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On nonnil-S-Noetherian and
nonnil-u-S-Noetherian rings

Najib Mahdou, El Houssaine Oubouhou and Ece Yetkin Celikel

Abstract

Let R be a commutative ring with identity, and let S be a multiplica-
tive subset of R. Then R is called a nonnil-S-Noetherian ring if every
nonnil ideal of R is S-finite. Also, R is called a u-S-Noetherian ring if
there exists an element s ∈ S such that for each ideal I of R, sI ⊆ K
for some finitely generated sub-ideal K of I. In this paper, we exam-
ine some new characterization of nonnil-S-Noetherian rings. Then, as
a generalization of nonnil-S-Noetherian rings and u-S-Noetherian rings,
we introduce and investigate the nonnilu-S-Noetherian rings class.

1 Introduction

Throughout this paper, it is assumed that all rings are commutative with non-
zero identity. If R is a ring, we denote by Nil(R) the ideal of all nilpotent
elements of R. Recall that an ideal I of R is said to be a nonnil ideal if
I * Nil(R). A nonempty subset S of R is said to be a multiplicative subset if
1 ∈ S, and for each a, b ∈ S we have ab ∈ S.

Badawi established the concept of nonnil-Noetherian rings in [2]. Remem-
ber that a commutative ring R is Nonnil-Noetherian if every nonnil ideal of R
is finitely generated. Many of the features of Noetherian rings are analogously
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proved for the Nonnil-Noetherian rings. In [2], the trivial extension construc-
tion is provided to give examples of nonnil-Noetherian rings which are not
Noetherian rings.

In [1], Anderson and Dumitrescu introduced the notion of S-Noetherian
rings as a generalization of Noetherian rings. Let R be a ring, S be a multi-
plicative set of R, and M be an R-module. We say that M is S-finite if there
exist a finitely generated submodule F of M and s ∈ S such that sM ⊆ F .
Also, we say that M is S-Noetherian if each submodule of M is S-finite. A
ring R is said to be S-Noetherian if it is S-Noetherian as an R-module (i.e., if
each ideal of R is S-finite). In addition, they gave various construction of the
S-variants of the well-known results for Noetherian rings: S-versions of Co-
hens result, the Eakin-Nagata theorem, the Hilbert Basis theorem, and under
certain supplementary hypothesis. In particular, they studied the transfer of
the S-Noetherian property to the ring of polynomials and the ring of formal
power series. In [10] a ring R is said to be a uniformly S-Noetherian (u-S-
Noetherian for abbreviation) provided there exists an element s ∈ S such that
for any ideal I of R, sI ⊆ K for some finitely generated sub-ideal K of I.
Trivially, Noetherian rings are u-S-Noetherian, and u-S-Noetherian rings are
S-Noetherian.

In [8], Known and Lim introduced the notion of nonnil-S-Noetherian rings
as a generalization of both nonnil-Noetherian rings and S-Noetherian rings.
Let R be a ring, S be a multiplicative set of R. Then R is said to be a nonnil-
S-Noetherian ring if each nonnil ideal of R is S-finite. If S consists of units of
R, then the concept of S-finite ideals is the same as that of finitely generated
ideals; so if S consists of units of R, then the notion of nonnil-S-Noetherian
rings is identical to that of nonnil-Noetherian ring. Moreover, if Nil(R) = 0,
then the concept of nonnil-S-Noetherian rings is exactly the same as that of
S-Noetherian rings. Obviously, if S1 ⊆ S2 are multiplicative subsets, then any
nonnil-S1-Noetherian ring is nonnil-S2-Noetherian; and if S∗ is the saturation
of S in R, then R is a nonnil-S-Noetherian ring if and only if R is a nonnil-
S∗-Noetherian ring. The nonnil-S-Noetherian rings was studied in [8] using
the Cohen-type theorem, the flat extension, the faithfully flat extension, the
polynomial ring extension and the power series ring extension.

Let A and B be two rings, J an ideal of B and let f : A −→ B be a ring
homomorphism. In this setting, we consider the following subring of A×B:

A ./f J = {(a, f(a) + j) | a ∈ A and j ∈ J}

is called the amalgamation of A and B along J with respect to f . This con-
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struction is a generalization of the amalgamated duplication of a ring along
an ideal denoted by A ./ I (introduced and studied by D’Anna and Fontana
in [4]). The interest of amalgamation resides, partly, in its ability to cover
several basic constructions in commutative algebra, pullbacks and trivial ring
extensions. See for instance [5, 7].

This paper consists of three sections including introduction. In Section 2,
we look at several new nonnil-S-Noetherian ring properties. First, we estab-
lish the Eakin-Nagata-Formanek Theorem for nonnil-S-Noetherian ring. After
that we show that the polynomial ring R[X] is a nonnil-S-Noetherian ring if
and only if it is S-Noetherian, and we also give a characterisation when a
ring is nonnil-S-Noetherian by using the polynomial ring. In the case when
R is a φ-ring, R is a nonnil-S-Noetherian ring if and only if R/Nil(R) is a
S-Noetherian domain with S = S + Nil(R). The characterize of the amal-
gamation A ./f J to be nonnil-S-Noetherian provided that is a φ-ring which
brings this section to a close.

However, in the definition of nonnil-S-Noetherian rings, the choice of s ∈ S
such that sI ⊆ K ⊆ I with K finitely generated is dependent on the nonnil
ideal I. This dependence sets many obstacles to the further study of nonnil-S-
Noetherian rings. The main motivation of section 3 of this work is to introduce
and study a uniform version of nonnil-S-Noetherian rings. In fact, if there
exists an element s ∈ S such that for any nonnil ideal I of R, sI ⊆ K for some
finitely generated sub-ideal K of I, we say that a ring R is nonnil uniformly
S-Noetherian (nonnil-u-S-Noetherian for short). Trivially, nonnil-Noetherian
and nonnil-u-S-Noetherian rings are nonnil-S-Noetherian.

