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On the unrestricted virtual singular braid

Panagiote Ligouras

Abstract

Let n,m € Nyn > 3 and n > m > 2. In this paper, we study some
properties of the unrestricted virtual singular braid of braid monoid
UVSB,,, and group UVSG,,,. These properties emerged by studying
the analogous properties of the unrestricted virtual singular pseudosym-
metric braid of braid monoid and group. These mathematical objects are
submonoids and subgroups of the virtual singular braid group V.SG,.
For many of these quotients, we have obtained reduced presentations.

1 Introduction

The Artin braid groups or braid groups on n strands B, are introduced by
E. Artin as a tool for working with classical knots and links. B, is the group

defined [1] by generators o1, 03, ..., 0,1 and relations
(RO) 005 = 0;0; 7 -4 >1
(R3) 0i0i410; = 0410041 i=1,2,...,n2

For work on classical braids and classical knots, see [16, 17] and references
therein.

The term Braid of Braids identifies classes of algebraic groups of braids
that each, in a certain sense, includes as a particular case a class of braids
representing one of the classical braid groups, e.g. if m=1, the braid of braid
group BB,,,, coincides with the braid group of n strands B,,. The term Braid
of Braids was first introduced by Moran at [12], where some of their properties
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referring to Artins braid groups were also studied. Lin in one of his works,
[11], gives a note to this type of algebraic structures but without using the
term Braid-of-Braids. The term indicates that each strand of this type of
group that uses it is generally made up of several strands that we will call
elementary and "borrowed” from classic braid groups.

The Pseudosymmetric group is the quotient of B,, by the relations 01'07;11 o;

=01 Ui_loi_H. These groups appeared in 2010 in a paper of Panaite and Staic
[15].

The singular braid monoid on n strands SB, was introduced the same
period by Baez 1992 [2] and Birman 1993 [4] independently and includes the
B,, group as a submonoid. SB,, is generated by a set of n—1 classical generators:
{01, 02, ..., 0n—1} and n—1 singular generators: {z1, Za, ..., T,_1} satisfying
a sets of braid relations and singular relations.

The groups V B,, were introduced by Kauffman as a tool for working with
virtual knots and links. The virtual braid group V B,, contains the braid group
B, in a natural way just as classical knots embed in virtual knots. This fact
may be most easily deduced from [8, 10]. Hence, the virtual braid group on n
strands, V' B,,, is an extension of the classical braid group B,, by the symmetric
group S,. VB, is generated by a set of n—1 classical generators: {o1, oo, ...,
0n-1} and n—1 virtual generators: {p1, p2, ..., pn—1} satisfying a set of braid,
virtual and mixed braid-virtual relations.

The wirtual singular monoids denote V.SB,,, was introduced by Caprau
et all. in [5]. Virtual singular monoids V.SB,, are similar to classical Artin
braid monoids, with the difference that they contain singular crossings x; and
virtual p;, besides classical crossings o;.

The group of unrestricted virtual braids, UV B,,, was introduced by Kauff-
man and Lambropoulou in [9]. Unrestricted virtual braid groups are used for
working with fused links [14]. In [3] has given a description of the structure
of UV B,,. Finally, the group of unrestricted virtual singular braids, UV SG,,
was introduced in [13].

The paper is organized as follows: in section 2 we recall some definitions
and classical results for the unrestricted virtual singular braid of braid. A re-
duced presentation for the unrestricted virtual singular pseudosymmetric braid
of braid group UVSPSG,,, has been built with generators {oy, X, p1, 0o,
.evy Pp_1} (see Theorem 2.10). Finally, the Theorem 2.12 states that the
UVSPSG,,, group is isomorphic to the unrestricted virtual singular pseu-
dosymmetric group UVSPSG,. In section 3 we introduced the extended
fusing b-strings u,, Mfl, Yis 1;1, 91, éfl, and then we tried a second reduced
presentation of UVSPSG,,,, with {p,, o, ..., L1, Ly, 7 Y1, Y1} as a
generator set (see Theorem 3.5), and a third presentation has been proposed
with generators {g,, O, - - Tp_1, 1> 1 Oy, 07 '} (see Theorem 3.7).
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2 Unrestricted virtual singular braid of braid

It has previously been indicated that Caprau et al. defined the virtual singular
braid of n strands VSB,, [5] and in [6] they defined the virtual singular braid
group of n strands V. SG,,. In some of our proofs below, we’ll underline the
portion of the relation that we’ll be working with on the row next.

Definition 2.1. (Moran [12]). Let the Artin braid group B,,, generated by

01,09, ooy Omn_1. If e=2xland k=1, 2, ..., n—1, we define
m
Q;(Cm’ 9= il;ll Ohm—i+1Tkm—i+2 """ Chm—itm-
The symbol
(m,1) _ T
I = 0y =4 Okm—i+1%km—i+2 """ Tkm—itm

represents the positions of each of the km, km—1, ..., km—m+1 strands on
each of the km+1, km+2, ..., km—+m strands. Each ordered (km—m+1, ...,
km-1, km), k = 1, 2, ..., n—1, grouping of strands is called m-strand.

