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On the explicit geometry of a certain
blowing-up of a smooth quadric

B. L. De La Rosa-Navarro, G. Failla, J. B. Fŕıas-Medina,
M. Lahyane and R. Utano

Abstract

Using the high symmetry in the geometry of a smooth projective
quadric, we construct effectively new families of smooth projective ratio-
nal surfaces whose nef divisors are regular, and whose effective monoids
are finitely generated by smooth projective rational curves of negative
self-intersection. Furthermore, the Cox rings of these surfaces are finitely
generated, the dimensions of their anticanonical complete linear sys-
tems are zero, and their nonzero nef divisors intersect positively the
anticanonical ones. And in two special cases, we give efficient ways of
describing any effective divisor class in terms of the given minimal gen-
erating sets for the effective monoids of these surfaces. The ground field
of our varieties is algebraically closed of arbitrary characteristic.

1 Introduction

For a given finite set of points P1, . . . , Pr of the smooth projective quadric sur-
face P1

k×P1
k, where k is an algebraically closed field of arbitrary characteristic,

consider the surface Xr obtained as the blowing-up of P1
k×P1

k at these r points
and denote by πr : Xr −→ P1

k × P1
k the induced morphism. One can ask the

following questions: Does Xr hold finitely many irreducible reduced curves of
negative self-intersection? Assuming that there are only finitely many such
curves, is it possible to determine them explicitly?
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The answers, obviously, depend on the points. For the surface P1
k × P1

k is
endowed naturally with a surjective morphism π : P1

k×P1
k −→ P1

k given by the
second projection, that is π(x, y) = y for every x, y ∈ P1

k. Recall that the fibre
Fy of π over y ∈ P1

k is equal to π−1(y) which is, of course, isomorphic to the
projective line P1

k; similarly the horizontal line Hx of π associated to x ∈ P1
k is

equal to {x} × P1
k. It is worth noting that two fibres (respectively, horizontal

lines) of π do not intersect, and any fibre F of π intersects any horizontal
line H of π exactly in one point. Thus the self-intersection of any irreducible
reduced curve on P1

k × P1
k is always nonnegative. In particular, P1

k × P1
k is

not isomorphic to the projective plane P2
k since any curve in P2

k has positive
self-intersection. Now, if r is equal to one, then X1 holds only three irreducible
reduced curves of negative self-intersection. Indeed, assuming that P1 = (x, y)
for some x and y ∈ P1

k, then these negative curves are the exceptional divisor
EP1

of the morphism π1 : X1 −→ P1
k×P1

k and the strict transform by π1 of the
fibre Fy (respectively, the horizontal line Hx) that passes through P1. In this
special case, all these three negative curves are (−1)-curves, that is, smooth
projective lines of self-intersection−1. If r is equal to two and the points P1 and
P2 belong to the same fibre F12 of π, then X2 holds only four (−1)-curves (i.e.,
the exceptional divisors EP1

, EP2
of π2 and the strict transform by π2 of the

horizontal line HP1
(respectively, HP2

) that passes through P1 (respectively,
P2)) and one (−2)-curve (i.e., a smooth projective line of self-intersection −2).
The latter corresponds to the strict transform by π2 of F12 that passes through
P1 and P2. However, if r is equal to eight, it may happen that X8 contain an
infinite number of (−1)-curves (see for example [18, Theorem 1]).

In order to put the above problem in a more general setting that allows us
to relate our results with the many published ones, we proceed as follows: let
X be a smooth projective surface defined over k. Consider the free Z-module
Div(X) generated by the irreducible reduced curves on X. An element of such
module is called a divisor on X, and such divisor is said to be effective it is
a nonnegative linear combination of irreducible and reduced curves. It turns
out that by intersection theory, Div(X) is endowed with a bilinear form which
we denote by a dot. In particular, if D is a divisor, then the self-intersection
of D means D2. Let D1 and D2 be divisors on X, D1 and D2 are numerically
equivalent, and we write D1 ≡ D2, if D1.C = D2.C for every irreducible
reduced curve on X. We denote Div(X) modulo numerical equivalence ≡ by
NS(X), this is the so-called the Néron-Severi group of X. A basic fact is
that NS(X) is a free Z-module of finite rank ρ(X) which is usually called the
Picard number of X. If X is obtained by blowing up a finite number of points
P1, . . . , Pr of P1

k×P1
k, then NS(X) is the free Z-module generated by the class

of the pullback of a fibre F , the class of the pullback of a horizontal line H
and the classes Ei of the blowings-up Ei of the points Pi. Thus, ρ(X) = 2 + r.
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Moreover, we denote by M(X) the submomoid of NS(X) consisting of the
classes of effective divisors on X. For more details see [32, Chapter V].

