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Fibonacci and Lucas Polynomials in n-gon

Bahar KULOĞLU, Engin ÖZKAN and Marin MARIN

Abstract

In this paper, we bring into light, study the polygonal structure of
Fibonacci polynomials that are placed clockwise on these by a number
corresponding to each vertex. Also, we find the relation between the
numbers with such vertices. We present a relation for obtained sequence
in an n-gon yielding the m-th term formed at k vertices. Also, we
apply these situations to Lucas polynomials and find new recurrence
relations. Then, the numbers obtained by writing the coefficients of
these polynomials in step form are shown in OEIS.

1 Introduction

Knowing about sequences of numbers, especially the Fibonacci numbers, is
an interesting tool for many researchers [1, 6, 7, 8, 9, 10, 11, 19]. Starting
from the Fibonacci sequences, many new sequences were defined, and their
properties were examined, often by changing the initial conditions [5, 20].
At the same time, many authors work on polynomials defined with the help
of number sequences [3, 4, 12, 13, 14, 16, 17, 18].
One of the latest studies in this subject is [2] where the authors placed Pell
numbers clockwise on the vertices of the polygons and some properties about
obtained new sequences. Then in [21], the work in [2] was moved to the Pell
and Pell-Lucas polynomials. They obtained interesting properties about the
coefficients of their polynomials for the new polynomial sequences formed at
the vertices.
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Different concrete mixed initial-boundary values problems are addressed in the
papers works [22, 23, 24]. Here, techniques are used for the existence of the
solutions of the considered problems, for their uniqueness or for continuous
dependence in relation to the initial data, or boundary conditions or supply
terms.
In this study, we made a new study for Fibonacci and Lucas polynomials based
on [2]. The general term for the polynomial sequences formed at each vertex
of the regular n-gon is given. Moreover, when the coefficients of both new
polynomial sequences and term derivatives formed at the vertices of a regular
n-gone were examined, it was seen that they were known number sequences
in OEIS [15].
Now, let us remind the following definitions that are very well known.
The Fibonacci numbers are given by

Fn+2 = Fn + Fn+1, n ≥ 0

with F0 = 0 and F1 = 1.
x2 − x− 1 = 0, the characteristic equation, and the roots, α = 1+

√
5

2 and β =
1−

√
5

2 , Binet formula, Fn = αn−βn

α−β .
The Lucas numbers are given by

Ln = Ln−1 + Ln−2 , n ≥ 2 (n ∈ N)

with L0 = 2 and L1 = 1.
Its Binet formula is Ln=αn+ βn.
For n ≥ 2, Fibonacci polynomial is given by

Fn (x) = xFn−1 (x) + Fn−2(x)

such that F0 (x) = 0, F1 (x) = 1.
For n ≥ 2, Lucas polynomials is given by

Ln (x) = xLn−1 (x) + Ln−2(x)

such that L0 (x) = 2, L1 (x) = x.
And we know that

F−n (x) = (−1)
n−1

Fn (x)

and
L−n (x) = (−1)

n
Ln (x) .

We know that the limit of consecutive terms of the Fibonacci sequence gives
the golden ratio. In fact, if the golden ratio is interpreted geometrically, it
depends on the regular pentagon. Equal sides of a regular pentagon and
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diagonals passing through equal 108◦ angles between equal sides form a star-
shaped pentagram. The ratio of the side lengths of a regular pentagon to the
diagonal lengths gives the golden ratio. From this point of view, in this article,
new recurrences on n-gon are defined by focusing on how the proportional
relationship can be generalized.

2 Main Results

2.1 New Relations for Fibonacci Polynomials

Let k, m show the vertex number and the order of term of the sequence
occurring at any vertex in any n-gon such that 0 ≤ k < n and m ≥ 1,
respectively.
For n = 1, let’s write the Fibonacci polynomials over a dot as shown in Figure
1.

Figure 1: Fibonacci polynomials placed over a dot.

