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On the unrestricted virtual singular braid

Panagiote Ligouras

Abstract

Let n,m ∈ N, n ≥ 3 and n ≥ m ≥ 2. In this paper, we study some
properties of the unrestricted virtual singular braid of braid monoid
UVSBmn and group UVSGmn. These properties emerged by studying
the analogous properties of the unrestricted virtual singular pseudosym-
metric braid of braid monoid and group. These mathematical objects are
submonoids and subgroups of the virtual singular braid group V SGn.
For many of these quotients, we have obtained reduced presentations.

1 Introduction

The Artin braid groups or braid groups on n strands Bn are introduced by
E. Artin as a tool for working with classical knots and links. Bn is the group
defined [1] by generators σ1, σ2, . . . , σn−1 and relations

(R0) σiσj = σjσi |j – i | > 1
(R3) σiσi+1σi = σi+1σiσi+1 i = 1, 2, . . . , n–2.

For work on classical braids and classical knots, see [16, 17] and references
therein.

The term Braid of Braids identifies classes of algebraic groups of braids
that each, in a certain sense, includes as a particular case a class of braids
representing one of the classical braid groups, e.g. if m=1, the braid of braid
group BBmn coincides with the braid group of n strands Bn. The term Braid
of Braids was first introduced by Moran at [12], where some of their properties
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referring to Artins braid groups were also studied. Lin in one of his works,
[11], gives a note to this type of algebraic structures but without using the
term Braid-of-Braids. The term indicates that each strand of this type of
group that uses it is generally made up of several strands that we will call
elementary and ”borrowed” from classic braid groups.

The Pseudosymmetric group is the quotient of Bn by the relations σiσ
−1
i+1σi

= σi+1σ
−1
i σi+1. These groups appeared in 2010 in a paper of Panaite and Staic

[15].
The singular braid monoid on n strands SBn was introduced the same

period by Baez 1992 [2] and Birman 1993 [4] independently and includes the
Bn group as a submonoid. SBn is generated by a set of n–1 classical generators:
{σ1, σ2, . . . , σn−1} and n–1 singular generators: {x1, x2, . . . , xn−1} satisfying
a sets of braid relations and singular relations.

The groups V Bn were introduced by Kauffman as a tool for working with
virtual knots and links. The virtual braid group V Bn contains the braid group
Bn in a natural way just as classical knots embed in virtual knots. This fact
may be most easily deduced from [8, 10]. Hence, the virtual braid group on n
strands, V Bn, is an extension of the classical braid group Bn by the symmetric
group Sn. VBn is generated by a set of n–1 classical generators: {σ1, σ2, . . . ,
σn−1} and n–1 virtual generators: {ρ1, ρ2, . . . , ρn−1} satisfying a set of braid,
virtual and mixed braid-virtual relations.

The virtual singular monoids denote V SBn, was introduced by Caprau
et all. in [5]. Virtual singular monoids V SBn are similar to classical Artin
braid monoids, with the difference that they contain singular crossings xi and
virtual ρi, besides classical crossings σi.

The group of unrestricted virtual braids, UV Bn, was introduced by Kauff-
man and Lambropoulou in [9]. Unrestricted virtual braid groups are used for
working with fused links [14]. In [3] has given a description of the structure
of UV Bn. Finally, the group of unrestricted virtual singular braids, UV SGn,
was introduced in [13].

The paper is organized as follows: in section 2 we recall some definitions
and classical results for the unrestricted virtual singular braid of braid. A re-
duced presentation for the unrestricted virtual singular pseudosymmetric braid
of braid group UVSPSGmn has been built with generators {σ1, x1, ρ1, ρ2,
. . ., ρn−1} (see Theorem 2.10). Finally, the Theorem 2.12 states that the
UVSPSGmn group is isomorphic to the unrestricted virtual singular pseu-
dosymmetric group UV SPSGn. In section 3 we introduced the extended
fusing b-strings µi, µ

−1
i , γi, γ

−1
i , δ1, δ−1

1 , and then we tried a second reduced
presentation of UVSPSGmn with {ρ1, ρ2, . . ., ρn−1, µ1, µ−1

1 , γ1, γ−1
1 } as a

generator set (see Theorem 3.5), and a third presentation has been proposed
with generators {σ1, σ2, . . ., σn−1, µ1, µ−1

i , δ1, δ−1
1 } (see Theorem 3.7).
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2 Unrestricted virtual singular braid of braid

It has previously been indicated that Caprau et al. defined the virtual singular
braid of n strands V SBn [5] and in [6] they defined the virtual singular braid
group of n strands V SGn. In some of our proofs below, we’ll underline the
portion of the relation that we’ll be working with on the row next.

Definition 2.1. (Moran [12]). Let the Artin braid group Bmn generated by
σ1, σ2, . . . , σmn−1. If ε = ±1 and k = 1, 2, . . . , n–1, we define

σ
(m, ε)
k =

m

Π
i=1

σε
km−i+1σ

ε
km−i+2 · · ·σε

km−i+m.

The symbol

σk = σ
(m, 1)
k =

m

Π
i=1

σkm−i+1σkm−i+2 · · ·σkm−i+m

represents the positions of each of the km, km–1, . . . , km–m+1 strands on
each of the km+1, km+2, . . . , km+m strands. Each ordered (km–m+1, . . . ,
km–1, km), k = 1, 2, . . . , n–1, grouping of strands is called m-strand.

Definition 2.2. Let the virtual singular braid monoid VSBmn generated by
the classical σi, singular xi, and virtual ρi braids, for i = 1, 2, . . . , mn–1. If
k = 1, 2,. . . , n–1, we define

x
(m)
k =

m

Π
i=1

xkm−i+1xkm−i+2 . . . xkm−i+m,

and
ρ(m)
k

=
m

Π
i=1

ρkm−i+1ρkm−i+2 . . . ρkm−i+m.

In cases of unambiguity the symbol xk is used to indicate x
(m)
k :

xk =
m

Π
i=1

xkm−i+1xkm−i+2 . . . xkm−i+m,

and ρk is used to indicate ρ
(m)
k :

ρ
k

=
m

Π
i=1

ρkm−i+1ρkm−i+2 . . . ρkm−i+m.

Definition 2.3. Let the virtual singular braid monoid V SBmn. The virtual
singular braid of braid monoid, denoted by VSBmn, is the following generated
subgroup of V SBmn:
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VSBmn = 〈σ1, σ2, . . . , σn−1, x1, x2, . . . , xn−1, ρ1, ρ2, . . . , ρn−1 〉.