One of the main interesting problems, at least in birational geometry, cod-
ing theory, Poincaré Problem, and the so-called Harbourne-Hirschowitz Con-
jecture (also, known nowadays as the Segre-Harbourne-Gimigliano-Hirschowitz
Conjecture), is to understand the effective monoid M(X) of X. Understanding
M(X) means the following:

1. Is M(X) finitely generated? And if yes,

2. What is a minimal generating set for M(X)? And,

3. Is any nef divisor on X regular? Here, a divisor D on X is said to be
nef if its intersection number with any element of M(X) is nonnegative,
and is said to be regular if H1(X,OX(D)) vanishes, where OX(D) is an
invertible sheaf associated naturally to D, and H1(X,OX(D)) is the first
cohomology group of OX(D). Of course as it is well-known, the latter
has a structure of a finite dimensional vector space over k.

The aim of this work is to give a partial answer to the above questions
when X is a surface whose minimal model is a smooth projective quadric
surface. Note that the Picard number of X may be as large as one wishes. Our
techniques are based mainly on intersection theory on surfaces and specializing
points.

Smooth projective rational surfaces with Picard number less than or equal
to ten are very well understood nowadays, see [46], [39], [31], [5], [13], [35],[36],
[43],[44] and [48]. However, when the Picard number of X is larger than ten
there are only few families whose effective monoids are almost understood, see
for instance [3], [4], [14], [15],[16] [19], [21], [22], [37], [38], [8], [9], [23] and
[24]. Below, we provide more families of smooth projective rational surfaces
whose effective monoids are not only finitely generated but explicitly deter-
mined by giving the minimal generating set, see Theorem 2.1, Theorem 6.1,
and Theorem 6.4. These surfaces have the property that the nefness ensures
the regularity.

For any smooth projective rational surface W having the projective plane
P2
k as a minimal model and having an integral anticanonical divisor of nonpos-

itive self-intersection, the finite generation of the effective monoid NS(W ) of
W ensures that the set of (−2)-curves on W is finite, and spans a Z-submodule
of NS(W ) of rank equal to −1 + ρ(W ), here ρ(W ) is the rank of the free Z-
module NS(W ), see [26, Theorem (3.1), p. 142]. However, our surfaces X do
not share this property:
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The set of (−2)-curves on X spans a Z-submodule of NS(X) of rank less than
−1 + ρ(X). See Section 2 for the definition of X, and Corollary 4.4.

From the algebraic point of view, our surfaces provide new families of
smooth projective rational surfaces whose Cox rings are finitely generated
(see Theorem 5.7 below), and whose anticanonical complete linear systems
have dimensions zero (see Corollary 3.3). In this direction, see the results
obtained in [6], [25], [20], [10], [11], [12], [18],[22], [45], [49] and [40]. Here, the
Cox ring of a smooth projective variety T is the k−algebra Cox(T ) given by

Cox(T ) =
⊕

L∈Pic(T )

H0(T,L),

where Pic(T ) is the Picard group of T , and H0(T,L) is the finite dimensional
k−vector space of global sections of L. For more details see [6] and [34].

This paper is structured as follows. In Section 1, we principally stated
some of our main results (see Theorems 2.1, and 2.2, and Corollary 2.3). Sec-
tion 2 (respectively, Section 3) deals with the proof of the finiteness of the
set of (−1)-curves (respectively, of (−2)-curves) on X. Section 4 gives the fact
that the nefness of divisors implies their regularities. Section 5 states Lemma
5.5, an ingredient that we needed for showing the finite generation of the Cox
rings of our surfaces. Section 6 deals with our efficient computational aspect
for the effective monoids of some surfaces obtained as two specializations in
our construction, in fact these special surfaces are constructed by following
either a horizontal section (see Theorem 6.1), or a fibre (see Theorem 6.4); in
particular by means of examples, it illustrates that the Riemann-Roch Theo-
rem for surfaces may not guaranty the effectiveness of some divisors, however
our results do prove the effectiveness of such divisors (see Example, p. 17).
Also, it extends, e.g., the results obtained in [47, Theorem 1, p. 420; and
Theorem 2, p. 424], [48, Theorems 1 and 2, p.120], [41], [42] and [17].

2 Notation and preliminary results

In order to state our results, we need to fix some notation. We denote by Σ0

a smooth projective quadric surface, and we remind the reader that it is the
rational ruled surface defined by the locally free sheaf OP1

k
⊕ OP1

k
of rank two

on the projective line P1
k. It is well-known that the set {Cm0 ,Fm} is a minimal

set of generators of NS(Σ0) as Z−Module, where NS(Σ0) is the Néron-Severi
group of Σ0 (that is, the quotient group of the abelian group of divisors on
Σ0 modulo numerical equivalence), Cm0 is the class of a section Cm0 of Σ0 and
Fm is the class of a fibre fm of Σ0. The intersection form on Σ0 is given by
the three equalities (Cm0 )2 = 0, (Fm)2 = 0, and Cm0 .F

m = 1, for more details,
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see for example [32, Section 2, pp. 369-383], and [48, Theorem 1, p. 120].
On the other hand, for a fixed positive integer r, we denote the blowing-up
of Σ0 at r closed points (not necessarily ordinary points) of such a surface by
Y0. Henceforth, there is a natural projective birational morphism π between
Y0 and Σ0. A minimal set of generators of NS(Y0) as Z−Module is the set
{C0,F,−E1,−E2, . . . ,−Er}, where C0 is the class of the total transform of C0

m

by π, F is the class of the total transform of a fibre fm of Σ0 by π, and Ej is
the class of the exceptional divisor corresponding to the jth point blown-up for
every j ∈ {1, 2, . . . , r}. The intersection form on Y0 is given by the following
equalities: C2