2 On nonnil-S-Noetherian rings

Let R be a commutative ring and S be a multiplicative set of R. Then if there
exists s ∈ S∩Nil(R), so there exists a positive integre n such that 0 = sn ∈ S.
Hence in this paper we always assume that S ∩ Nil(R) = ∅. If Nil(R) is a
prime ideal of R, Then a nonnil ideal I is S-finite if and only if there is s ∈ S
and a nonnil finitely generated ideal F such that sI ⊆ F ⊆ I.

Recall that a ring R is called a φ-von Neumann regular ring if R/Nil(R) is
a field by [12, Theorem 4.1]. We begin this section with the following theorem,
which defines when each S-Noetherian (Resp., u-S-Noetherian) R-module is
Noetherian, for each multiplicative subset S of R.

Theorem 2.1. Let R be a ring. Then the following conditions are equivalent:
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1. For every multiplicative subset S ⊆ R \ Nil(R), an R−module is S-
Noetherian if and only if it is Noetherian,

2. For every multiplicative subset S ⊆ R \ Nil(R), an R-module is u-S-
Noetherian if and only if it is Noetherian,

3. R is a φ-von Neumann regular ring.

Proof. (1)⇒ (2) Straightforward.

(2)⇒ (3) Let a ∈ R \Nil(R). Set S = {an | n ∈ N}. Consider the follow-
ing R-module M =

⊕
i∈NR/aR. Since aM = 0, M is u-S-Noetherian. Then

M is Noetherian and consequently R/aR = 0, so a is a unit, hence every non
nilpotent element in R is a unit, thus (R,Nil(R)) is a local ring. Therefore,
R is a φ-Von Neumann regular ring.

(3)⇒ (1) Let S be a multiplicative subset S of R. Then S ⊆ R\Nil(R) =
U(R), so every element in S is a unit. Therefore an R-module M is S-
Noetherian if and only if it is Noetherian.

In order to generalize some known results on nonnil-S-Noetherian rings.
We start with recalling the following definitions.

Definition 2.2. Let R be a commutative ring, S ⊆ R be a multiplicative set,
and M an R-module.

1. An ascending chain (Nn)n∈N of submodules of M is called S-stationary
if there exists a positive integer k and s ∈ S such that for each n ≥
k, sNn ⊆ Nk.

2. Let Ω be a family of submodules of M . An element N ∈ Ω is said to be
S-maximal if there exists s ∈ S such that for each L ∈ Ω, if N ⊆ L then
sL ⊆ N .

Now, we will give Eakin-Nagata-Formanek Theorem for nonnil-S-Noetherian
rings for any multiplicative subset S of R.

Theorem 2.3. Let R be a ring and let S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. Every nonempty family of nonnil-ideals has an S−maximal element,

2. R is nonnil-S-Noetherian,

3. Every ascending chain of nonnil-ideals of R is S-stationary,
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4. For every nonnil-ideal I of R, R/I is a S-Noetherian ring with S = S+I.

Proof. (1) ⇒ (2) Let I be a nonnil ideal of R. Set Ω be the set of S-finite
nonnil ideals of R wich are included in I. Since I is a nonnil ideal of R, there
exists a ∈ R \Nil(R) such that a ∈ I. Hence aR ∈ Ω, so Ω is nonempty. By
assumption Ω has an S-maximal element L. Therefore, there exists s1 ∈ S
such that if J ∈ Ω and L ⊆ J , then s1J ⊆ L. On the other hand L is S-finite,
then there exists s2 ∈ S, x1, .., xn ∈ L such that s2L ⊆ F = x1R + .. + xnR.
Now, our aim is to prove that s1s2I ⊆ F . For this, let α ∈ I. If α ∈ F , then
s1s2α ∈ F . If α /∈ F , set Q = L + αR, then Q ⊆ I and Q is S-finite nonnil
ideal of R. Hence Q ∈ Ω. Since L ⊆ Q, then by S-maximality of L, s2Q ⊆ L.
Therefore, s1s2α ∈ s1s2Q ⊆ s1L ⊆ F . Hence sI ⊆ F ⊆ I for s = s1s2 ∈ S.
Thus R is a nonnil-S-Noetherian ring.

(2) ⇒ (3) Let (In)n∈N be an ascending chain of nonnil ideals of R. Let
I =

⊔
n∈N In is a nonnil ideal of R. Since by hypothesis I is S-finite, then

there exists s ∈ S and a1, .., ap ∈ I such that sI ⊆ F = Ra1 + ..+Rap. Hence
there exists k ∈ N such that F ⊆ Ik. So sIn ⊆ sI ⊆ F ⊆ Ik for any n ≥ k.
Thus, (In)n∈N is S-stationary.

(3) ⇒ (4) Let I be a nonnil ideal of R. Let L1/I ⊆ L2/I ⊆ ... be an
ascending chain of non zero ideal of R/I. Then L1 ⊆ L ⊆ L2 ⊆ ... is an
ascending chain of nonnil ideal of R. Hence by hypothesis there exists s ∈ S
and k ∈ N such that sLn+1 ⊆ Ln for every n > k. So sLn+1/I ⊆ Ln/I for
every n > k. Hence (Ln/I)n∈N is S-stationary. Thus, R/I is S-Noetherian.

(4) ⇒ (1) Let Ω be a non empty set of nonnil-ideal of R which is not
satisfying the property in (1). Then for every I ∈ Ω and every s ∈ S
there exists J ∈ Ω such that I ⊆ J and sJ * I. Let I ∈ Ω and set
Θ = {J ∈ Ω | I ⊆ J}. Then Θ is also does not have an S-maximmal ele-
ment. Hence Λ = {J/I | J ∈ Θ} is a set of ideals of R/I wich is also does
not have an S-maximmal element, which contraduces the fact that R/N is
S-Neotherian.