Virtual singular braid of braid group VSGmn is an abstract group that has a
presentation that has the same set of generators and defining relations as the
monoid-presentation for the virtual singular braid of braid monoid VSBmn,
with the only additional properties that the elements are invertible in VSGmn

and the relations (RS0), (RRS0), (RRS2), (RRS3), (RRS4), (RSV 0), and
(RSV 3) remain valid by replacing xk with x−1

k , for k = 1, 2, . . . , n–1.

Each element of VSBmn is called virtual singular braid of braid. A virtual
singular braid of braid diagram is a diagram that represents any β∈VSBmn

element. The justaposition operation of the VSBmn group is induced by the
justaposition operation of VSBmn. The neutral element 1n of VSBmn group
is induced by the neutral element 1mn of VSBmn.

Example 2.4. In Figure 1 a geometric representation of the braid xk (left)
of VSB2n monoid and its representation (right) as a generator of the monoid
VSB2n.

1 2 2k − 1 2k 2k + 1 2k + 2 2n− 1 2n

. . . . . .

1 k k + 1 n

. . . . . .≡ ut ttt
Figure 1: The braid xk (left) of VSB2n monoid and its representation (right)
as a generator of VSB2n.

Definition 2.5. Unrestricted virtual singular braid of braid monoid on n m-
strands, denoted by UVSBmn, is defined as the group generated by b-classical
generators σi, b-singular generators xi, and b-virtual generators ρi, i = 1, 2,
. . . , n–1, satisfying the following b-classical relations:

(RR0) σiσj = σjσi |j – i | > 1
(RR2) σ−1

i σi = 1n = σiσ
−1
i i = 1, 2, . . . , n–1

(RR3) σiσi+1σi = σi+1σiσi+1 i = 1, 2, . . . , n–2,

b-singular relations:

(RS0) xixj = xjxi |j – i | > 1,

b-virtual relations:

(RV0) ρiρj = ρjρi |j – i | > 1
(RV2) ρ2i = 1n i = 1, 2, . . . , n–1
(RV3) ρiρi+1ρi = ρi+1ρiρi+1 i = 1, 2, . . . , n–2,
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mixed b-real-singular relations:

(RRS0) xiσj = σjxi |j – i | > 1
(RRS2) xiσi = σixi i = 1, 2, . . . , n–1
(RRS3) xiσi+1σi = σi+1σixi+1 i = 1, 2, . . . , n–2
(RRS4) σiσi+1xi = xi+1σiσi+1 i = 1, 2, . . . , n–2,

mixed b-real-virtual relations:

(RRV0) σiρj = ρjσi |j – i | > 1
(RRV3) σiρi+1ρi = ρi+1ρiσi+1 i = 1, 2, . . . , n–2,

mixed b-real-virtual forbidden relations:

(RVF1) ρiσi+1σi = σi+1σiρi+1 i = 1, 2, . . . , n–2
(RVF2) σiσi+1ρi = ρi+1σiσi+1 i = 1, 2, . . . , n–2,

and mixed b-singular-virtual relations:

(RSV0) xiρj = ρjxi |j – i | > 1
(RSV3) xiρi+1ρi = ρi+1ρixi+1 i = 1, 2, . . . , n–2.

Unrestricted virtual singular braid of braid group, denoted by UVSGmn, is a
group that has a presentation that has the same set of generators and defining
relations as the monoid-presentation for the monoid UVSBmn, with the only
additional properties that the elements are invertible in UVSGmn and the
relations (RS0), (RRS0), (RRS2), (RRS3), (RRS4), (RSV 0), and (RSV 3)
remain valid by replacing xk with x−1

k .

The UVSPSBmn, Unrestricted virtual singular pseudosymmetric braid of
braid monoid, is a monoid that has a presentation that has the same set of
generators and defining relations as the monoid-presentation for the monoid
UVSBmn, with the only additional pseudosymmetric relation:

(RR4) σiσ
−1
i+1σi = σi+1σ

−1
i σi+1, i = 1, 2, . . . , n–2.

The UVSPSGmn, unrestricted virtual singular pseudosymmetric braid of braid
group, is a group that has a presentation that has the same set of generators
and defining relations as the monoid-presentation for the UVSPSBmn, with
the additional properties that the elements are invertible in UVSPSGmn:
(RS2) x−1

k xk = 1n = xkx−1
k , and the relations (RS0), (RRS0), (RRS2),

(RRS3), (RRS4), (RSV 0), and (RSV 3) remain valid by replacing xk with
x−1
k .

Definition 2.6. The WSBmn, welded singular braid of braid monoid, is a
monoid that has a presentation with the same generator set as UVSBmn

while its relations are the same as UVSBmn except for the (RV F2) relations.

The WSGmn, welded singular braid of braid group, is a group that has a
presentation with the same sets of generators and relations as WSBmn with
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only the added properties that each of its elements has an inverse element
in WSGmn: (RS2), and the relations (RS0), (RRS0), (RRS2), (RRS3),
(RRS4), (RSV 0), and (RSV 3) remain valid by replacing xk with x−1

k .

The WSPSBmn, welded singular pseudosymmetric braid of braid monoid, is a
monoid that has a presentation with the same generator set as WSBmn while
its relations are the same as UVSBmn with the only additional pseudosym-
metric relation (RR4).

The WSPSGmn, welded singular pseudosymmetric braid of braid group, is a
group that has a presentation with the same sets of generators and relations
as WSPSBmn with only the added properties that each of its elements has
an inverse element in WSPSGmn: (RS2), and the relations (RS0), (RRS0),
(RRS2), (RRS3), (RRS4), (RSV 0), and (RSV 3) remain valid by replacing
xk with x−1

k .

To prove the following equations we proceed by induction on the relations
(RRV 3), (RV F1), (RRS4), (RRS3), and (RSV 3).

Lemma 2.7. For 1 ≤ i ≤ n–2, the following statement holds in UVSBmn:

(a) σi+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)σ1(ρ2. . . ρi+1)(ρ1. . . ρi).
(b) ρi+1 = (σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 )ρ1(σ2. . . σi+1)(σ1. . . σi).

(c) xi+1 = (σi. . . σ1)(σi+1. . . σ2)x1(σ−1
2 . . . σ−1

i+1)(σ−1
1 . . . σ−1

i ).
(d) xi+1 = (σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 )x1(σ2. . . σi+1)(σ1. . . σi).