0 = 0, F2 = 0, C0.F = 1, C0.Ej = 0, F.Ej = 0, E2
j = −1 for every

j ∈ {1, 2, . . . , r}, and Ei.Ej = 0 for i, j ∈ {1, 2, . . . , r} such that i 6= j.
Let p be a closed point of Σ0 and s a nonnegative integer. A constellation

C with origin p means the following: C =
⋃s
i=0 Ci, here C0 is the set consisting

of only one element which is the point p, C1 is a nonempty finite subset of
the exceptional divisor of the blowing-up of Σ0 at p and by induction Ci+1 is
a nonempty finite subset of the exceptional locus of the blowing-up of the ith

blowing-up of Σ0 (which includes Ci) at the points of Ci, for every i = 0, . . . , s−
1. We refer to s as the rank of the constellation. Moreover, C will be called a
chain if Ci consists of only one element, for every i = 0, . . . , s. The union of
two constellations with different origins will be called a constellation with two
origins. For more information about the constellations see [37, Subsection 2.2,
p. 1222], and [2].

Using the above notation, we proceed to construct our family of smooth
projective rational surfaces (see the Figure 1 for a simple illustration). Let
a, b, d, a′, b′, d′, ρ1, ρ2, . . . , ρd, ρ

′
1, ρ
′
2, . . . , ρ

′
d′ be nonnegative integers, and let O

and O′ be two closed points of Σ0. Consider V (respectively, H) the unique
fibre (respectively, the unique horizontal smooth projective rational curve) in
Σ0 that passes through O, in particular V (respectively, H) is numerically
equivalent to fm (respectively, to Cm0 ). Similarly, consider V ′ (respectively,
H ′) the unique fibre (respectively, the unique horizontal smooth projective
rational curve) in Σ0 that passes through O′. To avoid special cases, we assume
throughout that V 6= V ′, H 6= H ′, and a, b, a′, and b′ are larger than one, and
d, and d′ are positive. To these data, we shall associate the surface X obtained
as the blowing-up of the quadric surface Σ0 at its closed zero-dimensional
subscheme Z = C

⋃
C′, where C (respectively, C′) is the constellation with

origin O (respectively, O′) such that:

1. C = {O,A1, . . . , Aa, B1, . . . , Bb, D1, D
1
1, . . . , D

ρ1
1 , D2, D

1
2, . . . , D

ρ2
2 ,

. . . , Dd, D
1
d, . . . , D

ρd
d }, where

(a) A1 is the point of the first neighborhood of O determined uniquely
by the intersection of the strict transform of V via the blowing-up of
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Σ0 at O and the corresponding exceptional divisor EO, and for each
j = 2, . . . , a, Aj is the point given uniquely by the intersection of
the first infinitesimal neighborhood of Aj−1 and the strict transform
of V .

(b) B1 is the point of the first neighborhood of O determined uniquely
by the intersection of the strict transform of H via the blowing-up of
Σ0 at O and the corresponding exceptional divisor EO, and for each
j = 2, . . . , b, Bj is the point given uniquely by the intersection of the
first infinitesimal neighborhood of Bj−1 and the strict transform of
H.

(c) For t = 1, . . . , d, Dt is a general point of the first neighborhood of O,
in particular it is other than A1 and B1 with Dt 6= Dt′ if t 6= t′, and
for each j = 1, . . . , ρt, the point Dj

t is the point which is uniquely
given by the intersection of the first infinitesimal neighborhood of
Dj−1
t and the strict transform of EO with the convention D0

t = Dt.
And

2. C′ = {O′, A′1, . . . , A′a′ , B′1, . . . , B′b′ , D′1, D′1
1
, . . . , D′1

ρ′1 , D′2, D
′
2
1
, . . . ,

D′2
ρ′2 , . . . , D′d′ , D

′
d′

1
, . . . , D′d′

ρ′
d′}, where

(a) A′1 is the point of the first neighborhood of O′ determined uniquely
by the intersection of the strict transform of V ′ via the blowing-up
of Σ0 at O′ and the corresponding exceptional divisor EO′ , and for
each j = 2, . . . , a, A′j is the point given uniquely by the intersec-
tion of the first infinitesimal neighborhood of A′j−1 and the strict
transform of V ′.

(b) B′1 is the point of the first neighborhood of O′ determined uniquely
by the intersection of the strict transform of H ′ via the blowing-up
of Σ0 at O′ and the corresponding exceptional divisor EO′ , and for
each j = 2, . . . , b, B′j is the point given uniquely by the intersec-
tion of the first infinitesimal neighborhood of B′j−1 and the strict
transform of H ′.