Let R be a ring, M an R−module and R ∝M the set of pairs (r,m) with
component-by-component addition and multiplication defined by: (r,m)(b, f) =
(rb, rf + bm), is a unitary commutative ring called the trivial extension (or
idealization) of R by M .

The following example shows that the polynomial ring over a nonnil-S-
Noetherian ring need not be nonnil-S-Noetherian.
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Example 2.4. Let K be a field and E be a K-vector space of infinite dimen-
sional and set R = K ∝ E. Then R is a nonnil-S-Noetherian ring for every
multiplicative subset S of R, and if 0 /∈ S we have R[X] is not a nonnil-S-
Noetherian ring.

Proof. We have Nil(R) = 0 ∝ E is a maximal ideal of R, so the unique nonnil
ideal of R is R. Then R is a nonnil-S-Noetherian ring for every multiplicative
subset S of R. If S∩Nil(R) = ∅, then S ⊆ U(R). Since E is a K-vector space
infinite dimensional, Nil(R) = 0 ∝ E is not a finitely generated ideal of R by
[2, Lemma 3.2]. By absurdity, assume that R[X] is not a nonnil-S-Noetherian
ring. Then, the nonnil ideal Nil(R) + XR[X] of R[X] is finitely generated.
Therefore:

Nil(R) +X = P1R[X] + · · ·+ PnR[X].

As a result, we get

Nil(R) = P1(0)R+ · · ·+ Pn(0)R.

Thus Nil(R) is a finitely generated ideal of R, which is absurd since Nil(R) is
not a finitely generated ideal of R.

We next shows that the polynomial ring R[X] is nonnil-S-Noetherian if
and only if it is S-Noetherian.

Theorem 2.5. Let R be a ring and S be a multiplicative subset of R. Then
the following statements are equivalent:

1. R[X] is a nonnil-S-Noetherian ring,

2. R[X] is an S-Noetherian ring.

Proof. (1) ⇒ (2). Let P be a prime ideal of R[X]. If Nil(R[X]) * P , then
P is a nonnil ideal of R[X] so it is S-finite. If P = Nil(R[X]) = Nil(R)[X].
Since the nonnil ideal Nil(R) + XR[X] of R[X] is S-finite, there exists s ∈ S
and P1, · · · , Pn ∈ R[X] such that:

s(Nil(R) +XR[X]) ⊆ P1R[X] + · · ·+ PnR[X] ⊆ Nil(R) +XR[X].

As a result, we get

sNil(R) ⊆ P1(0)R+ · · ·+ Pn(0)R ⊆ Nil(R).

Therefore,

sNil(R)[X] ⊆ P1(0)R[X] + · · ·+ Pn(0)R[X] ⊆ Nil(R)[X].
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Thus in all cases P is an S-finite ideal of R[X]. Then R[X] is S-Noetherian
by [1, Corollary 5].

(1)⇒ (2) Straightforward.

Let R be a ring and S be a multiplicative subset of R. Recall that S is an
anti-Archimedean subset of R if ∩n≥1s

nR ∩ S 6= ∅, for all s ∈ S. As a direct
corollary of Theorem 2.5 and [1, Proposition 9], we deduce [8, Theorem 3].

Corollary 2.6. Let R be a ring and S ⊆ R an anti-Archimedean multiplicative
subset of R. Then the following statements are equivalent:

1. R[X1, · · · , Xn] is nonnil-S-Noetherian for every n ∈ N∗,

2. R[X1, · · · , Xn] is S-Noetherian for every n ∈ N∗,

3. R is S-Noetherian.

By using the polynomial ring, the following Theorem characterizes rings
that are nonnil-S-Noetherian.

Theorem 2.7. Let R be a ring and S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. R is a nonnil-S-Notherian ring,

2. R[X]/Xn+1R[X] is a nonnil-S-Notherian ring with S = S +Xn+1R[X]
For every integer n > 0,

3. R[X]/Xn+1R[X] is a nonnil-S-Notherian ring with S = S +Xn+1R[X]
For some integer n > 0.

Proof. Let n ∈ N and set U = X + Xn+1R[X]. Then R[X]/Xn+1R[X] =
R[U ] = R+RU + · · ·+RUn since Un+1 = 0.

(1) ⇒ (2) Let I be a nonnil prime ideal of R[U ]. Then two cases are
possibles:

Case 1: U ∈ I. Set A0 = {f(0) | f(U) ∈ I}, then A0 is an ideal of R.
Assume that A0 ⊆ Nil(R). So for any f(U) = a0 + a1U + · · · + anU

n ∈ I,
there exists a positive integer m such that am0 = 0. Thus,

(f(U))m(n+1) = (a0 + a1U + · · ·+ anU
n)m(n+1)

= (am0 + b1U + · · ·+ bnU
n)n+1

= (U(b1 + b2U + · · ·+ bnU
n−1)n+1

= 0
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which is impossible. So A0 is a nonnil ideal of R. Hence there exists s ∈
S and x1, · · · , xm ∈ A0 such that sA0 ⊆ F = x1R + · · · + xmR. On the
other hand we have I ⊆ A0 + UR[U ], for the converse. Let a0 ∈ A0, so
a0 + a1U + · · · + anU

n ∈ I for some a1, · · · , an ∈ R. Then a0 ∈ I since
a0 + a1U + · · · + anU

n = a0 + U(a1 + a2U + · · · + anU
n−1) ∈ I and U ∈ I.

Hence A0 ⊆ I, and consequently I = A0 + UR[U ]. Therefore

sI ⊆ sA0 + sUR[U ] ⊆ x1R[U ] + x2R[U ] + · · ·+ xmR[U ] + UR[U ] ⊆ I.