(e) xi+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)x1(ρ2. . . ρi+1)(ρ1. . . ρi).

Two Lemmas attributed to Kauffman and Lambropoulou follow, adapted for
the UVSGmn group. We prove only the Lemma 2.9.

Lemma 2.8 ([9]). Let be the group UVSGmn. For 1 ≤ i ≤ n–3 holds:

(ρ4ρ3ρ2ρ1). . .ρi+2ρi+1ρiρi−1) = (ρ4. . .ρi+2)(ρ3. . .ρi+1)(ρ2. . .ρi)(ρ1. . .ρi−1).

Lemma 2.9 ([9]). Let be the group UVSGmn. If 1 ≤ i, j ≤ n–2 and |i –
j| > 1, then

ρiρi+1. . .ρj−1ρjρj−1. . .ρi+1ρi = ρjρj−1. . .ρi+1ρiρi+1. . .ρj−1ρj.

Proof. Without losing the generality it is considered i+2 ≤ j. The i+2 > j
case is proved analogously. We have
ρiρi+1. . . ρj−1ρjρj−1. . . ρi+1ρi

= ρiρi+1. . . ρjρj−1ρj . . . ρi+1ρi
= ρjρiρi+1. . . ρj−2ρj−1ρj−2. . . ρi+1ρiρj
= ρjρiρi+1. . . ρj−1ρj−2ρj−1. . . ρi+1ρiρj
= ρjρj−1ρiρi+1. . . ρj−3ρj−2ρj−3. . . ρi+1ρiρj−1ρj
= ρjρj−1ρiρi+1. . . ρj−2ρj−3ρj−2. . . ρi+1ρiρj−1ρj
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= . . .
= ρjρj−1. . . ρi+2ρiρi+1ρiρi+2. . . ρj−1ρj
= ρjρj−1. . . ρi+2ρi+1ρiρi+1ρi+2. . . ρj−1ρj .

2.1 Reduced presentation for UVSPSGmn with σ1, x1, ρ1, . . . , ρn−1

generators

Theorem 2.10. The UVSPSGmn group has a reduced presentation with
generators {σ1, x1, ρ1, ρ2, . . ., ρn−1} and the following relations:

(i) σ1(ρ2ρ3ρ1ρ2σ1ρ2ρ1ρ3ρ2) = (ρ2ρ3ρ1ρ2σ1ρ2ρ1ρ3ρ2)σ1,
(ii) σ−1

1 σ1 = 1n = σ1σ
−1
1 ,

(iii) σ1(ρ1ρ2σ1ρ2ρ1)σ1 = (ρ1ρ2σ1ρ2ρ1)σ1(ρ1ρ2σ1ρ2ρ1),
(iv) σ1(ρ1ρ2σ

−1
1 ρ2ρ1)σ1 = (ρ1ρ2σ1ρ2ρ1)σ−1

1 (ρ1ρ2σ1ρ2ρ1),
(v) ρiρj = ρjρi |j – i| > 1,
(vi) ρ2i = 1n i = 1, 2, . . . , n–1,
(vii) ρiρi+1ρi = ρi+1ρiρi+1 i = 1, 2, . . . , n–2,
(viii) x1(ρ2ρ3ρ1ρ2x1ρ2ρ1ρ3ρ2) = (ρ2ρ3ρ1ρ2x1ρ2ρ1ρ3ρ2)x1,
(ix) x−1

1 x1 = 1n = x1x−1
1 ,

(x) x1(ρ2ρ3ρ1ρ2σ1ρ2ρ1ρ3ρ2) = (ρ2ρ3ρ1ρ2σ1ρ2ρ1ρ3ρ2)x1,
(xi) x1σ1 = σ1x1,

(xii) x1(ρ1ρ2σ1ρ2ρ1)σ1 = (ρ1ρ2σ1ρ2ρ1)σ1(ρ1ρ2x1ρ2ρ1),
(xiii) σ1ρi = ρiσ1 i = 3, 4, . . . , n–2,
(xiv) ρ1(ρ2σ1ρ2ρ1σ1) = (ρ2σ1ρ2ρ1σ1)ρ2,
(xv) (σ1ρ1ρ2σ1ρ2)ρ1 = ρ2(σ1ρ1ρ2σ1ρ2),
(xvi) x1ρi = ρix1 i = 3, 4, . . . , n–2.

Proof. The presentation assumes the relations Lemma 2.7-(a) and Lemma 2.7-
(e), which we refer to as the special defining relations. The relations (RRV 3)
and (RSV 3) are not needed in the reduced presentation for UVSPSGmn,
since they were implicitly used in the relations Lemma 2.7-(a) and Lemma
2.7-(e) respectively. The relation (RRS4) is also not included in the reduced
presentation because it can be easily reconstructed from the relation (RRS3)
which is present at the position (xii).
The relations (RV0): ρiρj = ρjρi, (RV2): ρ2i = 1n, (RV3): ρiρi+1ρi =
ρi+1ρiρi+1 of the definition of UVSPSGmn group are identical, respectively,
to the relations (v), (vi) and (vii).
The relations (RR0): σiσj = σjσi were proved in ([9], Lemma 3) for VBn

group. The base case of the relations, σ1σ3 = σ3σ1, corresponds to the relation
(i).
The relations (RRS0): xiσj = σjxi were proved in ([5], Lemma 3) for VSBn

group. The initial case of the relations, x1σ3 = σ3x1, corresponds to the
relation (x).
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The relations (RRS2): xiσi = σixi were proved in ([5], Lemma 7) for VSBn

group. The initial case of the relations, x1σ1 = σ1x1, corresponds to the
relation (xi).
The relations (RSV0): xiρj = ρjxi were proved in ([5], Lemma 2) for VSBn

monoid. The initial case of the relations, x1ρ3 = ρ3x1, corresponds to the
relation (xvi).
The relations (RRV0): σiρj = ρjσi were proved in ([9], Lemma 1) for VBn

group. The initial case of the relations, σ1ρ3 = ρ3σ1, corresponds to the
relation (xiii).
The relations (RR3): σiσi+1σi = σi+1σiσi+1 were proved in ([9], Lemma 2) for
VBn group. The initial case of the relations, σ1σ2σ1 = σ2σ1σ2, corresponds
to the relation (iii).
The relations (RRS3): xiσi+1σi = σi+1σixi+1 were proved in ([5], Lemma
5) for VSBn monoid. The initial case of the relations, x1σ2σ1 = σ2σ1x2,
corresponds to the relation (xii).
For i = 1, . . . , n–2, the forbidden relations (RVF2): σiσi+1ρi = ρi+1σiσi+1

