus
the conclusion is an easy consequence of Theorem 2.10. O
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Recall from [6, Corollary 2.4], That the the trivial ring extension A o E is
a ¢-ring if and only if A is a ¢-ring and E = oF for each a € A\ Nil(A). The
following corollary is an immediate result of Corollary 2.12; which examines
when the trivial ring extension is a nonnil-S-Noetherian ring.

Corollary 2.13. Let A be a ¢—ring, E be an A-module such that E = aF
for every a € A\ Nil(A). Let S be a multiplicative subset of A < E. Set S’
the trace of S in R. Then A < E is a nonnil-S-Noetherian ring if and only if
A is a nonnil-S’'-Noetherian ring.

Let A and B be two rings, J a nonzero ideal of B, and f : A — B be
a ring homomorphism. Set R := A >/ J and N(J) := Nil(B) N J. Recall
from [6, Theorem 2.1] that (1) If J is a nonnil ideal of B, then R is a ¢-ring
if and only if f~1(J) = 0, A is an integral domain, and N(J) is a divided
prime ideal of f(A)+ J. (2) If J C Nil(B), then R is a ¢-ring if and only
if A is a ¢-ring, and for each 4,5 € J and each a € A\ Nil(A), there exists
x € Nil(A) and k € J such that xza = 0 and j = kf(a)+i(f(x) + k). Moreover
let ¢ : A — A</ J be the natural embedding defined by a — (a, f(a)) for
each a € A, and S a multiplicative subset of A, then S" := {(s, f(s)) | s € S}
and f(S) are multiplicative subsets of A >/ J and B, respectively.

Theorem 2.14. Let A and B be two rings, J a nonzero ideal of B, and let
f: A — B be a ring homomorphism such that A v<f J is a ¢-ring and S a
multiplicative subset of A. Then the following statements are equivalent:

1. A<t J is a nonnil-S'-Noetherian ring,

2. A is a nonnil-S-Noetherian ring and f(A)+J is a nonnil-f(S)-Noetherian
7ing.

Before proving Theorem 2.14, we need the following lemma of independent
interest.

Lemma 2.15. Let a: R — R’ be a surjective ring homomorphism and S C R
a multiplicative set of R. If R is nonnil-S-Noetherian, then R’ is nonnil-a(S)-
Noetherian.

Proof. let J be a nonnil ideal of R, then J = f(I) for some nonnil ideal I
of R. Since R is a nonnil-S-Northerian ring, there exist z1,---,x, € I and
s € S such that

sl CRx1+..+Rx,, C1.

Whence
f()J C R f(w1) + -+ R f(zn) C J.
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So R’ is nonnil-a(S)-Noetherian. O

Proof of Theorem 2.14
(1) = (2) Set pa : A/ J — Aand pp : Axx/ J = f(A) + J the two
canonical projections. Since p4(S’) =S and pg(S’) = f(S), we conclude that
A is a nonnil-S-Noetherian ring and f(A)+.J is a nonnil- f(5)-Noetherian ring
by lemma 2.15.

(2) = (1) Set A = A/Nil(A), B = B/Nil(B), 7 : B — B the canonical
projection and .J = 7(J). Consider the ring homomorphism f : A — B defined
by setting f(a@) = f(a). It is easy to see that f is well defined and it is clearly a
ring homomorphism. The kernel of the restriction to A >/ .J of the canonical
projection A x B — A x B is obviously Nil(A4 </ J) and the image is A >/ J
by the proof of [11, Theorem 2.7]. Hence, we have the following isomorphism
of rings:

@: (Avaf J)/Nilp(A<! J) — Al J
(a; f(a) +J) — (a, f(a) +j)
on the other hand A and f(A)+.J are ¢-rings by [6, Lemma 2.3]. Thus A is S-
Noetherian ring and f(A) + J/Nil(f(A) + J) = f(A) + J is f(S5)-Noetherian
ring. So A >/ J is §’-Noetherian domain by [9, Theorem 3.2]. Whence
A</ J is a nonnil-S’-Noetherian ring by Theorem 2.10. O
In the case where S = {1}, we find the following result.

Corollary 2.16. Let A and B be two rings, J a nonzero ideal of B, and let
f: A — B be a ring homomorphism such that A</ J is a ¢-ring. Then the
following statements are equivalent:

1. An<al J is a nonnil-Noetherian ring,
2. A and f(A) + J are nonnil-Noetherian rings.

It must be noted that the autours of [11] have been studied when A </ J
is a nonnil-Noetherian ring, and it shows that if A >/ J is a ¢-ring. Then
Aaf J is a nonnil-Noetherian ring if and only if A and f(A) + J are nonnil-
Noetherian rings and f~1(J) C Nil(A).