Definition 2.2. Let the virtual singular braid monoid VSB,,, generated by
the classical o;, singular x;, and virtual p; braids, for : =1, 2, ..., mn—1. If
k=1,2,..., n—1, we define

(m) _ T
X, = ‘H1 Lhm—i+1%km—i+2 -+ - Thm—itm>
i—
and "
(m) _
Bk - iljl Pekm—i+1Pkm—i+2 -+ - Pkm—itm-

In cases of unambiguity the symbol x; is used to indicate g,&m):

X = Trm—i+1Tkm—i+2 * * * Thm—itm>

[}=FE!

K2

and py, is used to indicate ‘Q,(Cm):

3

Bk = il;ll pkm7i+1pkm7i+2 e pk:mfi+m'
Definition 2.3. Let the virtual singular braid monoid V SB,,,. The virtual
singular braid of braid monoid, denoted by VSB,,,, is the following generated
subgroup of VSB,,,:
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VSan = <Q17 02y «+vy On—1, L1, L2, -+ Ipn—1, P1, P2, - -+, Pn—1 >

Virtual singular braid of braid group VSGy,, is an abstract group that has a
presentation that has the same set of generators and defining relations as the
monoid-presentation for the virtual singular braid of braid monoid VSB,,,,
with the only additional properties that the elements are invertible in VSG,,,,,
and the relations (RS0), (RRS0), (RRS2), (RRS3), (RRS4), (RSV0), and
(RSV3) remain valid by replacing x; with g,;l, fork=1,2,..., n1.

Each element of VSB,,, is called virtual singular braid of braid. A wvirtual
singular braid of braid diagram is a diagram that represents any € V.SB,,,
element. The justaposition operation of the VSB,,, group is induced by the
justaposition operation of VSB,,,. The neutral element 1, of VSB,,, group
is induced by the neutral element 1,,, of VSB,,.,.

Example 2.4. In Figure 1 a geometric representation of the braid x; (left)
of VSBs, monoid and its representation (right) as a generator of the monoid
VSB,,.

1 2 2k-1 2k 2k+1 2k+2 2n—1 2n 1 k k+1n

Figure 1: The braid xj (left) of VSBs, monoid and its representation (right)
as a generator of VSBs,.

Definition 2.5. Unrestricted virtual singular braid of braid monoid on n m-

strands, denoted by UV SB,,,,,, is defined as the group generated by b-classical

generators o;, b-singular generators x;, and b-virtual generators p;, 1 = 1, 2,
.., n—1, satisfying the following b-classical relations:

(RRO) @gi0j = 0;0; 7 -4 >1

(RR2) g{lgi =1, = gig;1 1=1,2,..., n-1

(RR3) Ci0i+10i = 0i+10:i0i+1 1=1,2,..., n-2,
b-singular relations:

(RSO)  XiXj = XXy l7 —i| > 1,
b-virtual relations:

(RVO)  pipj = 2j0i lj—i>1

(RV2) p?2=1, 1=1,2, ..., n—

1
(RV3)  LiLi+10i = Li+1PiLi+1 i=1,2,..., n-2,
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mized b-real-singular relations:

(RRS0) Xi0j = 0;%; l7—i>1

(RRS2) Xi0i = 0iX; i=1,2,...,n1

(RRS3) Xi0i+10i = Ti+10iXi+1 i=1,2,...,n2

(RRS4) Ci0i+1Xi = Xi4+10iTi+1 i=1,2,..., n=2,
mixed b-real-virtual relations:

(RRV0) cipj = pjdi l7—i>1

(RRV3) Gipi+10i = Pi+10iTi+1 i=1,2,..., n-2,
mized b-real-virtual forbidden relations:

(RVF1) Li0i+10i = Ti+10iLi+1 1=1,2,...,n2

(RVF2) Ci0i+10i = Li+10iTi+1 1=1,2,..., n-2,
and mized b-singular-virtual relations:

(RSVO0) Xipj = pjX; 7 —i>1

(RSV3) Xipi+1Pi = Pit+10iXit+1 i=1,2, ..., n2.

Unrestricted virtual singular braid of braid group, denoted by UVSG,,,, is a
group that has a presentation that has the same set of generators and defining
relations as the monoid-presentation for the monoid UVSB,,.,, with the only
additional properties that the elements are invertible in UVSG,,, and the
relations (RS0), (RRS0), (RRS2), (RRS3), (RRS4), (RSV0), and (RSV3)
remain valid by replacing x; with x; .