follow from the basic relations (xv) of Theorem 2.10, the virtual relations, and
Lemma 2.7.
The singular commuting relations (RS0): xixj = xjxi for i, j = 1, . . . , n–1
and |i – j | ≥ 2 follow from the basic relations (viii) of Theorem 2.10, the
virtual relations, and Lemma 2.7.
For i = 1, 2,. . . , n–2, the relations (RVF1): ρiσi+1σi = σi+1σiρi+1 follow from
the basic relations (xiv) of Theorem 2.10, the virtual relations, and Lemmas
2.7, 2.8.
For i = 1, 2, . . . , n–1, the relations (RR2): σ−1

i σi = 1n = σiσ
−1
i follow from

the basic relations (ii) of Theorem 2.10, the virtual relations, and Lemma 2.7.
The real relations (RR4): σi+1σ

−1
i σi+1 = σiσ

−1
i+1σi, for 1 ≤ i ≤ n–2, follow

from the basic relations (iv), (xiii) of Theorem 2.10, the virtual relations, and
Lemmas 2.7, 2.9.
The singular relations (RS2): x−1

i xi = 1n = xix
−1
i , for 1 ≤ i ≤ n–1, follow from

the basic relations (ix) of Theorem 2.10, the virtual relations, and Lemma 2.7.
The proof is complete.

Corollary 2.11. From Theorem 2.10, if we remove the relations:

• (ix) we have a reduced presentation of UVSPSBmn.

• (iv) we have a reduced presentation of the UVSGmn.

• (iv), and (ix) we have a reduced presentation of UVSBmn.

• (iv), (ix), and (xviii) we have a reduced presentation of the WSBmn.

• (iv), and (xviii) we have a reduced presentation of the WSGmn.

• (ix), and (xviii) we have a reduced presentation of the WSPSBmn.
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• (xviii) we have a reduced presentation of the WSPSGmn.

Theorem 2.12. The braid of braid group UVSPSGmn is isomorphic to the
braid group UVSPSGn.

Proof. Let the groups UVSPSGmn and UVSPSGmn. For k = 1, . . . , n–1,
correspondence

σk 7→
m

Π
i=1

σkm−i+1σkm−i+2...σkm−i+m,

xk 7→
m

Π
i=1

xkm−i+1xkm−i+2 . . . xkm−i+m,

and
ρ
k
7→

m

Π
i=1

ρkm−i+1ρkm−i+2 . . . ρkm−i+m.

defines an injective homomorphism ϑ: UVSPSGmn−→UVSPSGmn. Ac-
cording to the Definitions 2.1 and 2.2, the inverse map ϑ−1 of the ϑ is a
surjective homomorphism and the proof is complete. So, UVSPSGmn

∼=
UVSPSGn.

3 Reduced presentations forUVSPSGmn using real-fusing
b-strings

In this section, we introduce a new presentation for the n m-stranded unre-
stricted virtual singular pseudosymmetric braid of braid group, UVSPSGmn.
This reduced presentation uses as generators a particular type of unrestricted
virtual singular braid of braids, which we now define.

Definition 3.1. In VSGmn, the elementary real-fusing b-strings µi, µ
−1
i , γi,

and γ−1
i are n m-stranded virtual singular braid of braids defined as follows:

µi = σiρi, µ
−1
i = ρiσ

−1
i , γi = xiρi, γ

−1
i = ρix

−1
i , δi = xiσi, δ

−1
i = σ−1

i x−1
i ,

where i = 1, 2, . . . , n–1.

Remark 3.2. By Definition 3.1, we can describe the:

• real generators σi, σ
−1
i and the singular generators xi, x−1

i of VSGmn

in terms of the elementary real-fusing b-strings µi, µ
−1
i , γi and γ−1

i :

σi = µiρi, σ−1
i = ρiµ

−1
i , xi = γiρi, x−1

i = ρiγ
−1
i ,

• virtual generators ρi and the singular generators xi, x−1
i of VSGmn in

terms of µi, δi and δ−1
i :



ON THE UNRESTRICTED VIRTUAL SINGULAR BRAID 192

ρi = σ−1
i µi, xi = δiσ

−1
i , x−1

i = σiδ
−1
i ,

where i = 1, 2, . . . , n–1.

Translating pages 8-10 of [10] and Definition 7 of [6] to the algebraically lan-
guage of the braid of braid we can state the following Lemma.

Lemma 3.3. For 1 ≤ i ≤ n–2, the following relation holds in UVSGmn:

(a) ρiµi+1ρi = ρi+1µiρi+1 and ρiµ
−1
i+1ρi = ρi+1µ

−1
i ρi+1.

(b) ρiγi+1ρi = ρi+1γiρi+1 and ρiγ
−1
i+1ρi = ρi+1γ

−1
i ρi+1.

(c) µi+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)µ1(ρ2. . . ρi+1)(ρ1. . . ρi).
(d) µ−1

i+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)µ−1
1 (ρ2. . . ρi+1)(ρ1. . . ρi).

(e) γi+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)γ1(ρ2. . . ρi+1)(ρ1. . . ρi).
(f) γ−1

i+1 = (ρi. . . ρ1)(ρi+1. . . ρ2)γ−1
1 (ρ2. . . ρi+1)(ρ1. . . ρi).

Lemma 3.4. For 1 ≤ i ≤ n–2, the following relation holds in UVSGmn:

(a) µi+1 = (σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 )µ1(σ2. . . σi+1)(σ1. . . σi).

(b) µ−1
i+1 = (σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 )µ−1

1 (σ2. . . σi+1)(σ1. . . σi).
(c) γi+1 = (σ2. . . σi+1)(σ1. . . σi)γ1(σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 ).

(d) γ−1
i+1 = (σ2. . . σi+1)(σ1. . . σi)γ

−1
1 (σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 ).

(e) δi+1 = (σ2. . . σi+1)(σ1. . . σi)δ1(σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 ).

(f) δ−1
i+1 = (σ2. . . σi+1)(σ1. . . σi)δ

−1
1 (σ−1

i . . . σ−1
1 )(σ−1

i+1. . . σ
−1
2 ).