(c) For t = 1, . . . , d′, D′t is a general point of the first neighborhood
of O′, in particular it is other than A′1 and B′1 with D′t 6= D′t′ if

t 6= t′, and for each j = 1, . . . , ρ′t, the point D′t
j

is the point which
is uniquely determined by the intersection of the first infinitesimal
neighborhood of D′t

j−1
and the strict transform of EO′ with the

convention D′t
0

= D′t.

So, the Néron-Severi group NS(X) of X is a free Z-module of rank ρ(X) =

4 + a+ a′ + b+ b′ + d+ d′ +
∑i=d
i=1 ρi +

∑j=d′

j=1 ρ′j . Moreover, it has naturally
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Figure 1: The curves V , H, V ′ and H ′ are used in the construction of X as
well as the points O and O′.

the following integral basis:(
C0;F;−EO,−EA1

, . . . ,−EAa ,−EB1
, . . . ,−EBb ,−ED1

, . . . ,−EDρ11
, . . . ,

− EDd , . . . ,−EDρdd ;−EO′ ,−EA′
1
, . . . ,−EA′

a′
,−EB′

1
, . . . ,−EB′

b′
,−ED′

1
, . . . ,

− E
D′

1
ρ′1
, . . . ,−ED′

d′
, . . . ,−E

D′
d′
ρ′
d

)
which is defined by:

• C0 is the class of a general section Cm0 of Σ0,

• F is the class of a general fibre fm of Σ0,

• EO (respectively, EO′) is the class of the exceptional divisor correspond-
ing to the point O (respectively, O′).

• EAi (respectively, EA′
j
) is the class of the exceptional divisor correspond-

ing to the point Ai (respectively, A′j) for every i = 1, . . . , a (respectively,
j = 1, . . . , a′).

• EBi (respectively, EB′
j
) is the class of the exceptional divisor correspond-

ing to the point Bi (respectively, B′j) for every i = 1, . . . , b (respectively,
j = 1, . . . , b′).

• EDut is the class of the exceptional divisor corresponding to the point
Du
t , for every t = 1, . . . , d and u = 0, . . . , ρt.



ON THE EXPLICIT GEOMETRY OF A CERTAIN BLOWING-UP OF A
SMOOTH QUADRIC 78

• ED′u
t

is the class of the exceptional divisor corresponding to the point
D′

u
t , for every t = 1, . . . , d′ and u = 0, . . . , ρ′t.

Any class of a divisor on X can be then represented by a tuple with integer
entries such as:

(x; y; c, λ1, . . . , λa, µ1, . . . , µb, δ1, . . . , δ1
ρ1 , . . . , δd, . . . , δd

ρd ;

c′, λ′1, . . . , λ
′
a′ , µ

′
1, . . . , µ

′
b′ , δ

′
1, . . . , δ

′
1
ρ′1 , . . . , δ′d′ , . . . , δ

′
d′
ρ′d).

As a consequence of our results below, we succeed to give explicitly the
minimal generating set for the effective monoid M(X) of X (Figure 2 gives all
the irreducible components of the reduced anticanonical divisor (they form a
polygon), and also other negative curves), in particular every generator is of
negative self-intersection, as the following theorem shows:

Theorem 2.1. With notation as above. The effective monoid M(X) of X is
finitely generated by smooth projective rational curves of negative self-intersection.
More precisely, M(X) is generated by the following elements:

1. EO − EA1
− EB1

−
∑i=d
i=1

∑j=ρi
j=0 EDji

, and

2. F − EO −
∑i=a
i=1 EAi , and

3. C0 − EO −
∑i=b
i=1 EBi , and

4. EO′ − EA′
1
− EB′

1
−
∑i=d′

i=1

∑j=ρ′i
j=0 ED′j

i
, and

5. F − EO′ −
∑i=a′

i=1 EA′
i
, and

6. C0 − EO′ −
∑i=b′

i=1 EB′
i
, and

7. EAa ,EBb , EA′
a′
,EB′

b′
, and

8. EDρii
, E

D′ρ
′
j

j

for any i ∈ {1, . . . , d} and any j ∈ {1, . . . , d′}, and

9. C0 + F − EO − EO′ − ED′
t

for any t ∈ {1, . . . , d′}, and

10. C0 + F − EO − EO′ − EDt , for any t ∈ {1, . . . , d}, and

11. EAi − EAi+1
, for any i ∈ {1, . . . , a− 1}, and

12. EBj − EBj , for any j ∈ {1, . . . , b− 1}, and

13. EA′
i
− EA′

i+1
, for any i ∈ {1, . . . , a′ − 1}, and
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14. EB′
j
− EB′

j+1
for any j ∈ {1, . . . , b′ − 1}, and

15. EDut −EDu+1
t

, for any t ∈ {1, . . . , d} and for any u ∈ {0, . . . , ρt− 1}, and

16. ED′u
t
− ED′u+1

t
, for any t ∈ {1, . . . , d′} and any u ∈ {0, . . . , ρ′t − 1}.