Thus, I is S-finite.
Case 2: U /∈ I. Set A = { the coefficient of f(U) | f(U) ∈ I}. Then

A is a nonnil ideal of R, so there exists s ∈ S and r1, · · · , rm ∈ A such that
sA ⊆ r1R + r2R + · · · + rmR, so for every ai ∈ A, sai =

∑m
j=1 rjr

i
j for some

rij ∈ R. Hence for every f(U) =
∑n

i=1 aiU
i ∈ I we have:

sf(U) =

n∑
i=1

saiU
i

=

n∑
i=1

m∑
j=1

rjr
i
jU

i

=

m∑
j=1

rj

n∑
i=1

rijU
i

∈ r1R[U ] + r2R[U ] + · · ·+ rmR[U ].

Thus sI ⊆ r1R[U ] + r2R[U ] + · · ·+ rmR[U ]. Now, let f(U) = x0 +x1U + · · ·+
xnU

n ∈ I. Then

Unf(U) = Un(x0 + x1U + · · ·+ xnU
n) = x0U

n ∈ I.

Since U /∈ I and I is a prime ideal of R[U ], we get x0 ∈ I. Therefore x1U +
· · ·+xnU

n ∈ I, hence (x1U + · · ·+xnU
n)Un−1 = x1U

n ∈ I. Since U /∈ I and
I is a prime ideal of R[U ], x1 ∈ I. Continuing this procedure yields that xi ∈ I
for every i ∈ {0, 1, · · · , n}. Hence A ⊆ I. Since ri ∈ A for all i = 1, · · · ,m,
then all ri ∈ I. Therefore

sI ⊆ r1R[U ] + r2R[U ] + · · ·+ rmR[U ] ⊆ I.

Hence in both cases we have I is S-finite. Thus, every nonnil prime ideal of
R[U ] is S-finite. Therefore R[U ] is a nonnil-S-Noetherian ring by [8, Theorem
1].
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(2)⇒ (3) Straightforward.

(3) ⇒ (1) Let I1 ⊆ I2 ⊆ · · · be any ascending chain of nonnil ideals of R.
then, I1R[U ] ⊆ I2R[U ] ⊆ · · · is an ascending chain of nonnil ideals of R[U ].
So by Theorem 2.3 there exists s ∈ S and a positive positive integer k such
that sIm+1R[U ] ⊆ ImR[U ] for every m > k. Hence sIm+1 ⊆ Im. Thus R is a
nonnil-S-Noetherian ring by Theorem 2.10.

As a consequence of the previous Theorem, we have the following two
corollaries.

Corollary 2.8. Let R be a ring, X1, X2, · · · , Xk a finite indeterminates over
R, n1, n2, · · · , nk ∈ N and S be a multiplicative subset of R. Then R is a
nonnil-S-Noetherian ring if and only if
R[X1, · · · , Xk]/(Xn1+1

1 , · · · , Xnk+1
k ) is a nonnil-S̄-Noetherian ring with S̄ =

S + (Xn1+1
1 , · · · , Xnk+1

k ).

Proof. It is easy to show that R[X1, · · · , Xk]/(Xn1+1
1 , · · · , Xnk+1

k ) ∼=
(R[X1, · · · , Xk−1]/(Xn1+1

1 , · · · , Xnk−1+1
k−1 ))[Xk]/(Xnk+1

k ) via the isomorphism

α : (R[X1, · · · , Xk−1]/(Xn1+1
1 , · · · , Xnk−1+1

k−1 )[Xk]/(Xnk+1
k )→

R[X1, · · · , Xk]/(Xn1+1
1 , · · · , Xnk+1

k ), with α(
∑n

i=0 fiX
i
k+(Xnk+1

k ) =
∑n

i=0 fiX
i
k+(

Xn1+1
1 , · · · , Xnk+1

k

)
. Therefore,

R[X1, · · · , Xk]/(Xn1+1
1 , · · · , Xnk+1

k ) is a nonnil-S̄-Noetherian ring if and only
if R is nonnil-S-Noetherian.

Corollary 2.9. Let R be a ring and S be a multiplicative subset of R ∝ R.
Set S′ the trace of S in R. Then R ∝ R is a nonnil-S-Noetherian ring if and
only if R is a nonnil-S′-Noetherian ring.

Proof. Let S be a multiplicative subset of R ∝ R and S′ its trace in R.
Then S and S′ ∝ 0 have the same saturation. On the other hand we have
R ∝ R ∼= R[X]/(X2) via the isomorphism (a, b)→ a+ bX. Then by Theorem
2.7, we get R ∝ R is a nonnil-S-Noetherian ring if and only if R is a nonnil-
S′-Noetherian ring.
Recall that a prime ideal P of R is called a divided prime if it is comparable
to every ideal of R. Set H = {R | R is a commutative ring and Nil(R) is
a divided prime ideal of R}. If R ∈ H, then R is called a φ-ring. For a ring
R ∈ H, we have the following result.

Theorem 2.10. Let R be a φ−ring and S a multiplicative subset of R. Then
R is a nonnil-S-Noetherian ring if and only if R/Nil(R) is an S-Noetherian
domain with S = S +Nil(R).
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Proof. Assume that R is a is a nonnil-S-Noetherian ring. Set A = R/Nil(R)
and let Q be a non zero ideal of A. Then Q = J/Nil(R) for some nonnil ideal
J of R, hence there exists s ∈ S and a finitely generated ideal F of R such
that sP ⊆ F ⊆ P . Since F is a finitely generated ideal of R, L = F/Nil(R) is
a finitely generated ideal of A. Thus sQ ⊆ L ⊆ Q, hence A is an S-Noetherian
domain.