Proof. Then, the definition relations (RR0), (RR2), (RR3), (RRS0), (RRV 0),
(RRS4, (RV F1), Definition 3.1, and Lemma 2.7 are used. We proceed with
the proof of equations (a).

ρi+1 = (σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 )ρ1(σ2. . . σi+1)(σ1. . . σi)

µi+1 = σi+1ρi+1=σi+1(σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 )ρ1(σ2. . . σi+1)(σ1. . . σi)

= σi+1(σ−1
i σ−1

i+1. . . σ
−1
1 )(σ−1

i . . . σ−1
2 )ρ1(σ2. . . σi+1)(σ1. . . σi)

= (σ−1
i σ−1

i+1σi. . . σ
−1
1 )(σ−1

i . . . σ−1
2 )ρ1(σ2. . . σi+1)(σ1. . . σi)

= ...

= (σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 )σ1ρ1(σ2. . . σi+1)(σ1. . . σi)

= (σ−1
i . . . σ−1

1 )(σ−1
i+1. . . σ

−1
2 )µ1(σ2. . . σi+1)(σ1. . . σi).

Equations (b), (c), (d), (e) and (f) are proved analogously. Note that the
equations xi=γiρi=γiµ

−1
i σi hold.
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3.1 Reduced presentation for UVSPSGmn with {ρ1, ρ2, . . ., ρn−1,
µ1, γ1} generators

Theorem 3.5. The UVSPSGmn group has a reduced presentation with gen-
erators {ρ1, ρ2, . . ., ρn−1, µ1, µ−1

1 , γ1, γ−1
1 } and the following relations:

(i) ρiρj = ρjρi |j – i| > 1,
(ii) ρ2i = 1n i = 1, 2, . . . , n–1,
(iii) ρiρi+1ρi = ρi+1ρiρi+1 i = 1, 2, . . . , n–2,
(iv) µ−1

1 µ1 = 1n = µ1µ
−1
1 ,

(v) γ−1
1 γ1 = 1n = γ1γ

−1
1 ,

(vi) µ1ρi = ρiµ1, i = 3, 4, . . . , n–1,
(vii) γ1ρi = ρiγ1 i = 3, 4, . . . , n–1,
(viii) µ1ρ1γ1 = γ1ρ1µ1,

(ix) µ1ρ2ρ1µ
−1
1 ρ2ρ1µ1ρ2ρ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1,

(x) (ρ1ρ2µ1ρ2ρ1)(ρ2µ1ρ2) = (ρ2µ1ρ2)(ρ1ρ2µ1ρ2ρ1),
(xi) (ρ2µ1ρ2)µ1 = µ1(ρ2µ1ρ2),
(xii) (ρ1ρ2µ1ρ2ρ1)(ρ2µ1ρ2)µ1 = µ1(ρ2µ1ρ2)(ρ1ρ2µ1ρ2ρ1),
(xiii) (ρ1ρ2µ1ρ2ρ1)(ρ2µ1ρ2)γ1 = γ1(ρ2µ1ρ2)(ρ1ρ2µ1ρ2ρ1),
(xiv) (ρ2ρ1ρ3ρ2µ1ρ2ρ3ρ1ρ2)µ1 = µ1(ρ2ρ1ρ3ρ2µ1ρ2ρ3ρ1ρ2),
(xv) (ρ2ρ1ρ3ρ2µ1ρ2ρ3ρ1ρ2)γ1 = γ1(ρ2ρ1ρ3ρ2µ1ρ2ρ3ρ1ρ2),
(xvi) (ρ2ρ1ρ3ρ2γ1ρ2ρ3ρ1ρ2)γ1 = γ1(ρ2ρ1ρ3ρ2γ1ρ2ρ3ρ1ρ2).

Proof. The equations (i)-(iv), (vi)-(viii), and (xii)-(xvi) were discussed in
Proposition 14 of [7] for the virtual singular monoid VSBn.
We need to examine why the (v), (ix), (x) and (xi) relations are present. The
four relations correspond respectively to the defining relations, of UVSPSGmn,
(RS2), (RR4), (RV F1) and (RV F2) of Definition 2.5. To continue, it is suf-
ficient to consider the basic cases of the four relations. In fact, with the use
of Lemma 3.3 we can describe the cases for all 2 ≤ i ≤ n–2.
The initial case of the relations (RS2): xix

−1
i = 1n = xix

−1
i is x1x−1

1 = 1n =
x1x−1

1 . We prove (v) implies (RS2). By (ii), (v) and Remark 3.2:
γ1γ

−1
1 = 1n; (x1ρ1)(ρ1x−1

1 ) = 1n; x1(ρ1ρ1)x−1
1 = 1n; x1(1n)x−1

1 = 1n; x1x−1
1

= 1n.
On the other side
ρ1ρ1 = 1n; ρ1(1n)ρ1 = 1n; ρ1(γ−1

1 γ1)ρ1 = 1n; (ρ1γ
−1
1 )(γ1ρ1) = 1n; x−1

1 x1

= 1n.
The basic case of the relations
(RR4): σiσ

−1
i+1σi = σi+1σ

−1
i σi+1 is σ1σ

−1
2 σ1 = σ2σ

−1
1 σ2. We prove (ix) im-

plies (RR4). By (ii), (iii) and (ix):
µ1ρ2ρ1µ

−1
1 ρ2ρ1µ1ρ2ρ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1

µ1ρ2ρ1µ
−1
1 ρ2ρ1µ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1ρ1ρ2

µ1ρ2ρ1µ
−1
1 ρ2ρ1µ1ρ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1ρ1ρ2ρ1
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µ1ρ2ρ1(1n)µ−1
1 ρ2ρ1µ1ρ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1ρ2ρ1ρ2

µ1ρ2ρ1ρ2ρ2µ
−1
1 ρ2ρ1µ1ρ1 = ρ1ρ2µ1ρ1ρ2µ

−1
1 ρ1ρ2µ1ρ2ρ1ρ2

µ1ρ1ρ2ρ1ρ2µ
−1
1 ρ2ρ1µ1ρ1 = ρ1ρ2µ1ρ1ρ2(1n)µ−1

1 ρ1ρ2µ1ρ2ρ1ρ2
µ1ρ1ρ2ρ1ρ2µ

−1
1 ρ2ρ1µ1ρ1 = ρ1ρ2µ1ρ1ρ2ρ1ρ1µ

−1
1 ρ1ρ2µ1ρ2ρ1ρ2

(µ1ρ1)(ρ2ρ1ρ2µ
−1
1 ρ2ρ1)(µ1ρ1) = (ρ1ρ2µ1ρ2ρ1ρ2)(ρ1µ

−1
1 )(ρ1ρ2µ1ρ2ρ1ρ2),

and by Remark 3.2 and the relations (c), (d) of Lemma 3.3 with i = 1
(σ1)(ρ2µ

−1
2 )(σ1) = (µ2ρ2)(ρ1µ

−1
1 )(µ2ρ2)

σ1σ
−1
2 σ1 = σ2σ

−1
1 σ2.