The UVSPSB,,,, Unrestricted virtual singular pseudosymmetric braid of
braid monoid, is a monoid that has a presentation that has the same set of
generators and defining relations as the monoid-presentation for the monoid
UVSB,,,, with the only additional pseudosymmetric relation:

(RR}) 0,07 h0; = 0,107 00y, i=1,2,..., 02

The UVSPSG,,,, unrestricted virtual singular pseudosymmetric braid of braid
group, is a group that has a presentation that has the same set of generators
and defining relations as the monoid-presentation for the UVSPSB,,,, with
the additional properties that the elements are invertible in UVSPSG,,,:
(RS2) x;'x;, = 1, = x,x; ', and the relations (RS0), (RRS0), (RRS2),
(Rf%S?)), (RRS4), (RSV0), and (RSV3) remain valid by replacing x, with

X -

Definition 2.6. The WSB,,,, welded singular braid of braid monoid, is a
monoid that has a presentation with the same generator set as UVSB,,,
while its relations are the same as UVSB,,,, except for the (RV F2) relations.
The WSG,,,, welded singular braid of braid group, is a group that has a
presentation with the same sets of generators and relations as WSB,,, with
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only the added properties that each of its elements has an inverse element
in WSG,,: (RS2), and the relations (RS0), (RRS0), (RRS2), (RRS3),
(RRS4), (RSV0), and (RSV'3) remain valid by replacing x;, with x; '

The WSPSB,,.,, welded singular pseudosymmetric braid of braid monoid, is a
monoid that has a presentation with the same generator set as WSB,,,,, while
its relations are the same as UVSB,,, with the only additional pseudosym-
metric relation (RR4).

The WSPSG,,,, welded singular pseudosymmetric braid of braid group, is a
group that has a presentation with the same sets of generators and relations
as WSPSB,,, with only the added properties that each of its elements has
an inverse element in WSPSG,,,,: (RS2), and the relations (RS0), (RRS0),
(RRS2), (RRS3), (RRS4), (RSV0), and (RSV3) remain valid by replacing

Xp with x; .

To prove the following equations we proceed by induction on the relations

(RRV3), (RVF1), (RRS4), (RRS3), and (RSV3).

Lemma 2.7. For 1 < i < n-2, the following statement holds in UVSB,,.,,:

(a)  git1 = (pi---p1)(Ri+1---p2)01(p2- - - pit1)(p1- - - pi)-
(0) pir1 = ("o (e ap e (o ai ) (@1 0i)-
(c) ziy1 = (Qi---gl)(QH-l---Q2)£1(Qg_1~-~Qi_+11)(21_1~-~gi_1)-
(d) i1 = (Q{l.~.Qfl)(g,;;ly~~Q§1)§1(Q2~.~Q¢+1)(Qlu~Qi)-
(e)  zix1 = (pi---p1)(Riv1---p2)T1 (02 - piy1)(p1-- - pi)-

|
I
L

Two Lemmas attributed to Kauffman and Lambropoulou follow, adapted for
the UVSG,,, group. We prove only the Lemma 2.9.

Lemma 2.8 ([9]). Let be the group UVSG,,,,. For 1 < i < n-8 holds:

(P4p3p2p1)- - - Pit2piv10i0i—1) = (Pa- - - Liv2)(03- - piv1)(p2---pi)(p1- - pi—1)

Lemma 2.9 ([9]). Let be the group UVSGy,. If 1< i, j< n-2 and |i-
jl > 1, then

PiPi+1---Pj—1PjPj—1---Li+1Li = LjPj—1---Li+1P0iLi+1---LPj—1L5-

Proof. Without losing the generality it is considered i+2 < j. The i+2 > j
case is proved analogously. We have
Lilit1- - Lj—1P5Pj—1- - Li+1Pi
= LiLit1---LjPj—1L5- - - Lit1Li
= PjPiPi+1---Pj—2Pj—-1Pj—2- - Pi+10iLj
LjLilit1- - Lj—10j-2Lj—1- - Li+10iLj
PjLj—1LiPi+1- - - Pj—3Pj—2Lj—3- - - Li+1LiLj—1Lj
= PjLj—1LiLi+1- - Lj—20j-30j—2- - - Li+1LiLj—1L;
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LjPj—1- - Pi+2PiLi+1LiLi+2- - - Pj—1L0j
= PjPj—1---Li+20i+10iLi+10i+2- - - Lj—1Pj- O

2.1 Reduced presentation for UVSPSG,,, with o, x{, p1, «++y 2,1
generators

Theorem 2.10. The UVSPSG,,, group has a reduced presentation with
generators {1, X1, P1, Loy -+ L1} and the following relations:

(i) 01 (0203010201 02010302) = (DaP301020102010302)7 1,
(i)  oyloy =1, =007,

( W) a1 219221212/21)21 = (p102010201)71 (Q11Q221Q2Q1) ,
(iv) a1 (p1020y P201)T1 = (L1£2010201 )01 (P102T1 0201 ),