Proof. Since the Picard number of the smooth projective anticanonical ra-
tional surface X is larger than two (see Proposition 3.2 below for the fact
that X is rational and anticanonical), M(X) is generated by the classes of
the negative integral curves on X and by −KX , where KX is the class of a
canonical divisor KX on X, see [38, Lemma 4.1, p. 108]. Now, let E be
an integral curve on X of negative self-intersection, and let E be its class in
NS(X). If the intersection number E.KX is positive, then E is a fixed com-
ponent of the anticanonical complete linear system of X, hence E is equal to
EO −EA1 −EB1 −

∑i=d
i=1

∑j=ρi
j=0 EDji

, F−EO −
∑i=a
i=1 EAi , C0−EO −

∑i=b
i=1 EBi ,

EO′ − EA′
1
− EB′

1
−
∑i=d′

i=1

∑j=ρ′i
j=0 ED′j

i
, F − EO′ −

∑i=a′

i=1 EA′
i
, or C0 − EO′ −∑i=b′

i=1 EB′
i
. However, if the intersection number E.KX is negative, then E is a

(−1)-curve (that is, a smooth projective rational curve of self-intersection −1),
and E is equal to one of the list in Proposition 3.4. Lastly, if E is orthogonal to
KX , then E is a (−2)-curve (i.e., a smooth rational curve of self-intersection
−2), and E is equal to one of the list in Proposition 4.2. Conversely, every
element in the list of the theorem is the class of a smooth projective rational
curve of negative self-intersection. From the fact that −KX is a linear combi-
nation of negative integral curves with positive integers, and these curves are
in the list of the theorem, the result follows. So, we are done.

We are able to determine the dimension of complete linear systems associ-
ated to nef divisors on X, this can be seen using the following theorem:

Theorem 2.2. With notation as above. Every nef divisor on X is regular.

Proof. Let D be a nef divisor on X. If the intersection number D.KX is equal
to zero, then Proposition 5.1 ensures that D is equal to zero. Hence, it is
regular since X is rational. If D.KX is larger than one, then the regularity of
D is given by [28, Teorem III.1 (a), and (b), p. 1197].

Corollary 2.3. With notation as above. Let D be a nef divisor on X. The
dimension of the complete linear system |D| associated to D is equal to

1

2

(
D2 −D.KX

)
,

where KX denotes a canonical divisor on X.
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Proof. The equality follows from the Riemann-Roch Theorem and the facts
that D is regular by the last theorem, and KX − D is not effective by [27,
Proposition 4].

Figure 2: All the negative curves on X are in this figure except the ones which
are coming from some diagonals.

3 The set of (-1)-curves on X

Definition 3.1. With notation as above. A curve E on X is a (−1)-curve if
E2 = E.KX = −1, where KX denotes a canonical divisor on X.
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Here, we determine explicitly the set of (−1)-curves on X. In particular,
we deduce that its cardinality is equal to 2(2 + d+ d′).

To this end, we show first that X is anticanonical, that is, supporting an
effective anticanonical divisor.

Proposition 3.2. With notation as above, X is rational and anticanonical.

Proof. By construction X is birationally equivalent to Σ0, thus X is rational.
On the other hand, the class KX of a canonical divisor on X in NS(X) is given
by:

−

EO − EA1 − EB1 −
i=d∑
i=1

j=ρi∑
j=0

EDji

−(F − EO −
i=a∑
i=1

EAi

)
−

i=a−1∑
i=1

(EAi−EAi+1
)−EAa−

(
C0 − EO −

i=b∑
i=1

EBi

)
−
i=b−1∑
i=1

(EBi−EBi+1
)−EBb−EO′ − EA′

1
− EB′

1
−
i=d′∑
i=1

j=ρ′i∑
j=0

ED′j
i

−
F − EO′ −

i=a′∑
i=1

EA′
i

−
i=a′−1∑
i=1

(EA′
i
−EA′

i+1
)−EA′

a′
−

C0 − EO′ −
i=b′∑
i=1

EB′
i

−i=b′−1∑
i=1

(EB′
i
−EB′

i+1
)−EB′

b′
.

Therefore, X is anticanonical.

This implies that the anticanonical complete linear system of X is of di-
mension zero:

Corollary 3.3. With notation as above, let KX denotes a canonical divisor
on X. The anticanonical complete linear system |−KX | of X is of dimension
zero. Its unique element is reduced, and has (6 + a + b + a′ + b′) irreducible
components, four of them are (−1)-curves.

Now we handle the problem of determining the set of (−1)-curves on X.

Proposition 3.4. With notation as above. Let E be an integral curve on X.
If E is a (−1)-curve, then the class E of E in NS(X) is one of the following:

1. EAa ,EBb , EA′
a′
,EB′

b′

2. EDρii
, E

D′ρ
′
j

j

where i ∈ {1, . . . , d} and j ∈ {1, . . . , d′},

3. C0 + F − EO − EO′ − ED′
t

where t ∈ {1, . . . , d′},
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4. C0 + F − EO − EO′ − EDt where t ∈ {1, . . . , d}.