Conversely, Assume that A = R/Nil(R) is a is a S-Noetherian ring. Let
I be a nonnil ideal of R, since Nil(R) is a divided ideal of R, Nil(R) ⊆ I.
Then J = I/Nil(R) is an ideal of A, so there exists s ∈ S and i1, · · · , in ∈ I
such that sJ ⊆ (i1 +Nil(R), · · · , in +Nil(R)) ⊆ J . Let x be a non nilpotent
element of I. Then sx + Nil(R) = c1i1 + · · · + cnin + Nil(R) in A for some
c1, · · · , cn ∈ R. Hence there is w ∈ Nil(R) such that sx+w = c1i1 + · · ·+ cnin
in R. Since sx ∈ I\Nil(R), Nil(R) ⊆ Rsx, so w = sxf for some f ∈ Nil(R).
Hence sx+w = sx+sxf = sx(1+f) = c1i1+· · ·+cnin in R. Since f ∈ Nil(R),
1+f is a unit of R. Thus sx ∈ i1R+ · · ·+inR, Hence sI ⊆ i1R+ · · ·+inR ⊆ I.
Thus I is S-finite. Therefore R is a Nonnil-S-Noetherian ring.

Assume that R is φ-ring, and set φ : R → RNil(R) such that φ(r) = r
1 for

every r ∈ R. Then R/Nil(R) ∼= φ(R)/Nil(φ(R)) by [2, Lemma 1.1]. We have
the following corollary as a direct consequence of this result and the previous
Theorem.

Corollary 2.11. Let R be a φ-ring. Then the following statements are equiv-
alent:

1. R is a Nonnil-S-Noetherian ring,

2. R/Nil(R) is an S-Noetherian domain, with S = S +Nil(R),

3. φ(R)/Nil(φ(R)) is an S′-Noetherian domain, with S′ = φ(S)+Nil(φ(R)),

4. φ(R) is a Nonnil-φ(S)-Noetherian ring.

The next corollary studies when the amalgamated duplication A ./ I is a
nonnil-S-Noetherian ring, provided A ./ I is a φ-ring.

Corollary 2.12. Let A be a ring, I an ideal of A such that A ./ I is a φ-ring.
Let S be a multiplicative subset of A ./ I. Set S′ the trace of S in A. Then
A ./ I is a nonnil-S-Noetherian ring if and only if A is a nonnil-S′-Noetherian
ring.

Proof. By [6, Theorem 2.1], it follows immediately that I ⊆ Nil(A). Hence
Nil(A ./ I) = Nil(A) ./ I, therefore A ./ I/Nil(A ./ I) ∼= A/Nil(A). Thus
the conclusion is an easy consequence of Theorem 2.10.



ON NONNIL-S-NOETHERIAN AND NONNIL-U-S-NOETHERIAN RINGS 211

Recall from [6, Corollary 2.4], That the the trivial ring extension A ∝ E is
a φ-ring if and only if A is a φ-ring and E = aE for each a ∈ A \Nil(A). The
following corollary is an immediate result of Corollary 2.12, which examines
when the trivial ring extension is a nonnil-S-Noetherian ring.

Corollary 2.13. Let A be a φ−ring, E be an A-module such that E = aE
for every a ∈ A \ Nil(A). Let S be a multiplicative subset of A ∝ E. Set S′

the trace of S in R. Then A ∝ E is a nonnil-S-Noetherian ring if and only if
A is a nonnil-S′-Noetherian ring.

Let A and B be two rings, J a nonzero ideal of B, and f : A → B be
a ring homomorphism. Set R := A ./f J and N(J) := Nil(B) ∩ J . Recall
from [6, Theorem 2.1] that (1) If J is a nonnil ideal of B, then R is a φ-ring
if and only if f−1(J) = 0, A is an integral domain, and N(J) is a divided
prime ideal of f(A) + J . (2) If J ⊆ Nil(B), then R is a φ-ring if and only
if A is a φ-ring, and for each i, j ∈ J and each a ∈ A \ Nil(A), there exists
x ∈ Nil(A) and k ∈ J such that xa = 0 and j = kf(a)+ i(f(x)+k). Moreover
let ι : A → A ./f J be the natural embedding defined by a → (a, f(a)) for
each a ∈ A, and S a multiplicative subset of A, then S′ := {(s, f(s)) | s ∈ S}
and f(S) are multiplicative subsets of A ./f J and B, respectively.

Theorem 2.14. Let A and B be two rings, J a nonzero ideal of B, and let
f : A → B be a ring homomorphism such that A ./f J is a φ-ring and S a
multiplicative subset of A. Then the following statements are equivalent:

1. A ./f J is a nonnil-S′-Noetherian ring,

2. A is a nonnil-S-Noetherian ring and f(A)+J is a nonnil-f(S)-Noetherian
ring.

Before proving Theorem 2.14, we need the following lemma of independent
interest.

Lemma 2.15. Let α : R→ R′ be a surjective ring homomorphism and S ⊆ R
a multiplicative set of R. If R is nonnil-S-Noetherian, then R′ is nonnil-α(S)-
Noetherian.

Proof. let J be a nonnil ideal of R′, then J = f(I) for some nonnil ideal I
of R. Since R is a nonnil-S-Northerian ring, there exist x1, · · · , xn ∈ I and
s ∈ S such that

sI ⊆ Rx1 + ...+Rxn ⊆ I.

Whence
f(s)J ⊆ R′f(x1) + · · ·+R′f(xn) ⊆ J.
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So R′ is nonnil-α(S)-Noetherian.

Proof of Theorem 2.14
(1) ⇒ (2) Set pA : A ./f J → A and pB : A ./f J → f(A) + J the two
canonical projections. Since pA(S′) = S and pB(S′) = f(S), we conclude that
A is a nonnil-S-Noetherian ring and f(A)+J is a nonnil-f(S)-Noetherian ring
by lemma 2.15.