(v) LiLj = L;P; l7 -1 > 1,

(vi) p? =1, i=1,2, ..., n1,
(vii) LiLir1Li = Lit1LiLit1 1=1,2, ..., n-2,
(viti) X1 (P2p30109X102010302) = (P2030102X1 02010302 )%y 5
(ir)  x;'x =1, = x1%7 %,

(z) X1 (D20301020102010302) = (203010201 02010302 )X1 ;
(m) X101 = 01Xy,

(wii) X1 (0102010201)01 = (010201020101 (£1£2X10201);
(xiii)  C1L = 2:0y 1=3 4 ..., n2,

(ziv) 01 (p201020101) = (p201020101 )02,

(zv) (T101020102)01 = P2 (T101020102),
(xvi) X10; = PiXq 1=38 4, ..., n-2.

Proof. The presentation assumes the relations Lemma 2.7-(a) and Lemma 2.7-
(e), which we refer to as the special defining relations. The relations (RRV'3)
and (RSV3) are not needed in the reduced presentation for UVSPSG,,,,
since they were implicitly used in the relations Lemma 2.7-(a) and Lemma
2.7-(e) respectively. The relation (RRS4) is also not included in the reduced
presentation because it can be easily reconstructed from the relation (RRS3)
which is present at the position (zii).

The relations (RV0): p;p; = pjp;, (RV2): pi = 1,, (RV3): pip;10; =
Liv10:2;11 of the definition of UVSPSG,,, group are identical, respectively,
to the relations (v), (vi) and (vii).

The relations (RR0): 0,0; = o0, were proved in ([9], Lemma 3) for VB,
group. The base case of the relations, o,05 = g30,, corresponds to the relation
The relations (RRS0): x,0; = o,x; were proved in ([5], Lemma 3) for VSB,
group. The initial case of the relations, x;05 = g3x;, corresponds to the
relation (z).



ON THE UNRESTRICTED VIRTUAL SINGULAR BRAID 190

The relations (RRS2): x,0, = o,x; were proved in ([5], Lemma 7) for VSB,
group. The initial case of the relations, x,0, = ¢;x;, corresponds to the
relation (zi).

The relations (RSV0): x;p; = p;x; were proved in ([5], Lemma 2) for VSB,
monoid. The initial case of the relations, x;p3 = p3x;, corresponds to the
relation (zvi).

The relations (RRV0): a,p; = p;o; were proved in ([9], Lemma 1) for VB,
group. The initial case of the relations, g,ps = ps0;, corresponds to the
relation (ziii).

The relations (RR3): 0,0,,,0; = 0;,,0,0,,, were proved in ([9], Lemma 2) for
VB,, group. The initial case of the relations, g,0,0, = g,0,0,, corresponds
to the relation (%ii).

The relations (RRS3): x;0,,,0; = 0;,10,%;,, were proved in ([5], Lemma
5) for VSB, monoid. The initial case of the relations, x,0,0; = 050;X,,
corresponds to the relation (zii).

For i =1, ..., n-2, the forbidden relations (RVF2): g,0,,1p; = p;110:0;41
follow from the basic relations (2v) of Theorem 2.10, the virtual relations, and
Lemma 2.7.

The singular commuting relations (RS0): x;x; = x;x; for 4, j =1, ..., n-1
and |i — j| > 2 follow from the basic relations (viii) of Theorem 2.10, the
virtual relations, and Lemma 2.7.

Fori=1,2,..., n-2, the relations (RVF1): p;o; 10, = 0;,10;p;,, follow from
the basic relations (ziv) of Theorem 2.10, the virtual relations, and Lemmas
2.7, 2.8.

For i =1, 2, ..., n—1, the relations (RR2): gi_lgi =1, = gigi_l follow from
the basic relations (i¢) of Theorem 2.10, the virtual relations, and Lemma 2.7.
The real relations (RR4): 0;,10; ‘0,01 = gig;_llgi, for 1 < ¢ < n-2, follow
from the basic relations (iv), (xiii) of Theorem 2.10, the virtual relations, and
Lemmas 2.7, 2.9.

The singular relations (RS2): gi_lgi =1, = gigi_l, for 1 < ¢ < n-1, follow from
the basic relations (iz) of Theorem 2.10, the virtual relations, and Lemma 2.7.
The proof is complete. O

Corollary 2.11. From Theorem 2.10, if we remove the relations:
(iz) we have a reduced presentation of UVSPSB,,.

(iv) we have a reduced presentation of the UVSG .

(iv), and (iz) we have a reduced presentation of UVSB,,,.

(), (iz), and (zviii) we have a reduced presentation of the WSBy,,,.

(iv), and (zviii) we have a reduced presentation of the WS Gy, .
(iz), and (zviii) we have a reduced presentation of the WSPSB,,,,,.
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e (zviii) we have a reduced presentation of the WSPSG,,,,.