For n = 1, we get k = 0. So, we obtain

F(m−1)n+k (x) = Fm−1 (x) = L1 (x)F(m−2) (x) + F(m−3)(x)

which is the Fibonacci polynomials. Let’s write the Fibonacci polynomials for
n = 2 consecutively at start and end points of a line segment as shown in
Figure 2.

Figure 2: Fibonacci polynomials at the endpoints of a segment.

We have

F(m−1)n+k (x) = F(m−1)2+k (x) = L2 (x)F(m−2)2+k (x) + F(m−3)2+k(x)

For n = 3, let’s place the Fibonacci polynomials as shown in Figure 3.
So, we get

F(m−1)n+k (x) = F(m−1)3+k (x) = L3 (x)F(m−2)3+k (x) + F(m−3)3+k(x)



FIBONACCI AND LUCAS POLYNOMİALS IN n-GON 130

Figure 3: Fibonacci polynomials placed at the vertices of a triangle

Figure 4: Fibonacci polynomials in the vertices of an n-gon

Let’s place the Fibonacci polynomials on an n-gon as shown in Figure 4.
Let’s exemplify this situation. In a 3-gon, let’s try to find the 2nd term of
the sequence at point A1 In this case, n = 3, m = 2 and k = 1, F4 (x).
The value we will find corresponds to the second term of the sequence A1 ={

1, x3 + 2x, x6 + 5x4 + 6x2 + 1, . . .
}

in Figure 3. That is, x3 + 2x. Here, the
numbering of terms for the sequence in the corner is started with 1, Ak =
{x1, x2, . . . }.
So, we have

F(m−1)n+k (x) = F(m−1)3+k (x) = (x
3

+ 3x)F(m−2)3+k (x) + F(m−3)3+k(x)

F4 (x) = (x
3

+ 3x)F1 (x) + F−2 (x)

= (x
3

+ 3x)1 − F2 (x) = (x
3

+ 3x)1 − x = x3 + 2x.

Notice that the coefficient of F(m−2)n+k(x) and F(m−3)n+k(x) is the Ln(x) and

(−1)
n+1

, respectively.
After all this preparation, we can now give the first main theorem.

Theorem 2.1.1. The mth term of the sequence in the vertex Akis as follows

F(m−1)n+k(x) = Ln(x)F (m−2)n+k(x) − (−1)
n
F(m−3)n+k(x), 0 ≤ k < n (2.1)
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Proof. From Binet formulas,

F(m−2)n+k(x)Ln(x) − (−1)
n
F(m−3)n+k(x)

=
α(m−2)n+k(x) − β(m−2)n+k(x)

α(x) − β(x)
. (αn (x) + βn(x))

− (−1)
n
.
α(m−3)n+k(x) − β(m−3)n+k(x)

α(x) − β(x)

=
α(m−1)n+k (x) − β(m−1)n+k (x)

α(x) − β(x)

+
βn (x)αmn−2n+k (x) − αn (x)βmn−2n+k (x)

α(x) − β(x)

− (−1)
n
.αmn−3n+k (x) + (−1)

n
.βmn−3n+k(x)

α(x) − β(x)

=
α(m−1)n+k(x) − β(m−1n+k(x)

α(x) − β(x)

= F(m−1)n+k(x).

Theorem 2.1.2. The relation between the polynomials corresponding to the
vertex Akis follows

Fmn+k(x)

= Fn+k(x)

 2m−3−(−1)m

4∑
t=0

(−1)
(n+1)t

(
m− t− 1

t

)
Lm−2t−1
n (x)


+ Fk(x)

 2m−5−(−1)m−1

4∑
t=0

(−1)
(n+1)(t+1)

(
m− t− 2

t

)
Lm−2t−2
n (x)


where 0 ≤ k < n.
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Proof. From the induction method on m, for m = 1, we obtain

Fn+k (x) = Fn+k (x)

(
0∑

t=0

(−1)
(n+1)t

(
−t

t

)
L−2t
n (x)

)

+ Fk(x)

( −1∑
t=0

(−1)
(n+1)(t+1)

(
−t− 1

t

)
L−2t−2
n (x)