(2) ⇒ (1) Set Ā = A/Nil(A), B̄ = B/Nil(B), π : B → B̄ the canonical
projection and J̄ = π(J). Consider the ring homomorphism f̄ : Ā→ B̄ defined
by setting f̄(ā) = f(a). It is easy to see that f̄ is well defined and it is clearly a
ring homomorphism. The kernel of the restriction to A ./f J of the canonical
projection A×B → Ā× B̄ is obviously Nil(A ./f J) and the image is Ā ./f̄ J̄
by the proof of [11, Theorem 2.7]. Hence, we have the following isomorphism
of rings:

ϕ : (A ./f J)/Nilp(A ./f J) −→ Ā ./f̄ J̄

(a, f(a) + j) −→ (ā, f̄(ā) + j̄)

on the other hand A and f(A)+J are φ-rings by [6, Lemma 2.3]. Thus Ā is S̄-
Noetherian ring and f(A) + J/Nil(f(A) + J) ∼= f̄(Ā) + J̄ is f̄(S̄)-Noetherian
ring. So Ā ./f̄ J̄ is S̄′-Noetherian domain by [9, Theorem 3.2]. Whence
A ./f J is a nonnil-S′-Noetherian ring by Theorem 2.10.
In the case where S = {1}, we find the following result.

Corollary 2.16. Let A and B be two rings, J a nonzero ideal of B, and let
f : A → B be a ring homomorphism such that A ./f J is a φ-ring. Then the
following statements are equivalent:

1. A ./f J is a nonnil-Noetherian ring,

2. A and f(A) + J are nonnil-Noetherian rings.

It must be noted that the autours of [11] have been studied when A ./f J
is a nonnil-Noetherian ring, and it shows that if A ./f J is a φ-ring. Then
A ./f J is a nonnil-Noetherian ring if and only if A and f(A) + J are nonnil-
Noetherian rings and f−1(J) ⊆ Nil(A).

Remark 2.17. Let f : A→ B be a ring homomorphism and J an ideal of B,
if A ./f J is a φ-ring, then f−1(J) ⊆ Nil(A) by [6, Lemma 2.3]. Whence our
corollary 2.16 and [11, Theorem 2.7] are identical.

The following example shows that the condition R is a φ-ring is a necessary
condition in Theorem 2.14.
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Example 2.18. ([11, Example 2.10])
Set A = Z ∝ Q and consider the surjective ring homomorphism f : A→ Z/6Z
; f((n, q)) = n̄. Consider J = 3Z/6Z the ideal of Z/6Z. Then, R and f(A)+J
are nonnil-Noetherian rings. However, A ./f J is not.

3 On nonnil-u-S-Noetherian rings

Recall from [10] that a ring R is said to be a u-S-Noetherian provided there
exists an element s ∈ S such that for any ideal I of R, sI ⊆ K for some
finitely generated sub-ideal K of I. Now we state our definition of nonnil-u-
S-Noetherian rings.

Definition 3.1. Let R be a ring and S be a multiplicative subset of R. Then
:

1. R is called a nonnil uniformly S-Noetherian (nonnil-u-S-Noetherian for
abbreviation) ring provided there exists an element s ∈ S such that for
any nonnil ideal I of R there exists a finitely generated ideal F of R,
sI ⊆ F ⊆ I.

2. R is called a nonnil uniformly S-Principal ideal ring (nonnil-u-S-PIR
for short) provided there exists an element s ∈ S such that for any nonnil
ideal I of R there exists a ∈ I, sI ⊆ Ra.

If S consists of units of R, then the notion of nonnil-u-S-Noetherian rings
coincides with that of nonnil-Noetherian ring. Furthermore, if Nil(R) = (0),
then the concept of nonnil-u-S-Noetherian rings is precisely the same as that
of u-S-Noetherian rings. Clearly, if S1 ⊆ S2 are multiplicative subsets, then
any nonnil-u-S1-Noetherian ring is nonnil-u-S2-Noetherian; and if S∗ is the
saturation of S in R, then R is a nonnil-u-S∗-Noetherian ring if and only
if R is a nonnil-u-S-Noetherian ring. Also, every nonnil-Noetherian ring is
nonnil-u-S-Noetherian. However, the converse does not hold general.

Example 3.2. Let R =
∏∞

i=1 Z/4Z be the countable infinite direct product
of Z/4Z, then R is not nonnil-Noetherian. Let ei be the element in R with
the i-th component 1 and others 0. Denote S = {1, ei | i = 1, 2 · · ·}. Then R
is a nonnil-u-S-PIR, let I be a nonnil ideal of R. Then if all elements in I
have 1-th components equal to 0, we have e1I = 0. Otherwise e1I = e1R or
e1I = 2e1R. Thus e1I is principally generated. Consequently R is a nonnil-
u-S-PIR, and so is nonnil-u-S-Noetherian.

Proposition 3.3. Let R be a ring and S a multiplicative subset of R consisting
of finite elements. Then R is a nonnil-u-S-Noetherian ring (resp., nonnil-u-S-
PIR) if and only if R is is a nonnil-S-Noetherian ring (resp., nonnil-S-PIR).
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Assume that R is a nonnil-u-S-Noetherian ring (resp., nonnil-u-S-PIR).
Then trivially R is a is a nonnil-S-Noetherian ring (resp., nonnil-S-PIR).

Conversely, assume that S = {s1, s2, · · · , sn}, R is is a nonnil-S-Notherian
ring (resp., nonnil-u-S-PIR) and set s = s1s2 · · · sn. Then for any nonnil ideal
I of R, there exists a finitely generated ideal (resp., principal ideal) J of R such
that sII ⊆ J ⊆ I. Hence sI ⊆ J ⊆ I . Thus, R is a nonnil-u-S-Noetherian
ring (resp., nonnil-u-S-PIR).
The following example shows that a nonnil-S-Noetherian ring is not a nonnil-
u-S-Noetherian ring in general.