Proof. E is determined in NS(X) by some tuple with integer entries such as

(x; y; c, λ1, . . . , λa, µ1, . . . , µb, δ1, . . . , δ1
ρ1 , . . . , δd, . . . , δd

ρd ;

c′, λ′1, . . . , λ
′
a′ , µ

′
1, . . . , µ

′
b′ , δ

′
1, . . . , δ

′
1
ρ′1 , . . . , δ′d′ , . . . , δ

′
d′
ρ′d).

From the equation E.KX = −1, we infer the following equality:c− λ1 − µ1 −
i=d∑
i=1

j=ρi∑
j=0

δji

+

(
x− c−

i=a∑
i=1

λi

)
+

i=a−1∑
i=1

(λi − λi+1) + λa +

(
y − c−

i=b∑
i=1

µi

)
+

i=b−1∑
i=1

(µi − µi+1) + µb+c′ − λ′1 − µ′1 − i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

+

x− c′ − i=a′∑
i=1

λ′i

+

i=a′−1∑
i=1

(λ′i − λ′i+1) + λ′a′ +

y − c′ − i=b′∑
i=1

µ′i

+

i=b′−1∑
i=1

(µ′i − µ′i+1) + µ′b′ = 1.

In the last equality, every member of such sum is a nonnegative integer. For
E is a (−1)-curve and we may assume that it is not equal to EAa , EBb , EA′

a′
and EB′

b′
.

By symmetry, we need only to check the three following cases:

Case 1: c− i=d∑
i=1

j=ρi∑
j=0

δji

 = 1, and

c′ − i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

 = 0, and

x = y = c = c′, and

λi = 0, for every i ∈ {1, . . . , a}, and

µj = 0, for every j ∈ {1, . . . ,b}, and

λ′i′ = 0, for every i′ ∈ {1, . . . , a′}, and

µ′j′ = 0, for every j′ ∈ {1, . . . ,b′}.
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Case 2: c− i=d∑
i=1

j=ρi∑
j=0

δji

 = 0, and

c′ − i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

 = 0, and

x− c = 1, and

x = y = c = c′, and

λi = 0, for every i ∈ {1, . . . , a}, and

µj = 0, for every j ∈ {1, . . . ,b}, and

λ′i′ = 0, for every i′ ∈ {1, . . . , a′}, and

µ′j′ = 0, for every j′ ∈ {1, . . . ,b′}.

Case 3:

There exists α ∈ {1, . . . , a} such that λi = 1 for every i = 1, . . . , α, and λj = 0
for every j = α+ 1, . . . , a, andc− 1−

i=d∑
i=1

j=ρi∑
j=0

δji

 = 0, and

x− c− α = 0, and

x = y = c = c′, andc′ − i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

 = 0, and

µj = 0, for every j ∈ {1, . . . ,b}, and

λ′i′ = 0, for every i′ ∈ {1, . . . , a′}, and

µ′j′ = 0, for every j′ ∈ {1, . . . ,b′}.
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Assume that we are in the Case 1. The equation E2 = −1 implies that

1 =

i=d∑
i=1

j=ρi∑
j=0

δji
2

+

i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

2

 .

Hence, either(∑i=d
i=1

∑j=ρi
j=0 δji

2
)

= 1 and
(∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
)

= 0, or(∑i=d
i=1

∑j=ρi
j=0 δji

2
)

= 0 and
(∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
)

= 1.

The first possibility would prove the existence of t ∈ {1, . . . , d} such that
δt = 1, δji = 0 for every i = 1, . . . , d and for every j = 0, . . . , ρi with i 6= t,
and δlt = 0 for every l = 1, . . . , ρt. Thus, it gives rise to the equalities
2 = c = c′ = 0. Consequently we are in the second case, so there exists
t ∈ {1, . . . , d′} such that δ′t = 1, and δ′

j
i = 0 for every i = 0, . . . , d′ and for

every j = 0, . . . , ρ′i with i 6= t, and δ′
l
t = 0 for every l = 1, . . . , ρ′t. Therefore,

1 = c′ = x = y = c. So, E = C0 +F− EO − EO′ − ED′
t

for some t ∈ {1, . . . , d′}.
And by symmetry, we get also E = C0 + F − EO − EO′ − EDt for some
t ∈ {1, . . . , d}. Note that for every l ∈ {1, . . . , d′}, C0+F−EO−EO′−ED′

l
is the

class of a (−1)-curve on X, and for every l ∈ {1, . . . , d}, C0+F−EO−EO′−EDl
is the class of a (−1)-curve on X, So we have at least (d+d′) exceptional curves
of the first kind.

Assume that we are in the Case 2. It would imply that 1 = x − c = 0. So,
this case does not occur.
Assume that we are in the Case 3, it would imply that the positive integer α
is equal to zero.