The initial case of the relations (RVF1): ρiσi+1σi = σi+1σiρi+1 is ρ1σ2σ1 =
σ2σ1ρ2. We prove (x) implies (RV F1). Using relations (ii), (iii), (x), Remark
3.2 and Lemma 3.3:
(ρ1ρ2µ1ρ2ρ1)(ρ2µ1ρ2) = (ρ2µ1ρ2)(ρ1ρ2µ1ρ2ρ1)

(ρ1ρ2µ1ρ2ρ1)ρ2µ1ρ2ρ1ρ2 = (ρ2µ1ρ2)ρ1ρ2µ1

(ρ1ρ2µ1ρ2ρ1)ρ2µ1ρ1ρ2ρ1 = (ρ2µ1ρ2)ρ1ρ2µ1

(ρ1ρ2µ1ρ2ρ1)ρ2µ1ρ1ρ2 = (1n)(ρ2µ1ρ2)ρ1ρ2µ1ρ1
(ρ1ρ2µ1ρ2ρ1)ρ2µ1ρ1ρ2 = ρ1ρ1(ρ2µ1ρ2)ρ1ρ2µ1ρ1
(ρ1ρ2µ1ρ2ρ1ρ2)(µ1ρ1)ρ2 = ρ1(ρ1ρ2µ1ρ2ρ1ρ2)(µ1ρ1)
(µ2ρ2)(µ1ρ1)ρ2 = ρ1(µ2ρ2)(µ1ρ1)
σ2σ1ρ2 = ρ1σ2σ1.

The basic case of the relations (RVF2) σiσi+1ρi = ρi+1σiσi+1 is σ1σ2ρ1 =
ρ2σ1σ2 We prove (xi) implies (RV F2). Using the relations (ii), (iii), (xi),
Remark 3.2 and Lemma 3.3:
(ρ2µ1ρ2)µ1 = µ1(ρ2µ1ρ2)

(ρ2µ1ρ2)µ1ρ1ρ2ρ1 = µ1(ρ2µ1ρ2)ρ1ρ2ρ1
ρ2µ1(1n)ρ2µ1ρ2ρ1ρ2 = µ1(ρ2µ1ρ2)ρ1ρ2ρ1
ρ2µ1(ρ1ρ1)ρ2µ1ρ2ρ1ρ2 = µ1(1n)ρ2µ1ρ2ρ1ρ2ρ1
ρ2(µ1ρ1)(ρ1ρ2µ1ρ2ρ1ρ2) = µ1(ρ1ρ1)ρ2µ1ρ2ρ1ρ2ρ1
ρ2(µ1ρ1)(ρ1ρ2µ1ρ2ρ1ρ2) = (µ1ρ1)(ρ1ρ2µ1ρ2ρ1ρ2)ρ1
ρ2(µ1ρ1)(µ2ρ2) = (µ1ρ1)(µ2ρ2)ρ1
ρ2σ1σ2 = σ1σ2ρ1.

It is easy to transfer the reasoning used to work with VSBn generators to
UVSPSGmn generators.

Corollary 3.6. Let be Theorem 3.5. If we remove the relations :

• (v) we have a reduced presentation of UVSPSBmn.

• (ix) we have a reduced presentation of group UVSGmn.

• (xi) we have a reduced presentation of WSPSGmn.

• (v), and (ix) we have a reduced presentation of UVSBmn.

• (v), and (xi) we have a presentation of WSPSBmn.

• (x) and (xi) we have a reduced presentation of VSPSGmn.
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• (ix), (x) and (xi) we have a reduced presentation of VSGmn.

• (v), (ix), and (xi) we have a presentation of WSBmn.

• (v), (x), and (xi) we have a presentation of VSPSBmn.

• (v), (ix), (x), and (xi) we have a reduced presentation of VSBmn.

3.2 Reduced presentation for UVSPSGmn with {σ1, σ2, . . ., σn−1,
µ1, δ1} generators

Theorem 3.7. The UVSPSGmn group has a reduced presentation with gen-
erators {σ1, σ2, . . ., σn−1, µ1, δ1, δ−1

1 } and the following relations:

(i) σiσj = σjσi |j – i| > 1,
(ii) σ−1

1 σ1 = 1n = σ1σ
−1
1 i = 1, 2, . . . , n–1,

(iii) σiσi+1σi = σi+1σiσi+1 i = 1, 2, . . . , n–2,

(iv) σiσ
−1
i+1σi = σi+1σ

−1
i σi+1 i = 1, 2, . . . , n–2,

(v) δ1(σ2σ3σ1σ2δ1σ
−1
2 σ−1

1 σ−1
3 σ−1

2 ) = (σ2σ3σ1σ2δ1σ
−1
2 σ−1

1 σ−1
3 σ−1

2 )δ1,
(vi) δ−1

1 δ1 = 1n = δ1δ
−1
1 i = 1, 2, . . . , n–1,

(vii) µ1(σ−1
2 σ−1

3 σ−1
1 σ−1

2 µ1σ2σ1σ3σ2) = (σ−1
2 σ−1

3 σ−1
1 σ−1

2 µ1σ2σ1σ3σ2)µ1,
(viii) µ1µ

−1
1 = 1n = µ−1

1 µ1,
(ix) µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2µ1σ

−1
1 σ−1

2 = σ−1
2 σ−1

1 µ1σ2µ1σ
−1
2 σ−1

1 σ−1
2 µ1,

(x) δ1σi = σiδ1 i = 3, 4, . . . , n–1,
(xi) δ1σ1 = σ1δ1,
(xii) σ−1

1 σ−1
2 δ1σ2σ1 = σ1σ2δ1σ

−1
2 σ−1

1 ,
(xiii) σ−1

1 µ1σi = σiµ
−1
1 σ1 i = 3, 4, . . . , n–1,

(xiv) σ2
1σ

−1
2 µ1σ2µ1 = σ−2

2 µ1σ2µ1σ2,
(xv) (σ2σ

2
1σ2)µ1 = µ1(σ2σ

2
1σ2),

(xvi)
δ1σ

−1
3 σ−1

2 σ−1
1 σ−1

2 σ−1
3 σ−1

2 µ1σ2σ3σ1σ2σ1

= σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1,

(xvii) σ2σ1σ2δ1(σ2σ1)−2µ1σ2σ1 = µ1σ2µ1σ1σ2δ1σ
−1
2 σ−1

1 σ−1
2 .