Remark 2.17. Let f : A — B be a ring homomorphism and J an ideal of B,
if A<l J is a ¢-ring, then f~1(J) C Nil(A) by [6, Lemma 2.3]. Whence our
corollary 2.16 and [11, Theorem 2.7] are identical.

The following example shows that the condition R is a ¢-ring is a necessary
condition in Theorem 2.14.
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Example 2.18. ([11, Ezample 2.10])
Set A =7 x Q and consider the surjective ring homomorphism f : A — Z/6Z
; f((n,q)) = 7. Consider J = 3Z/6Z the ideal of Z/6Z. Then, R and f(A)+.J

are nonnil-Noetherian rings. However, A<l J is not.

3 On nonnil-u-S-Noetherian rings

Recall from [10] that a ring R is said to be a u-S-Noetherian provided there
exists an element s € S such that for any ideal I of R, sI C K for some
finitely generated sub-ideal K of I. Now we state our definition of nonnil-u-
S-Noetherian rings.

Definition 3.1. Let R be a ring and S be a multiplicative subset of R. Then

1. R is called a nonnil uniformly S-Noetherian (nonnil-u-S-Noetherian for
abbreviation) ring provided there exists an element s € S such that for
any nonnil ideal I of R there exists a finitely generated ideal F of R,
sI CFCI.

2. R is called a nonnil uniformly S-Principal ideal ring (nonnil-u-S-PIR
for short) provided there exists an element s € S such that for any nonnil
ideal I of R there exists a € I, sI C Ra.

If S consists of units of R, then the notion of nonnil-u-S-Noetherian rings
coincides with that of nonnil-Noetherian ring. Furthermore, if Nil(R) = (0),
then the concept of nonnil-u-S-Noetherian rings is precisely the same as that
of u-S-Noetherian rings. Clearly, if S; C S5 are multiplicative subsets, then
any nonnil-u-Si-Noetherian ring is nonnil-u-S2-Noetherian; and if S* is the
saturation of S in R, then R is a nonnil-u-S*-Noetherian ring if and only
if R is a nonnil-u-S-Noetherian ring. Also, every nonnil-Noetherian ring is
nonnil-u-S-Noetherian. However, the converse does not hold general.

Example 3.2. Let R = [[;2, Z/AZ be the countable infinite direct product
of Z/AZ, then R is not nonnil-Noetherian. Let e; be the element in R with
the i-th component 1 and others 0. Denote S = {1,e; | i=1,2---}. Then R
is a nonnil-u-S-PIR, let I be a nonnil ideal of R. Then if all elements in I
have 1-th components equal to 0, we have e;] = 0. Otherwise e;1l = e1 R or
erl = 2e1R. Thus e1l is principally generated. Consequently R is a monnil-
u-S-PIR, and so is nonnil-u-S-Noetherian.

Proposition 3.3. Let R be a ring and S a multiplicative subset of R consisting
of finite elements. Then R is a nonnil-u-S-Noetherian ring (resp., nonnil-u-S-
PIR) if and only if R is is a nonnil-S-Noetherian ring (resp., nonnil-S-PIR).
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Assume that R is a nonnil-u-S-Noetherian ring (resp., nonnil-u-S-PIR).
Then trivially R is a is a nonnil-S-Noetherian ring (resp., nonnil-S-PIR).

Conversely, assume that S = {s1, 82, -+ ,s,}, R is is a nonnil-S-Notherian
ring (resp., nonnil-u-S-PIR) and set s = s153 -+ - $5,. Then for any nonnil ideal
I of R, there exists a finitely generated ideal (resp., principal ideal) J of R such
that s;I € J C I. Hence sI C J C I . Thus, R is a nonnil-u-S-Noetherian
ring (resp., nonnil-u-S-PIR). O
The following example shows that a nonnil-S-Noetherian ring is not a nonnil-
u-S-Noetherian ring in general.

Example 3.4. Let K be a field and X = {X;,Xs,...} be an infinite set of
indeterminates over K, let R = K[X]| and set S = R\ 0. Then R is an
S-Noetherian ring so it is a nonnil-S-Notherian ring. However, R is not a
nonnil-u-S-Noetherian by [10, Fxample 2.5].

Next, we will give Eakin-Nagata-Formanek Theorem for nonnil-u-S-Noetherian

rings for any multiplicative subset S of R. First, recall from [10] the notions
of stationary ascending chains of R-modules with respective to s € S and
maximal elements of a family of R—modules with respective to s. Let R be
a ring, S a multiplicative subset of R and M an R—module. Denote by M*
an ascending chain M; C M, C ... of submodules of M. An ascending chain
M* is called stationary with respective to s if there exists £ > 1 such that
sM, C My, for any n > k. Let {M,;};er be a family of sub-modules of M.
We say an R-module My € {M,};er is maximal with respective to s provided
that if My C M; for some M; € {M;}ier, then sM; C M.