Theorem 2.12. The braid of braid group UVSPSG,,,, is isomorphic to the
braid group UVSPSG,,.

Proof. Let the groups UVSPSG,,, and UVSPSG,,,. For k =1, ..., n—1,
correspondence
m
T = I Okm—it1%km—i+2-Tkm—itm>

m
X I Tem—it1Thm—i+2 -+ Thm—itm

and
m

Bk = 'Hl Prm—i+1Pkm—i+2 - - - Pkm—it+m-

defines an injective homomorphism 9: UVSPSG,,,— UVSPSG,,,. Ac-
cording to the Definitions 2.1 and 2.2, the inverse map ¥~! of the ¥ is a
surjective homomorphism and the proof is complete. So, UVSPSG,,, =
UVSPSG,,. O

3 Reduced presentations for UVSPSG,,, using real-fusing
b-strings

In this section, we introduce a new presentation for the n m-stranded unre-
stricted virtual singular pseudosymmetric braid of braid group, UVSPSG,,,,.
This reduced presentation uses as generators a particular type of unrestricted
virtual singular braid of braids, which we now define.

Definition 3.1. In VSG,,,, the elementary real-fusing b-strings w;, g;l, Yis
and 11-_1 are n m-stranded virtual singular braid of braids defined as follows:
Ly = 0;0;s li;l = Qigfla Y = X 1;1 = QZX;I, 0; = X,0,, é;l = gflzfl,

where ¢t =1, 2, ..., n—1.

Remark 3.2. By Definition 3.1, we can describe the:

e real generators g;, o, ! and the singular generators X;, X; Lof VSGun

in terms of the elementary real-fusing b-strings p;, u; ', 7; and ;"

-1 —1 -1 —1
O; = K05 T = Pl 5 X5 = XiPiy X5 = 0705

e virtual generators p; and the singular generators x;, x; Lof VSG,,, in
terms of y;, 8, and §;
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-1 _ —1 -1 __ —1
P = 0,; My, Xi—éigi , X —Qiéi )

where 1 =1, 2, ..., n—1.

Translating pages 8-10 of [10] and Definition 7 of [6] to the algebraically lan-
guage of the braid of braid we can state the following Lemma.

Lemma 3.3. For 1 < i < n-2, the following relation holds in UVSG,,,:

(a)  piltiv1pi = piv1kipiv1  and ,Qi]ii__,_llﬁi = piy1lty it
(b)) pivig1oi = piniXigivr  and iy )ipi = pir1Y; L1
() wit1 = (pi---p1)(Qiv1- - p2)11 (p2- - piv1)(p1- - pi)-

(d)  wily = (e p1)(iv1- - p2)uy (p2- - piy1)(p1- - - i)-

(e) Yit1 = (Qi---L1)(Qit1- - p2)31(02- - - pit1)(p1- - - 0i)-

(f) %‘111 = (Qi-~-Ql)(ﬁi-H--~Q2)11_1(Q2~-~Qi+1)(ﬁl-~-Qi)'

Lemma 3.4. For 1 < i < n-2, the following relation holds in UVSG,,,,:

(a) w1 = (o, .oy )(ei )y 05w (02 gi1)(01. . 0i).
(b)  wity = (o oy )@ 0y uy (02 i) (@ 04)-
(¢) g1 = (02...0i41)(01...0i)n (o7 ..oy ). a3 ")
() a7 = (02 .oii)(or o)y (oo (e as ).
(e) Oiv1 = (02...0541)(a1.. .03 )01 (Qi_l- . ~Ql_1)(gi_+11- . -Qz_l .
(f) 6 = (02...0041)(01...03)07 (o7t .oy (e} o5 ).

Proof. Then, the definition relations (RR0), (RR2), (RR3), (RRS0), (RRV0),
(RRS4, (RVF1), Definition 3.1, and Lemma 2.7 are used. We proceed with
the proof of equations (a).

piv1 = (gt o e o Dei(oe - aip1)(ar - ai)
_ _ -1 -1 —1 —1
Mit1 = Qi+1Qi+1—Qi+1(Qi -..09 )(Qi+1- .09 ),Ql (Q2~ . -Qi+1)(Q1- . -Qi)

=00 oo D)ot ooy Dei(os. . ai)(ar. .. oy)

= (o; 'oihai oy e, oy Do - git1) (0. - . 0i)
= (o; " ..o oy o3 Daipi(os. .. oi1) (0. . . 03)
= (g7 oy (e o Dm(ae. - gi) (a1 4).