)

= Fn+k(x)

(
(−1)

0

(
0

0

)
(Ln (x))

0

)
+ Fn(x)

(
(−1)

n+1

(
−1

0

)
(Ln(x))

−2

)
= Fn+k (x)

The result is true for m = s. So,

Fsn+k(x) = Fn+k(x)

 2s−3−(−1)s

4∑
t=0

(−1)
(n+1)t

(
s− t− 1

t

)
Ls−2t−1
n (x)


+ F k(x)

 2s−5−(−1)s−1

4∑
t=0

(−1)
(n+1)(t+1)

(
s− t− 2

t

)
Ls−2t−2
n (x)


(2.2)

For m = s + 1, if we use equation (2.1) then we obtain

F(s+1)n+k(x) = Fsn+k(x)Ln(x) − (−1)
n
F(s−1)n+k(x)

By using equation equation (2.2), we have

F(s+1)n+k (x)

=Fn+k (x)

 2s−3−(−1)s

4∑
t=0

(−1)
(n+1)t

(
s− t− 1

t

)
Ls−2t−1
n (x)

 .Ln (x)

+Fk (x)

 2s−5−(−1)s−1

4∑
t=0

(−1)
(n+1)(t+1)

(
s− t− 2

t

)
Ls−2t−2
n (x)

 .Ln (x)

−(−1)
n
Fn+k (x)

 2s−5−(−1)s−1

4∑
t=0

(−1)
(n+1)t

(
s− t− 2

t

)
Ls−2t−2
n (x)


−(−1)

n
Fk(x)

 2s−7−(−1)s−2

4∑
t=0

(−1)
(n+1)(t+1)

(
s− t− 3

t

)
Ls−2t−3
n (x)

 .
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When s = 2r, we have

F(s+1)n+k(x) = Fn+k(x)

(
r−1∑
t=0

(−1)
(n+1)t

(
2r − t− 1

t

)
L2r−2t
n (x)

)

+Fn+k (x)

(
r−1∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 2

t

)
L2r−2t−2
n (x)

)

+Fk (x)

(
r−1∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 2

t

)
L2r−2t−1
n (x)

)

+Fk(x)

(
r−2∑
t=0

(−1)
(n+1)(t+2)

(
2r − t− 3

t

)
L2r−2t−3
n (x)

)

=Fn+k(x)

[(
2r − 1

0

)
L2r
n (x) + (−1)

n+1

(
2r − 2

1

)
L2r−2
n (x)

+

(
2r − 3

2

)
L2r−4
n (x) + . . . + (−1)

(n+1)(r−1)

(
r

r − 1

)
L2
n(x)

+ (−1)
n+1

(
2r − 2

0

)
L2r−2
n (x) +

(
2r − 3

1

)
L2r−4
n (x)

+ · · · + (−1)
(n+1)(r−1)

L2
n(x) + (−1)

(n+1)r

(
r − 1

r − 1

)]

+Fk(x)

[
(−1)

n+1

(
2r − 2

0

)
L2r−1
n (x) +

(
2r − 3

1

)
L2r−3
n (x)

+ (−1)
n+1

(
2r − 4

2

)
L2r−5
n (x)

+ · · · + (−1)
(n+1)r

(
r − 1

r − 1

)
Ln(x) +

(
2r − 3

0

)
L2r−3
n (x)

+ (−1)
n+1

(
2r − 4

1

)
L2r−5
n (x)

+

(
2r − 5

2

)
L2r−7
n (x) + · · · + (−1)

(n+1)r

(
r − 1

r − 2

)
Ln(x)

=Fn+k(x)

(
r∑

t=0

(−1)
(n+1)t

(
2r − t

t

)
L2r−2t
n (x)

)

+Fk(x)

(
r−1∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 1

t

)
L2r−2t−1
n (x)

)

=Fn+k(x)

 2s−1−(−1)s+1

4∑
t=0

(−1)
(n+1)t

(
s− t

t

)
Ls−2t
n (x)


+Fk(x)