Theorem 3.5. Let R be a ring and let S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. There exists s € S such that any nonempty family of nonnil ideals of R
has an mazximal element with respective to s,

2. R is nonnil-u-S-Noetherian,

3. There exists s € S such that any ascending chain of nonnil ideals of R
18 stationary with respective to s,

4. For every nonnil ideal I of R, R/I is a u-S-Noetherian ring with S =
S+1.

Proof. (1) = (2) Let sp € S the element in (1) and set s = s2 € S. Let I
be a nonnil ideal of R. Set 2 be the set of sg—finite nonnil ideals of R which
are included in I. Since I is a nonnil ideal of R, there exists a € R\ Nil(R)
such that a € I. Hence aR € 2, so € is nonempty. By assumption €2 has an
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has an maximal element L with respective to sg. Therefore, for each J €
such that L C J, sgJ C L. On the other hand L is so-finite, then there exists
T1, -+ ,Ty € L such that s C F = xR+ --- + z,R. Now, our aim is
to prove that sI C F. For this, let « € I. If @« € F, then sa € F. If
a ¢ F,set Q =L+ aR, then @ C I and @ is so—finite nonnil ideal of R.
Hence @Q € Q. Since L C @, then by maximality of L with respective to s,
$0@ C L. Therefore, sa € s9QQ C soL C F. Hence sI C FF C I. Thus Ris a
nonnil-u-S-Noetherian ring.

The rest of the proof is analogous to the proof of Theorem 2.3. O

Let P be a prime ideal of R. We say R is nonnil-u- P-Noetherian provided
that is nonnil-u-(R \ P)-Noetherian. The next result gives a local characteri-
zation of nonnil-Noetherian rings.

Proposition 3.6. Let R be a ring. Then the following conditions are equiv-
alent:

1. R s a nonnil-Noetherian ring,
2. R is a nonnil-u-P-Noetherian ring for all primes ideal P of R,
3. R is a nonnil-u-M-Noetherian ring for all maximal ideals M of R.

Proof. (1) = (2) = (3) Straightforward.

(3) = (1) Assume that R is a nonnil-u-M-Noetherian ring for all maximal
ideals M of R. Let I be a nonnil ideal of R, so for every maximal ideal M of
R, there exist an element sp; € R\M and a finitely generated ideal Fj; of R
such that sy I C Fipy C 1. Let S = {sp | M is a maximal ideal of R}. Since
S generated R, there exists finite elements sy, , -, sar,, of S such that

I:(leR+-~-+sMnR)IgFM1+---+FMn cl,

which means that I = Fiy, + -+ Fi,, so I is finitely generated. Therefore,
R is a nonnil-Noetherian ring. O

Corollary 3.7. Let R be a local ring with mazximal ideal M, then R is a
nonnil-Noetherian ring if and only if R is a nonnil-u-M -Noetherian ring.

Let R be a commutative ring with identity. Recall that R is decomposable
if R = Ry @& Ry for some nonzero rings R; and Rs.

Theorem 3.8. Let R be a decomposable commutative ring with identity, S a
multiplicative subset of R and {m;};c, the set of canonical epimorphisms from
R to each component of decompositions of R. Then the following statements
are equivalent:
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1. R is an u-S-Noetherian ring,
2. R is a nonnil-u-S-Noetherian ring,
3. For each i € A, m;(R) is a u-m;(S)-Noetherian ring,

4. If e is a monzero non unit idempotent element of R, there exists s, € S
such that every ideal of R contained in eR is s.-finite.

Proof. (1) = (2) Straightforward.

(2) = (3) Let i € A. Then R = m;(R) & 7j(R) for some j € A. Let s
the element in (2), and let I be an ideal of m;(R). So I & m;(R) is a nonnil
ideal of m;(R) @ m;(R). Then there exist a finitely generated ideal F' of R such
that s(I @& 7,;(R)) C F C I & ;(R). Therefore sm;(I) C m(F) C I. Since F
is a finitely generated ideal of R, m;(F') is a finitely generated ideal of m;(R).
Therefore m;(R) is a u-m;(S)-Noetherian ring.

(3) = (4) Let e be a nonzero non unit idempotent element of R,. Then
R = Re® R(1—¢). Then Re = 7;(R) for some i € A\. Hence by the assump-
tion, Re is a u-m;(S)-Noetherian ring. Then there exists s € S such that every
ideal of eR is m;(s)-finite. Let I be an ideal of R contained in eR. So there
exists a finitely generated ideal F' of eR such that m;(s)] C F C I. Since F is
a finitely generated ideal of R;, E = F & 0 is a finitely generated ideal of R,
and sI C E C [. Thus [ is s-finite.