Equations (b), (¢), (d), (e) and (f) are proved analogously. Note that the
equations x,=7;p,=;1; *; hold. O
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3.1 Reduced presentation for UVSPSG,,, with {p;, psy ---s Dn_1,
My 11} generators

Theorem 3.5. The UVSPSG,,, group has a reduced presentation with gen-

erators {py, Po, -5 L1, L1, gl_l, Y1s 11_1} and the following relations:
(i) il = PP li—1 > 1,
(ii)  p? =1, 1=1,2, ..., n1,
(i4i)  LiLi+1Li = Lit10:Li41 1=1,2, ..., n-2,

(“)) /Al_llil = Jn = ﬂlﬂl_l;
W) Aty =1n =yt
(vi) L = Pyl

(vii) 210 = 21

(viti) H1P1Y1 = Y1011,
(i) P01 1y D201y D201 = PPl 1 DT ' D1 Do Ly

() (10211201 ) (Polt1 o) = (Pakly P2) (01 L2141 L2021 ),

(wi)  (pott10o)tty = Ly (Pakt1P2),

(ii) (1024010201 ) (D211 09 )11 = 11 (Dokty 02) (0102141 P201),
(ziii)  (p1P2k1P201) (Lokt1 P2)01 = Y1 (P2t 02) (01020410201 )
(ziv)  (p2p10309M1 P20301 02 )11 = Ly (D201030281 P2030102);
(xv)  (DoP1£30211 L2P30102)Y1 = Y1 (0201030214 P2030102);
(xvi)  (Dop1£30271P2030102)Y1 = Y1 (P20103027102030102)-

1=384,...,n1,
1=3, 4 n—1

g ey 5

Proof. The equations (i)-(iv), (vi)-(viii), and (zii)-(zvi) were discussed in
Proposition 14 of [7] for the virtual singular monoid VSB,,.
We need to examine why the (v), (iz), (z) and (xi) relations are present. The
four relations correspond respectively to the defining relations, of UVSPSG,,,
(RS2), (RR4), (RVF1) and (RV F2) of Definition 2.5. To continue, it is suf-
ficient to consider the basic cases of the four relations. In fact, with the use
of Lemma 3.3 we can describe the cases for all 2 < i < n—2.
The initial case of the relations (RS2): gigi_l =1, = gigi_l isxx; =1, =
x,x;*. We prove (v) implies (RS2). By (ii), (v) and Remark 3.2:
1t =1y (o) (e ) = 1oy xi(ee)x ! = 1oy x(L)x ! = 1, xx7!
On the other side
2101 = Lus o1(Ln)poy = Lus p1(a1 ' 2n)en = Lns (2127 D (o)) = Lns x7'%y
=1,.
The basic case of the relations
(RR4): 0,070, = 044107 0,41 is 01050y = 0507 'gy. We prove (iz) im-
plies (RR4). By (ii), (i) and (iz):
110201 107 D201 11 0201 = P10211 10217 010211

li122£1£f122£11i1 = Q1Q2M1£1£2&f121£2,412122

10301147 ' D201 10101 = L1021 1 Doy 010311 010201
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H122Q1(171)Mf12221111£1 = Q1Qzﬁ121£2£f19122M1£2£1£2
L1 0201 Do Polhy D201 01 = D1 Dok L1024y ' 019k Lo s
L1 210201 o141 ' 2011 01 = 01 Pty £105(1n) by ' 10211 020102
11010901 02187 020110101 = P1Doly 0102010117 0109k 020102

(1121) (020102087 201) (11.01) = (12201 0201 05) (21187 1) (21 22121 L2021 £2),
and by Remark 3.2 and the relations (¢), (d) of Lemma 3.3 with ¢ =1

(Q)(?z/ig e) = (202) (01147 ) (25)

0109 01 = 0907 0J9-
The initial case of the relations (RVF1): p;0,,10; = 0;,10;0;,1 is p10y0; =
0504109 We prove (z) implies (RV F'1). Using relations (%), (%), (z), Remark
3.2 and Lemma 3.3:
(2102101 0201) (02181 05) = (£21102)(£1£2141 £201)

(0102181 0201) P2k P20105 = (D2kb1 £2) 010211

(010241 0201) P21 010201 = (D2k102)P1 P24y

(210281 P2.01) Pokt1 102 = (1n) (P2kt1 £2) 102111 01

(010281 02.01) Pokiy P12 = 101 (P2k1 P2) 01 Lokl £y

(2102441 0201 02) (1101) 05 = p1 (01021410201 05) (121.01)

(202)(101)03 = p1(L205)(11107)

090102 = P19207-
The basic case of the relations (RVF2) 0,0, 1p; = p;10:0;41 1 010501 =
20,05 We prove (zi) implies (RV F2). Using the relations (), (i), (i),
Remark 3.2 and Lemma 3.3:
(p211102) 11 = 1 (p21t105)

(D2bt102) 11210201 = 11 (L2k102) 010201

Potiy (10) popty pop102 = iy (0okiy 02) 010201

Doty (0101) P2t P2£102 = i (10) Pofty P2010001

P2 (1101) (010241 0201 05) = 111 (101) P21 L2.01P201

22 (1101) (0102181 0201 05) = (11101) (0102111 0201 02) 0

22 (1101) (Ua05) = (11101) (2202) 01

P20109 = 01090 -
It is easy to transfer the reasoning used to work with VSB, generators to
UVSPSG,,, generators. O

Corollary 3.6. Let be Theorem 3.5. If we remove the relations :
e (v) we have a reduced presentation of UVSPSB,,.