 2s−3−(−1)s

4∑
t=0

(−1)
(n+1)(t+1)

(
s− t− 1

t

)
Ls−2t−1
n (x)


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when s = 2r − 1, we have

= Fn+k (x)

(
r−1∑
t=0

(−1)
(n+1)t

(
2r − t− 2

t

)
L2r−2t−1
n (x)

)

+Fn+k(x)

(
r−2∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 3

t

)
L2r−2t−3
n (x)

)

+Fk (x)

(
r−2∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 3

t

)
L2r−2t−2
n (x)

)

+Fk(x)

(
r−2∑
t=0

(−1)
(n+1)(t+2)

(
2r − t− 4

t

)
L2r−2t−4
n (x)

)

=Fn+k(x)

(
r−1∑
t=0

(−1)
(n+1)t

(
2r − t− 1

t

)
L2r−2t−1
n (x)

)

+Fk(x)

(
r−1∑
t=0

(−1)
(n+1)(t+1)

(
2r − t− 2

t

)
L2r−2t−2
n (x)

)

=Fn+k(x)

 2s−1−(−1)s+1

4∑
t=0

(−1)
(n+1)t

(
s− t

t

)
Ls−2t
n (x)


+Fk(x)

 2s−3−(−1)s

4∑
t=0

(−1)
(n+1)(t+1)

(
s− t− 1

t

)
Ls−2t−1
n (x)

 .

2.2 New Relations for Lucas Polynomials

Here, we write the Lucas polynomials on the vertices of an n-gon. Note that
the mth term of the polynomials sequence at the point Ak is L(m−1)n+k. Let
us give this situation with the second main theorem as follows.

Theorem 2.2.1. Let the Lucas polynomials be written on the vertices of an
n-gon clockwise. The mth term of the polynomial sequence corresponding to
the vertex Ak is follows

L(m−1)n+k(x) = Ln(x)L(m−2)n+k(x) − (−1)
n
L(m−3)n+k(x), 0 ≤ k < n.
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Proof. From Binet’s formula for Lucas polynomials, we find

Ln(x)L(m−2)n+k (x) − (−1)
n
L(m−3)n+k (x)

=
(
α(m−2)n+k(x) + β(m−2)n+k(x)

)
(αn(x) + βn(x))

−(−1)
n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
=αmn−n+k(x) + βmn−n+k(x) + α(m−2)n+k(x)βn(x) + αn(x)β(m−2)n+k(x)

−(−1)
n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
=αmn−n+k(x) + βmn−n+k(x) + (αβ)

n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
−(−1)

n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
Because of αβ = −1, we have

Ln(x)L(m−2)n+k (x)−(−1)
n
L(m−3)n+k (x) = αmn−n+k(x) + βmn−n+k(x)

+(−1)
n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
−(−1)

n
(
α(m−3)n+k(x) + β(m−3)n+k(x)

)
=αmn−n+k(x) + βmn−n+k(x) = L(m−1)n+k(x).

Theorem 2.2.2. For 0 ≤ k < n , there is a following relation between the
polynomials corresponding to the vertex Ak .

Lmn+k(x) = Ln+k(x)

 2m−3−(−1)m

4∑
t=0

(−1)
(n+1)t

(
m− t− 1

t

)
Lm−2t−1
n (x)


+L(x)

 2m−5−(−1)m−1

4∑
t=0

(−1)
(n+1)(t+1)

(
m− t− 2

t

)
Lm−2t−2
n (x)


Proof. The proof is omitted here as it is similar to the proof of Theorem
2.2.2.

2.3 Some Properties of coefficients in new recurrences of Fibonacci
polynomials

In this section, let’s examine some value of any Fibonacci polynomials cor-
responding Fmn+k(x) for some m,n and k. For x = 1 in Table 2.3, we give
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some terms numbered in OEIS of the Fibonacci polynomials Fmn+k(x). For
x = 1, n = 3 and k = 0, 1, 2, we find the the following sequences.
A few terms of them is follows.