Corollary 3.5. With notation as above. The number of (−1)-curves on X is
equal to 2(2 + d+ d′).

4 The set of (-2)-curves on X

Definition 4.1. With notation as above. A curve N on X is a (−2)-curve if
E2 = −2 and E.KX = 0, where KX denotes a canonical divisor on X.

In this section, we determine the set of (−2)-curves on X. We obtain the
surprising feature on the geometry of X which states that the set of integral
curves on X orthogonal to a canonical divisor on X is equal to the set of
(−2)-curves on X. Such feature holds also for any smooth projective rational
surface having a canonical divisor of positive self-intersection, e.g. Del Pezzo
surfaces. In particular, every integral curve orthogonal to a canonical divisor
on X is smooth and rational.
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Proposition 4.2. With notation as above. Let N be an integral curve on X.
If N is a (−2)-curve, then the class N of N in NS(X) is one of the following:

1. EAi − EAi+1
, where i ∈ {1, . . . , a− 1},

2. EBj − EBj+1
, where j ∈ {1, . . . , b− 1},

3. EA′
i
− EA′

i+1
, where i ∈ {1, . . . , a′ − 1},

4. EB′
j
− EB′

j+1
where j ∈ {1, . . . , b′ − 1},

5. EDut − EDu+1
t

, where t ∈ {1, . . . , d} and u ∈ {0, . . . , ρt − 1},

6. ED′u
t
− ED′u+1

t
, where t ∈ {1, . . . , d′} and u ∈ {0, . . . , ρ′t − 1}.

Proof. N is given in NS(X) by some tuple with integer entries of the form

(x; y; c, λ1, . . . , λa, µ1, . . . , µb, δ1, . . . , δ1
ρ1 , . . . , δd, . . . , δd

ρd ;

c′, λ′1, . . . , λ
′
a′ , µ

′
1, . . . , µ

′
b′ , δ

′
1, . . . , δ

′
1
ρ′1 , . . . , δ′d′ , . . . , δ

′
d′
ρ′d).

We assume that N is not a component of −KX and is not one of the listed
curves in the items 5. and 6. of the proposition. From the fact that the integer
N.KX is zero, we obtain the following equalities:

λi = 0, for every i, . . . , a, and

µj = 0, for every j = 1, . . . ,b, and

λ′i′ = 0, for every i′ = 1, . . . , a′, and

µ′j′ = 0, for every j′ = 1, . . . ,b′, and

x = y = c = c′, and

c−
i=d∑
i=1

j=ρi∑
j=0

δji = 0, and

c′ −
i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i = 0.

Hence, from the equality N2 = −2, we obtain the equality:i=d∑
i=1

j=ρi∑
j=0

δji
2

+

i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

2

 = 2.
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Then, there are only three possibilities:

either
∑i=d
i=1

∑j=ρi
j=0 δji

2
= 2 and

∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
= 0, or∑i=d

i=1

∑j=ρi
j=0 δji

2
= 1 and

∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
= 1, or∑i=d

i=1

∑j=ρi
j=0 δji

2
= 0 and

∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
= 2.

By symmetry, we may only look at the two situations:∑i=d
i=1

∑j=ρi
j=0 δji

2
= 2 and

∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
= 0, and∑i=d

i=1

∑j=ρi
j=0 δji

2
= 1 and

∑i=d′

i=1

∑j=ρ′i
j=0 δ′

j
i

2
= 1.

In the first case, we would obtain the existence of t ∈ {1, . . . , d} such that
δt = δ1t = 1, δji = 0 for every i = 1, . . . , d and for every j = 0, . . . , ρi with
i 6= t, and δlt = 0 for every l = 2, . . . , ρt. This would imply that 2 = c = c′ = 0.
In the second case, there exist t ∈ {1, . . . , d} and t′ ∈ {1, . . . , d′} such that
δt = δt′ = 1 and δji = 0 for every i = 1, . . . , d and for every j = 0, . . . , ρi with

i 6= t and δlt = 0 for every l = 2, . . . , ρt and δ′
j
i = 0 for every i = 1, . . . , d′ and

for every j = 0, . . . , ρ′i with i 6= t′, and δ′
l
t = 0 for every l = 2, . . . , ρ′t. That is,

N = C0+F−EO−EDt−EO′−ED′
t′

for some t ∈ {1, . . . , d} and t′ ∈ {1, . . . , d′}.
These possibilities do not occur since D1, . . . , Dd, and D′1, . . . , D

′
d′ are general.

Corollary 4.3. With notation as above. The number of (−2)-curves on X is

equal to a+ b+ a′ + b′ − 4 +
∑i=d
i=1 ρi +

∑j=d′

j=1 ρ′j .

Corollary 4.4. With notation as above. The set of (−2)-curves spans a Z-
submodule of NS(X) of rank less than −1 + ρ(X).

Proof. It is a consequence of the fact that the (−2)-curves on X are linearly
independent in NS(X).