(iz) we have a reduced presentation of group UVSGy,,.

(i) we have a reduced presentation of WSPSG,,,.

(v), and (iz) we have a reduced presentation of UVSB,,,.

(v), and (zi) we have a presentation of WSPSB,,.

(x) and (zi) we have a reduced presentation of VSPSGp,, .
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(iz), (z) and (xi) we have a reduced presentation of VSGpy,.

(v), (iz), and (xi) we have a presentation of WSBy,y,.

(v), (x), and (zi) we have a presentation of VSPSB,,,.

(v), (iz), (z), and (xi) we have a reduced presentation of VSB,.

3.2 Reduced presentation for UVSPSG,,, with {gy, g9, ..., 0,,_1,
iy, 8, )} generators

Theorem 3.7. The UVSPSG,,, group has a reduced presentation with gen-

erators {ay, 0g, ..., Tp_1s Ly, 01, 05 '} and the following relations:
(1) 2% =3;09,; lj—1 > 1,
(ii) g;lgl =1, =0,0] 1=1,2,...,n1,
(iii) Qz‘Qz‘+1Q¢ =011%%11 1=1,2, ..., n2
(iv) o070 =007 0 i=1,2...,n28
(v) 5 (Q2Q32122é122 101 103 gy ') = (ngSngzélgz ar 03 02 )517
(vi) 51 51_1”_5511 i=1,2 ..., n1,

(vii) (05 05" 07 05 ' 10105010305) = (0305 07 ' 0y 110501050 )iy
(vidi) pypyt = 1y = py'
(ir)  pwoy'or oy wosmoer oy =0y o7 s oy oy oy iy,
(x) S0, = a0, i=38 4, ..., n1,
(xi) 0,01 = 0419y,
(wii) o7 050,050, = 01050105 07 ",
(xiii) oy ‘o, = o.u;to, i=38 4 ..., n1,
(xiv) atoy oo = a5 211122&122,
(1v) (0207051 = i (250705),

. 510§ 05 Jf 05 U?j 05 U1020301020,
(zvi)
(r0i1) 030,0,0,(0200) 2110501 = It 3:2:8,05 07 05 .
Proof. To proceed with the proof it is sufficient to consider the basic cases of
the defining relations. In fact, with the use of Lemmas 3.3 and 3.4, we can
describe the cases for all 4.
The presentation assumes the relations Lemma 3.4-(a) and 3.4-(e), which we
refer to as the special defining relations. The relations (RRS4) and (RVF1)
are not needed in the reduced presentation for UVSPSG,,,, since they were
implicitly used in the relations Lemma 3.4-(a) and 3.4-(e) respectlvely
The relations (RR0): 0,0, = 0,0;, (RR2): g, ot =1, =00,
(RR3): 0,0,119; = nglgm, and (RR}): 0,07},0; = 0,107 ‘0,4, of the
definition of UVSPSG,,, group are identical, respectively, to the relations
(i), (i), (iii) and (iv). Definition 3.1, is present in all of the proof procedures
that follow.
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The basic case of the relations (RS0): X;X; = X;X; Is X;X3 = x3%,. We prove

(v) implies the basic case of (RSO0). By Lemma 3 4- (e) (z) and (iz):

é é = éép Q71§3Q3 = §3Q3§71,
X101X303 = X303X107;, X1X3030; = §3§1g3g1; X1X3 = X3X;.

The basic case of the relations (RS2): x;x; ' =1, = x; 'x; isx;x; ' = 1, =
X7 X1 We prove (m) implies the basic case of (RS2) By (i), (i), and (z):
5,0, =070 xo0 'kt =1, = o7 'k k00

Kl(ln)& =1, =0y x X0y x(L)x =1, = x7 ey 0

xx7' =1, =xi'xo7t0oy; xxit =1, = x7'x.
The basic case of the relations (RV0): p,p; = p;p; is p1p3 = p3p;. We prove
(vii) implies the basic case of (RV0). By (i), (zz), and (i)
(05 o5 oy 05 10501050,) = (0505 07 05 1,00010505) 1

Hyfy = Hally; [L103P3 = O303M;

91010303 = 03P391015 9193P1P3 = 930103015 P1P3 = P3P1-
The initial case of the relations (RV2): p? = 1, is p? = 1,,. We prove (viii)
implies the basic case of (RV2). By (), (i), and (z):
mpy = ln = py'm 1 1