(4) = (1) Let e be a nonzero non unit idempotent element of R, Then
R = Re® R(1—e), Hence Re = m;(R) and R(1 —e) = m;(R) for some i,j € A.
Then by assumption there exists s; € S (resp., s; € S) such that every ideal
of R contained in eR (resp., (1 — e)R ) is s;-finite (resp., s;-finite ). Set
s=s;5; € S. Let I be an ideal of R. Then I = m;(I) & m;(I). By assumption
there exists finitely generated ideals F and F' such that s;m;(I) C E C m;(1)
and s;m;(I) C F Cm;(I). Set L =FE @& F, then L is a finitely generated ideal
of R and we have sI C L C I, witch implies that I is s-finite, Thus R is a
u-S-Noetherian ring. O

Corollary 3.9. Let n > 2 be an integer, Ry, -+ , R, rings with identity, and
let S1,---,Sy, be multiplicative subsets of Ry,--- , Ry, respectively. Then the
following assertions are equivalent:

1. TT—, R; is a nonnil-u-(IT;_, S;)-Noetherian ring,
2. TIi, Ri is a u~(I]}"_, S:)-Noetherian ring,

8. Foralli=1,---,n, R; is an u-S;-Noetherian ring.
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For a ¢-ring, we have the following result.

Theorem 3.10. Let R be a ¢-ring and S a multiplicative subset of R. Then R
is a nonnil-u-S-Noetherian ring if and only if R/Nil(R) is a u-S-Noetherian
domain with S = S + Nil(R).

Proof. Analogue to Theorem 2.10. O

Corollary 3.11. Let R be a ¢-ring and S a multiplicative subset of R. Then
the following statements are equivalent:

1. R is a Nonnil-u-S-Noetherian ring,

2. R/Nil(R) is a u-S-Noetherian domain with S = S + Nil(R),

3. #(R)/Nil(¢(R)) is a u-S’-Noetherian domain, with S’ = Nil(¢(R)) +

o(5),

4. ¢(R) is a nonnil-u-¢(S)-Noetherian ring.

Let A and B be two rings, J a nonzero ideal of B, and let f : A — B
be a ring homomorphism. Let i : A — A </ J be the natural embedding
defined by a — (a, f(a)) for all a € A. For a multiplicative subset S of A, put

S = {(s, f(s)) | s € S}. Clearly, S’ and f(S) are multiplicative subsets of
A</ J and B, respectively.

Theorem 3.12. Let A and B be two rings, J a nonzero ideal of B, and let
f: A — B be a ring homomorphism such that A </ J is a ¢-ring, let S a
multiplicative subset of A. Then the following statements are equivalent:

1. A<t J is a nonnil-u-S’-Noetherian ring.

2. A is a nonnil-u-S-Noetherian ring and f(A) + J is a nonnil-u-f(S)-
Noetherian ring.

Before proving Theorem 2.14, we need the following lemma of independent
interest.

Lemma 3.13. Let o : R — R’ be a surjective ring homomorphism and S C R
a multiplicative set of R. If R is nonnil-u-S-Noetherian, then R’ is nonnil-u-
a(S)-Noetherian.

Proof. Let s € S the element such that every nonnil ideal of R is s-finite. Let
J be a nonnil ideal of R’, then J = f(I) for some nonnil ideal I of R. Since
R is a nonnil-u-S-Noetherian ring, there exist x1,--- ,x, € I such that

sl CRx1+---+ Rz, CI.
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Whence
f(s)J SR f(z1) + -+ R f(xa) C J.

So R’ is nonnil-u-a(S)-Noetherian. O

Proof of Theorem 3.12
(1) = (2) Set pa : A/ J = Aand pa : A</ J = f(A) + J the two
canonical projections. Since p4(S’) =S and pp(S’) = f(S), we conclude that
A is a nonnil-u-S-Noetherian ring and f(A)+ J is a nonnil-u- f(S)-Noetherian
ring.

(2) = (1) With the same notation in theorem 2.14, we have the following
isomorphism of rings:

@: (Avaf J)/Nilp(A<! J) — Al J
(a, f(a) +j) — (a, f(a) +j)
6

on the other hand A and f(A) + J are ¢-rings by [6, Lemma 2.3]. Thus A
is u-S-Noetherian ring and f(A) + J/Nil(f(A) + J) = f(S) + J is u-f(S)-

Noetherian ring by [10, Lemma 3.3]. So A > J is S’-Noetherian domain by
[10, Proposition 3.4]. Whence A >/ J is a nonnil-u-S’-Noetherian ring by

Theorem 3.10. O
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