Example 3.4. Let K be a field and X = {X1, X2, ...} be an infinite set of
indeterminates over K, let R = K[X] and set S = R \ 0. Then R is an
S-Noetherian ring so it is a nonnil-S-Notherian ring. However, R is not a
nonnil-u-S-Noetherian by [10, Example 2.5].

Next, we will give Eakin-Nagata-Formanek Theorem for nonnil-u-S-Noetherian
rings for any multiplicative subset S of R. First, recall from [10] the notions
of stationary ascending chains of R-modules with respective to s ∈ S and
maximal elements of a family of R−modules with respective to s. Let R be
a ring, S a multiplicative subset of R and M an R−module. Denote by M∗

an ascending chain M1 ⊆ M2 ⊆ ... of submodules of M . An ascending chain
M∗ is called stationary with respective to s if there exists k ≥ 1 such that
sMn ⊆ Mk for any n ≥ k. Let {Mi}i∈Γ be a family of sub-modules of M .
We say an R-module M0 ∈ {Mi}i∈Γ is maximal with respective to s provided
that if M0 ⊆Mj for some Mj ∈ {Mi}i∈Γ, then sMj ⊆M0.

Theorem 3.5. Let R be a ring and let S be a multiplicative subset of R. Then
the following conditions are equivalent:

1. There exists s ∈ S such that any nonempty family of nonnil ideals of R
has an maximal element with respective to s,

2. R is nonnil-u-S-Noetherian,

3. There exists s ∈ S such that any ascending chain of nonnil ideals of R
is stationary with respective to s,

4. For every nonnil ideal I of R, R/I is a u-S-Noetherian ring with S =
S + I.

Proof. (1) ⇒ (2) Let s0 ∈ S the element in (1) and set s = s2
0 ∈ S. Let I

be a nonnil ideal of R. Set Ω be the set of s0−finite nonnil ideals of R which
are included in I. Since I is a nonnil ideal of R, there exists a ∈ R \Nil(R)
such that a ∈ I. Hence aR ∈ Ω, so Ω is nonempty. By assumption Ω has an
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has an maximal element L with respective to s0. Therefore, for each J ∈ Ω
such that L ⊆ J , s0J ⊆ L. On the other hand L is s0-finite, then there exists
x1, · · · , xn ∈ L such that s0L ⊆ F = x1R + · · · + xnR. Now, our aim is
to prove that sI ⊆ F . For this, let α ∈ I. If α ∈ F , then sα ∈ F . If
α /∈ F , set Q = L + αR, then Q ⊆ I and Q is s0−finite nonnil ideal of R.
Hence Q ∈ Ω. Since L ⊆ Q, then by maximality of L with respective to s0,
s0Q ⊆ L. Therefore, sα ∈ s0Q ⊆ s0L ⊆ F . Hence sI ⊆ F ⊆ I. Thus R is a
nonnil-u-S-Noetherian ring.

The rest of the proof is analogous to the proof of Theorem 2.3.

Let P be a prime ideal of R. We say R is nonnil-u-P -Noetherian provided
that is nonnil-u-(R \ P )-Noetherian. The next result gives a local characteri-
zation of nonnil-Noetherian rings.

Proposition 3.6. Let R be a ring. Then the following conditions are equiv-
alent:

1. R is a nonnil-Noetherian ring,

2. R is a nonnil-u-P -Noetherian ring for all primes ideal P of R,

3. R is a nonnil-u-M -Noetherian ring for all maximal ideals M of R.

Proof. (1)⇒ (2)⇒ (3) Straightforward.
(3) ⇒ (1) Assume that R is a nonnil-u-M -Noetherian ring for all maximal
ideals M of R. Let I be a nonnil ideal of R, so for every maximal ideal M of
R, there exist an element sM ∈ R\M and a finitely generated ideal FM of R
such that sMI ⊆ FM ⊆ I. Let S = {sM |M is a maximal ideal of R}. Since
S generated R, there exists finite elements sM1 , · · · , sMn of S such that

I = (sM1
R+ · · ·+ sMn

R)I ⊆ FM1
+ · · ·+ FMn

⊆ I,

which means that I = FM1
+ · · ·+ FMn

, so I is finitely generated. Therefore,
R is a nonnil-Noetherian ring.

Corollary 3.7. Let R be a local ring with maximal ideal M , then R is a
nonnil-Noetherian ring if and only if R is a nonnil-u-M -Noetherian ring.

Let R be a commutative ring with identity. Recall that R is decomposable
if R = R1 ⊕R2 for some nonzero rings R1 and R2.

Theorem 3.8. Let R be a decomposable commutative ring with identity, S a
multiplicative subset of R and {πi}i∈Λ the set of canonical epimorphisms from
R to each component of decompositions of R. Then the following statements
are equivalent:
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1. R is an u-S-Noetherian ring,

2. R is a nonnil-u-S-Noetherian ring,

3. For each i ∈ Λ, πi(R) is a u-πi(S)-Noetherian ring,

4. If e is a nonzero non unit idempotent element of R, there exists se ∈ S
such that every ideal of R contained in eR is se-finite.

Proof. (1)⇒ (2) Straightforward.

(2) ⇒ (3) Let i ∈ Λ. Then R = πi(R) ⊕ πj(R) for some j ∈ Λ. Let s
the element in (2), and let I be an ideal of πi(R). So I ⊕ πj(R) is a nonnil
ideal of πi(R)⊕πj(R). Then there exist a finitely generated ideal F of R such
that s (I ⊕ πj(R)) ⊆ F ⊆ I ⊕ πj(R). Therefore sπi(I) ⊆ πi(F ) ⊆ I. Since F
is a finitely generated ideal of R, πi(F ) is a finitely generated ideal of πi(R).
Therefore πi(R) is a u-πi(S)-Noetherian ring.