9101019; = 1o = 210101015 01212101 = Lo = 03

gy 01010y 0y = 0y lngy = 015 1 = la.
The initial case of the relations (RV3): p;p;,10; = piy10:0iv1 1S L1020 =
D201L5- We prove (iz) implies the basic case of (RV3). By (i), (i), and (i)
oy oy oy mos oy oyt = 0y oy masm oy oy oty

M0y 121 192 ooy = (1n)oy 121 H1Tal1 09 191 192 K10920,

oy oy ey o = 0107 0y 0y a0y oy oy 1 0s0,

w0y 0y oy i aapy = 0,05 0y oy oo oy oy ey T oaay

o7 oy ey ey ey (L) = 05 oy oy oy (1) 05 ' o7 gy i gaoy

-1, 1 _-1_-—1 —1, 1 _-1_-1 -1, 1 _—1_-1
gy M0s Gy Ty K1090,07 =0y Ty Ty U1092010y M10y Ty T 11020,

07 0007y = 0207 053 010201 = L2015
The initial case of the relations (RRS0): x;0;, = 0;X; I8 30, = 0;%;, for
i=3,4,...,n—1. We prove (z) and (i) implies the basic case of (RRS0):
810, = 0,015 810,07 = 00,075 0,107 0 = 0,0,01 i X0 = gix.
The initial case of the relations (RRS2): x,0, = 0,%; Is x30; = g1%,. We
prove (zi) and (ii) implies the basic case of (RRS2):
0,01 = 010y; 510'1_10 =g 5101_1; X19; = 0:%y-
The initial case of the (RRS3): x;0,,10; = 0,,10,;X;,1 18 X10,01 = 050,X,.
We prove (zit), (i), (i) and (m) implies the basic case of (RRS3):
oytoy 0,000, = 01058,05 0t
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o111 1 -1 -1
§1QQQ1QQ —0201010251‘72 91 92

-1 _ 1 -1
01071 0901 = 090101050105 01 O,

X10201 = 22Q121Q2Q1Q2 gy Oy
X1090) = 09010505 , X10901 = 030 Xo.
The initial case of the relations (RRV0): p;o; = a;p; is pyo; = a;p;. We
prove (ziii) implies the basic case of (RRV0):
Qflli12i = Qz‘.&flgl; P10 = 0;01-
The initial case of the relations
(RRVS3): 0;p;110; = Piv10:0;41 18 010201 = D210
We prove (ziv), (i1), and (iii) implies the basic case of (RRV3):
—1 )
aio, Iy Talt = 05" 1 Tyl 0
0207102 211122111 =09 U10oU109
[oX] 22%%92 1%%22&1 =0 %% L Oolt102
920102 9195 K192 = 94 %2 7111127214122
9192 21Q31M122(1n)1{11222 gy 92 /i1722(1n)1i1927
010y 010y h05(0101 )iy = 0y O1 Oy iT>(0107 )10
0109 Ho0y Hy = 09 M0y 109, 10201 = P20192-
The initial case of the relations
(RVF2): 0,0,10; = Pi410:0i41 18 010501 = £30105.
We prove (zv), (ii), and (iii) implies the basic case of (RV F2):
(220102) 11 = i1 (220705) ,
91924 =93 92 ,lil_(lg2_gl122) )
gy 01020 = 0y 01 Oy ﬁl(gzg%b)
010901 =22 91 (020705
01090, :Qg g, Oy wy(ga0i0,)
010901 = 0y Ws0103), 010901 = £20105-
The initial case of the relations (RSV0): x,p; = p,x; is X;p3 = p3x;. We prove
(xvi), (z) (n) and (m) implies the basic case of (RSVO)
21 -1

é123 92 Ql 02103 122 1&122&32122—23102101103 02 M12223Q1Q2§1Q1
5103 sy 02 gy 03 O3 1105030105 —03 gy 01 05 02 g1020301025101

§1Q3 = 25192 237121 Qz 2122232122@21
X103 = 03 U30,01 ; X103 = £3X;.
The initial case of the relations (RSV3): x,p; = p;X; is X, p3 = p3X;. We prove
(zvii), and (i7) implies the basic case of (RSV3):
0501050,(050,) 2110011y = 110541101058,05 a7 a5
0501050 (07 '05 ') 1 0oty = 11,0511101050,05 1oy oy
9 (Qf1251)2.é192(1n)/i1 = 0507 05 w05 (1n)1y01020,05 0y Moyt
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9y (Qflggll)2ﬁlgz (Q12171%M1 1: legflgglﬁllgz(1n)M1£1921é1Q15121le§
010y Oy Up0y My =0y Oy Oy [605(0107 )i01050:05 01 05

0107 Ty HoOy [y = 0y o0y W101090,05 01 05

0107 Oy UeOy [y = 05 R0y K10905 , X1PP1 = Pop1Xs. O

1
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