Proof. To proceed with the proof it is sufficient to consider the basic cases of
the defining relations. In fact, with the use of Lemmas 3.3 and 3.4, we can
describe the cases for all i.
The presentation assumes the relations Lemma 3.4-(a) and 3.4-(e), which we
refer to as the special defining relations. The relations (RRS4) and (RV F1)
are not needed in the reduced presentation for UVSPSGmn, since they were
implicitly used in the relations Lemma 3.4-(a) and 3.4-(e) respectively.
The relations (RR0): σiσj = σjσi, (RR2): σiσ

−1
i = 1n = σ−1

i σi,

(RR3): σiσi+1σi = σi+1σiσi+1, and (RR4): σiσ
−1
i+1σi = σi+1σ

−1
i σi+1 of the

definition of UVSPSGmn group are identical, respectively, to the relations
(i), (ii), (iii) and (iv). Definition 3.1, is present in all of the proof procedures
that follow.
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The basic case of the relations (RS0): xixj = xjxi is x1x3 = x3x1. We prove
(v) implies the basic case of (RS0). By Lemma 3.4-(e), (i), and (ix):
δ1(σ2σ3σ1σ2δ1σ

−1
2 σ−1

1 σ−1
3 σ−1

2 ) = (σ2σ3σ1σ2δ1σ
−1
2 σ−1

1 σ−1
3 σ−1

2 )δ1
δ1δ3 = δ3δ1; δ1x3σ3 = x3σ3δ1;
x1σ1x3σ3 = x3σ3x1σ1; x1x3σ3σ1 = x3x1σ3σ1; x1x3 = x3x1.

The basic case of the relations (RS2): xix
−1
i = 1n = x−1

i xi is x1x−1
1 = 1n =

x−1
1 x1. We prove (vi) implies the basic case of (RS2). By (i), (ii), and (x):
δ1δ

−1
1 = 1n = δ−1

1 δ1; x1σ1σ
−1
1 x−1

1 = 1n = σ−1
1 x−1

1 x1σ1;

x1(1n)x−1
1 = 1n = σ−1

1 x−1
1 x1σ1; x1(1n)x−1

1 = 1n = x−1
1 σ−1

1 x1σ1;

x1x−1
1 = 1n = x−1

1 x1σ
−1
1 σ1; x1x−1

1 = 1n = x−1
1 x1.

The basic case of the relations (RV0): ρiρj = ρjρi is ρ1ρ3 = ρ3ρ1. We prove
(vii) implies the basic case of (RV 0). By (i), (ii), and (xii):
µ1(σ−1

2 σ−1
3 σ−1

1 σ−1
2 µ1σ2σ1σ3σ2) = (σ−1

2 σ−1
3 σ−1

1 σ−1
2 µ1σ2σ1σ3σ2)µ1

µ1µ3 = µ3µ1; µ1σ3ρ3 = σ3ρ3µ1;
σ1ρ1σ3ρ3 = σ3ρ3σ1ρ1; σ1σ3ρ1ρ3 = σ3σ1ρ3ρ1; ρ1ρ3 = ρ3ρ1.

The initial case of the relations (RV2): ρ2i = 1n is ρ21 = 1n. We prove (viii)
implies the basic case of (RV 2). By (i), (ii), and (x):
µ1µ

−1
1 = 1n = µ−1

1 µ1

σ1ρ1ρ1σ
−1
1 = 1n = ρ1σ

−1
1 σ1ρ1; σ1ρ1ρ1σ

−1
1 = 1n = ρ21;

σ−1
1 σ1ρ

2
1σ

−1
1 σ1 = σ−1

1 1nσ1 = ρ21; ρ21 = 1n.

The initial case of the relations (RV3): ρiρi+1ρi = ρi+1ρiρi+1 is ρ1ρ2ρ1 =
ρ2ρ1ρ2. We prove (ix) implies the basic case of (RV 3). By (i), (ii), and (iii):
µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2µ1σ

−1
1 σ−1

2 = σ−1
2 σ−1

1 µ1σ2µ1σ
−1
2 σ−1

1 σ−1
2 µ1

µ1σ
−1
2 σ−1

1 σ−1
2 µ1σ2µ1 = (1n)σ−1

2 σ−1
1 µ1σ2µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2σ1

µ1σ
−1
2 σ−1

1 σ−1
2 µ1σ2µ1 = σ1σ

−1
1 σ−1

2 σ−1
1 µ1σ2µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2σ1

µ1σ
−1
2 σ−1

1 σ−1
2 µ1σ2µ1 = σ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2σ1

σ−1
1 µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2(1n)µ1 = σ−1

2 σ−1
1 σ−1

2 µ1σ2(1n)µ1σ
−1
2 σ−1

1 σ−1
2 µ1σ2σ1

σ−1
1 µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2σ1σ

−1
1 µ1=σ−1

2 σ−1
1 σ−1

2 µ1σ2σ1σ
−1
1 µ1σ

−1
2 σ−1

1 σ−1
2 µ1σ2σ1

σ−1
1 µ1ρ2σ

−1
1 µ1 = ρ2σ

−1
1 µ1ρ2; ρ1ρ2ρ1 = ρ2ρ1ρ2.

The initial case of the relations (RRS0): xjσi = σixj is x1σi = σix1, for
i = 3, 4, ..., n− 1. We prove (x) and (i) implies the basic case of (RRS0):
δ1σi = σiδ1; δ1σiσ

−1
1 = σiδ1σ

−1
1 ; δ1σ

−1
1 σi = σiδ1σ

−1
1 ; x1σi = σix1.

The initial case of the relations (RRS2): xiσi = σixi is x1σ1 = σ1x1. We
prove (xi) and (ii) implies the basic case of (RRS2):
δ1σ1 = σ1δ1; δ1σ

−1
1 σi = σiδ1σ

−1
1 ; x1σi = σix1.