{A2}m∈N = {1, 5, 21, 89, 377, 1597, . . . }

{A1}m∈N = {1, 3, 13, 55, 233, 987, . . . }

{A0}m∈N = {0, 2, 8, 34, 144, 610, . . . }.

For x = 1, n = 4 and k = 0, 1, 2, 3, we get

{A3}m∈N = {2, 13, 89, 610, . . . }

{A2}m∈N = {1, 8, 55, 377, . . . }

{A1}m∈N = {1, 5, 34, 233, . . . }

{A0}m∈N = {0, 3, 21, 144, . . . }.

It is worthy to be noted that numbers sequence which above are referenced in
OEIS [15].

Fibonacci polynomial sequences as numbered in OEIS.

F3m+2
A015448

F3m+1 A033887
F3m A014445
F4m+3 A033891
F4m+2 A033890
F4m+1 A033889
F4m A033888

For n = 3 and k = 2, if the coefficients of the polynomial sequences are
written in step form, then we have following table.

{A2}m∈N = {x, x4 + 3x2 + 1, x7 + 6x5 + 10x3 + 4x, x10 + 9x8 + 28x6+

35x4 + 15x2 + 1, x13 + 12x11 + 55x9 + 120x7 + 126x5 + 56x3 + 7x, . . . }

The coefficients for n = 3 and k = 2

1
0

1 0 3 0 1
1 0 6 0 10 0 4 0
1 0 9 0 28 0 35 0 15 0 1
1 0 12 0 55 0 120 0 126 0 56
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Note that the number of terms in the expansion of (a1 + a2 + · · · + an+3−j)
n

is each entrance in the diagonal beginning with {1, j, . . . } for n ≥ j − 2. For
example, for n ≥ 1, sequence {1, 3, 10, 35, 126, . . . } is the number of terms in
the expansion of (a1 + a2 + · · · + an−1)

n
.

Similarly, let’s take some derivatives

{A2}m∈N = {x, x4 + 3x2 + 1, x7 + 6x5 + 10x3 + 4x, x10 + 9x8 + 28x6 + 35x4

+ 15x2 + 1, x13 + 12x11 + 55x9 + 120x7 + 126x5 + 56x3 + 7x, . . . }

and rewrite them in digit form.

{A2}
′

m∈N = {1, 4x3 + 6x, 7x6 + 30x4 + 30x2 + 4, 10x9 + 72x7 + 168x5 + 140x3

+ 30x, 13x12 + 132x10 + 495x8 + 840x6 + 630x4 + 168x2 + 7, . . . }

{A2}
′′

m∈N = {0, 12x2 + 6, 42x5+120x3 + 60x,

90x8 + 504x6 + 840x4 + 420x2 + 30, . . . }

Fibonacci first derivative polynomial sequences for n= 3 and k= 2.

1
4 6
7 30 30 4
10 72 168 140 30
13 132 495 840 630 168 7

In the above Table, it is seen that the numbers in the diagonal give the
sequence A002457 and the numbers in the vertical column give the sequence
A152743 (6 times pentagonal numbers) These numbers are referenced in the
OEIS [15].

Fibonacci second derivative polynomial sequences for n= 3 and k= 2.

0
12 6
42 120 60
90 504 840 420 30
156 1320 3960 5040 2520 336

In the above Table, it is seen that the numbers in the diagonal give sequence
A089431 and the numbers in the vertical column give sequence A054776 in
OEIS [15].
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3 Conclusion

In this work, we examine the sequence of polynomials corresponding to each
vertex by placing Fibonacci polynomials clockwise into the regular n-gon. We
have obtained the formula that gives the general term for the sequence of
polynomials at each vertex.
Then we were interested in the coefficients of the polynomials corresponding
to the vertices. We have seen that these coefficients are known special number
sequences.
We did all this for Lucas polynomials as well.
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[9] E. Özkan, 3-Step Fibonacci Sequence in Nilpotent Groups, Applied Math-
ematics and Computatiton 144 (2003), 517-527.



FIBONACCI AND LUCAS POLYNOMİALS IN n-GON 139
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