(3) ⇒ (4) Let e be a nonzero non unit idempotent element of R,. Then
R = Re⊕ R(1− e). Then Re = πi(R) for some i ∈ λ. Hence by the assump-
tion, Re is a u-πi(S)-Noetherian ring. Then there exists s ∈ S such that every
ideal of eR is πi(s)-finite. Let I be an ideal of R contained in eR. So there
exists a finitely generated ideal F of eR such that πi(s)I ⊆ F ⊆ I. Since F is
a finitely generated ideal of Ri, E = F ⊕ 0 is a finitely generated ideal of R,
and sI ⊆ E ⊆ I. Thus I is s-finite.

(4) ⇒ (1) Let e be a nonzero non unit idempotent element of R, Then
R = Re⊕R(1− e), Hence Re = πi(R) and R(1− e) = πj(R) for some i, j ∈ λ.
Then by assumption there exists si ∈ S (resp., sj ∈ S) such that every ideal
of R contained in eR (resp., (1 − e)R ) is si-finite (resp., sj-finite ). Set
s = sisj ∈ S. Let I be an ideal of R. Then I = πi(I)⊕ πj(I). By assumption
there exists finitely generated ideals E and F such that siπi(I) ⊆ E ⊆ πi(I)
and sjπj(I) ⊆ F ⊆ πj(I). Set L = E ⊕ F , then L is a finitely generated ideal
of R and we have sI ⊆ L ⊆ I, witch implies that I is s-finite, Thus R is a
u-S-Noetherian ring.

Corollary 3.9. Let n ≥ 2 be an integer, R1, · · · , Rn rings with identity, and
let S1, · · · , Sn be multiplicative subsets of R1, · · · , Rn, respectively. Then the
following assertions are equivalent:

1.
∏n

i=1Ri is a nonnil-u-(
∏n

i=1 Si)-Noetherian ring,

2.
∏n

i=1Ri is a u-(
∏n

i=1 Si)-Noetherian ring,

3. For all i = 1, · · · , n, Ri is an u-Si-Noetherian ring.
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For a φ-ring, we have the following result.

Theorem 3.10. Let R be a φ-ring and S a multiplicative subset of R. Then R
is a nonnil-u-S-Noetherian ring if and only if R/Nil(R) is a u-S-Noetherian
domain with S = S +Nil(R).

Proof. Analogue to Theorem 2.10.

Corollary 3.11. Let R be a φ-ring and S a multiplicative subset of R. Then
the following statements are equivalent:

1. R is a Nonnil-u-S-Noetherian ring,

2. R/Nil(R) is a u-S-Noetherian domain with S = S +Nil(R),

3. φ(R)/Nil(φ(R)) is a u-S′-Noetherian domain, with S′ = Nil(φ(R)) +
φ(S),

4. φ(R) is a nonnil-u-φ(S)-Noetherian ring.

Let A and B be two rings, J a nonzero ideal of B, and let f : A → B
be a ring homomorphism. Let i : A → A ./f J be the natural embedding
defined by a→ (a, f(a)) for all a ∈ A. For a multiplicative subset S of A, put
S′ := {(s, f(s)) | s ∈ S}. Clearly, S′ and f(S) are multiplicative subsets of
A ./f J and B, respectively.

Theorem 3.12. Let A and B be two rings, J a nonzero ideal of B, and let
f : A → B be a ring homomorphism such that A ./f J is a φ-ring, let S a
multiplicative subset of A. Then the following statements are equivalent:

1. A ./f J is a nonnil-u-S′-Noetherian ring.

2. A is a nonnil-u-S-Noetherian ring and f(A) + J is a nonnil-u-f(S)-
Noetherian ring.

Before proving Theorem 2.14, we need the following lemma of independent
interest.

Lemma 3.13. Let α : R→ R′ be a surjective ring homomorphism and S ⊆ R
a multiplicative set of R. If R is nonnil-u-S-Noetherian, then R′ is nonnil-u-
α(S)-Noetherian.

Proof. Let s ∈ S the element such that every nonnil ideal of R is s-finite. Let
J be a nonnil ideal of R′, then J = f(I) for some nonnil ideal I of R. Since
R is a nonnil-u-S-Noetherian ring, there exist x1, · · · , xn ∈ I such that

sI ⊆ Rx1 + · · ·+Rxn ⊆ I.
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Whence
f(s)J ⊆ R′f(x1) + · · ·+R′f(xn) ⊆ J.

So R′ is nonnil-u-α(S)-Noetherian.

Proof of Theorem 3.12
(1) ⇒ (2) Set pA : A ./f J → A and pA : A ./f J → f(A) + J the two
canonical projections. Since pA(S′) = S and pB(S′) = f(S), we conclude that
A is a nonnil-u-S-Noetherian ring and f(A)+J is a nonnil-u-f(S)-Noetherian
ring.

(2) ⇒ (1) With the same notation in theorem 2.14, we have the following
isomorphism of rings:

ϕ : (A ./f J)/Nilp(A ./f J) −→ Ā ./f̄ J̄

(a, f(a) + j) −→ (ā, f̄(ā) + j̄)

on the other hand A and f(A) + J are φ-rings by [6, Lemma 2.3]. Thus Ā
is u-S̄-Noetherian ring and f(A) + J/Nil(f(A) + J) ∼= f̄(S̄) + J̄ is u-f̄(S̄)-
Noetherian ring by [10, Lemma 3.3]. So Ā ./f̄ J̄ is S̄′-Noetherian domain by
[10, Proposition 3.4]. Whence A ./f J is a nonnil-u-S′-Noetherian ring by
Theorem 3.10.
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