The initial case of the (RRS3): xiσi+1σi = σi+1σixi+1 is x1σ2σ1 = σ2σ1x2.
We prove (xii), (i), (ii) and (iii) implies the basic case of (RRS3):
σ−1
1 σ−1

2 δ1σ2σ1 = σ1σ2δ1σ
−1
2 σ−1

1
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δ1σ2σ1 = σ2σ1σ1σ2δ1σ
−1
2 σ−1

1

δ1σ2σ1σ
−1
2 = σ2σ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2

δ1σ
−1
1 σ2σ1 = σ2σ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2

x1σ2σ1 = σ2σ1σ1σ2δ1σ
−1
2 σ−1

1 σ−1
2

x1σ2σ1 = σ2σ1δ2σ
−1
2 , x1σ2σ1 = σ2σ1x2.

The initial case of the relations (RRV0): ρjσi = σiρj is ρ1σi = σiρ1. We
prove (xiii) implies the basic case of (RRV 0):
σ−1
1 µ1σi = σiµ

−1
1 σ1; ρ1σi = σiρ1.

The initial case of the relations
(RRV3): σiρi+1ρi = ρi+1ρiσi+1 is σ1ρ2ρ1 = ρ2ρ1σ2.
We prove (xiv), (ii), and (iii) implies the basic case of (RRV 3):
σ2
1σ

−1
2 µ1σ2µ1 = σ−2

2 µ1σ2µ1σ2

σ2σ
2
1σ

−1
2 µ1σ2µ1 = σ−1

2 µ1σ2µ1σ2

σ−1
1 σ2σ

2
1σ

−1
2 µ1σ2µ1 = σ−1

1 σ−1
2 µ1σ2µ1σ2

σ2σ1σ
−1
2 σ1σ

−1
2 µ1σ2µ1 = σ−1

1 σ−1
2 µ1σ2µ1σ2

σ1σ
−1
2 σ1σ

−1
2 µ1σ2(1n)µ1 = σ−1

2 σ−1
1 σ−1

2 µ1σ2(1n)µ1σ2

σ1σ
−1
2 σ1σ

−1
2 µ1σ2(σ1σ

−1
1 )µ1 = σ−1

2 σ−1
1 σ−1

2 µ1σ2(σ1σ
−1
1 )µ1σ2

σ1σ
−1
2 µ2σ

−1
1 µ1 = σ−1

2 µ2σ
−1
1 µ1σ2, σ1ρ2ρ1 = ρ2ρ1σ2.

The initial case of the relations
(RVF2): σiσi+1ρi = ρi+1σiσi+1 is σ1σ2ρ1 = ρ2σ1σ2.
We prove (xv), (ii), and (iii) implies the basic case of (RV F2):
(σ2σ

2
1σ2)µ1 = µ1(σ2σ

2
1σ2)

σ1σ2µ1 = σ−1
1 σ−1

2 µ1(σ2σ
2
1σ2)

σ−1
2 σ1σ2µ1 = σ−1

2 σ−1
1 σ−1

2 µ1(σ2σ
2
1σ2)

σ1σ2σ
−1
1 µ1 = σ−1

2 σ−1
1 σ−1

2 µ1(σ2σ
2
1σ2

σ1σ2ρ1 = σ−1
2 σ−1

1 σ−1
2 µ1(σ2σ

2
1σ2)

σ1σ2ρ1 = σ−1
2 µ2σ1σ2), σ1σ2ρ1 = ρ2σ1σ2.

The initial case of the relations (RSV0): xiρj = ρjxi is x1ρ3 = ρ3x1. We prove
(xvi), (i), (ii), and (iii) implies the basic case of (RSV 0):
δ1σ

−1
3 σ−1

2 σ−1
1 σ−1

2 σ−1
3 σ−1

2 µ1σ2σ3σ1σ2σ1 = σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1

δ1σ
−1
3 σ−1

2 σ−1
1 σ−1

2 σ−1
3 σ−1

2 µ1σ2σ3σ1σ2 = σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1σ

−1
1

δ1σ
−1
3 σ−1

1 σ−1
2 σ−1

1 σ−1
3 σ−1

2 µ1σ2σ3σ1σ2 =σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1σ

−1
1

δ1σ
−1
1 σ−1

3 σ−1
2 σ−1

1 σ−1
3 σ−1

2 µ1σ2σ3σ1σ2 =σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1σ

−1
1

δ1σ
−1
1 σ−1

3 µ3 = σ−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2 µ1σ2σ3σ1σ2δ1σ

−1
1

x1ρ3 = σ−1
3 σ−1

2 σ−1
3 σ−1

1 σ−1
2 µ1σ2σ3σ1σ2δ1σ

−1
1

x1ρ3 = σ−1
3 µ3δ1σ

−1
1 ; x1ρ3 = ρ3x1.

The initial case of the relations (RSV3): xiρj = ρjxi is x1ρ3 = ρ3x1. We prove
(xvii), and (ii) implies the basic case of (RSV 3):
σ2σ1σ2δ1(σ2σ1)−2µ1σ2µ1 = µ1σ2µ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2

σ2σ1σ2δ1(σ−1
1 σ−1

2 )2µ1σ2µ1 = µ1σ2µ1σ1σ2δ1σ
−1
2 σ−1

1 σ−1
2

δ1(σ−1
1 σ−1

2 )2µ1σ2(1n)µ1 = σ−1
2 σ−1

1 σ−1
2 µ1σ2(1n)µ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2
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δ1(σ−1
1 σ−1

2 )2µ1σ2(σ1σ
−1
1 )µ1 = σ−1

2 σ−1
1 σ−1

2 µ1σ2(1n)µ1σ1σ2δ1σ
−1
2 σ−1

1 σ−1
2

δ1σ
−1
1 σ−1

2 µ2σ
−1
1 µ1 = σ−1

2 σ−1
1 σ−1

2 µ1σ2(σ1σ
−1
1 )µ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2

δ1σ
−1
1 σ−1

2 µ2σ
−1
1 µ1 = σ−1

2 µ2σ
−1
1 µ1σ1σ2δ1σ

−1
2 σ−1

1 σ−1
2

δ1σ
−1
1 σ−1

2 µ2σ
−1
1 µ1 = σ−1

2 µ2σ
−1
1 µ1δ2σ

−1
2 , x1ρ2ρ1 = ρ2ρ1x2.
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