Remark 4.5. Assume that d is larger than or equal to d′. Even allowing the
points D′1, . . . , D′d′ to be in special positions on the smooth projective rational
curve

(
EO′ − EA′

1
− EB′

1

)
, we may increase the number of (−2)-curves by d′.

In this case, the (−2)-curves on X will still generate a Z-submodule of NS(X)
of rank less than −1 + ρ(X). Indeed, it has corank equal to 8 + d.

5 Regularity of nef divisors, Cox ring

The aim of this section is three-fold: to prove that every integral curve or-
thogonal to a canonical divisor on X is a (−2)-curve, every nef divisor on X is
not only regular, but also has a higher multiple whose complete linear system
is base loci free.



ON THE EXPLICIT GEOMETRY OF A CERTAIN BLOWING-UP OF A
SMOOTH QUADRIC 87

Proposition 5.1. With notation as above. Let D be a nef divisor on X. Then
D may be considered as an effective divisor, and the following assertions are
equivalents:

1. The divisor D is equal to zero.

2. The integer D.KX is equal to zero, here KX denotes a canonical divisor
on X.

Proof. D may be considered as an effective divisor comes from the fact that X
is an anticanonical rational surface, D is nef, and the Riemann-Roch theorem
applied to D. Now, the class D of D in NS(X) is given by some tuple with
integer entries of the form

(x; y; c, λ1, . . . , λa, µ1, . . . , µb, δ1, . . . , δ1
ρ1 , . . . , δd, . . . , δd

ρd ;

c′, λ′1, . . . , λ
′
a′ , µ

′
1, . . . , µ

′
b′ , δ

′
1, . . . , δ

′
1
ρ′1 , . . . , δ′d′ , . . . , δ

′
d′
ρ′d).

From the equation E.KX = 0 and the nefness of D, we obtain the following
equalities:

λi = 0, for every i = . . . , a, and

µj = 0, for every j = 1, . . . ,b, and

λ′i′ = 0, for every i′ = 1, . . . , a′, and

µ′j′ = 0, for every j′ = 1, . . . ,b′, and

x = y = c = c′, and

c−
i=d∑
i=1

j=ρi∑
j=0

δji = 0, and

c′ −
i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i = 0.

Hence, again from the nefness of D, we obtain the equality:i=d∑
i=1

j=ρi∑
j=0

δji
2

+

i=d′∑
i=1

j=ρ′i∑
j=0

δ′
j
i

2

 = 0.

Then, we conclude that D = OX , and consequently, D = 0. So, we are
done.
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As immediate consequences, the following two results occur:

Corollary 5.2. With notation as above. Let Γ be an integral curve on X. If
Γ is orthogonal to a canonical divisor on X, then the self-intersection of Γ is
negative.

Proof. Assume that the self-intersection of Γ is nonnegative, then Γ would be
a nef divisor, and by the last proposition, Γ would be equal to zero.

Proposition 5.3. With notation as above. Let Γ be an integral curve on X.
The following assertions are equivalent:

1. Γ is orthogonal to a canonical divisor on X.

2. Γ is a (−2)-curve.

Proof. It is enough to prove that the orthogonality of Γ to a canonical di-
visor implies the statement that Γ is a (−2)-curve. This is straightforward
from the last corollary and the adjunction formula, see [29, Theorem 1.1.2
(Adjunction)].

Next, we deduce the emptiness of the fixed loci of any higher multiple of
any nef divisor on X:

Corollary 5.4. Let D be a nef divisor on X. The complete linear system
|rD| is base point free for every integer r larger than one.

Proof. Let D be a nef divisor on X. If D is equal to zero, then the complete
linear system |rD| is obviously base point free for every positive integer. So,
we may assume that D is nonzero. From Proposition 5.1, we deduce that the
intersection number −KX .D is positive. Therefore, the intersection number
(−KX).(rD) is larger than or equal to r. Thus, using [28, Theorem III.1. (a)],
we get the information that the complete linear system |rD| is base point free.
So, we are done.

The following result characterizes the finite generation of the Cox ring of
any smooth projective surface having a finitely generated effective monoid:

Lemma 5.5. Let S be a smooth projective surface defined over an algebraically
closed field of arbitrary characteristic such that the effective monoid M(S) of
S is finitely generated. The following assertions are equivalent:

1. Cox(S) is finitely generated.

2. Every nef divisor on S has a positive multiple whose complete linear
system is base point free.
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Proof. This is a consequence of [10, Theorem 21] when the effective monoid
M(S) of S is finitely generated.

Remark 5.6. The property 2. in the last lemma can be stated equivalently as:
Every nef divisor on S has a positive multiple whose complete linear system
is fixed component free.

Theorem 5.7. The Cox ring of X is finitely generated.

Proof. By using Theorem 2.1, Lemma 5.5, and Corollary 5.4.

6 Explicit computational description of the effective monoid
in some cases

In this section, we present two special cases of our construction which gave rise
to the surfaces studied in Theorem 2.1, and offer efficient proofs. These two
cases are obtained by reducing the constellation to special chains and allowing
some data to be zero.

In the first case, we select a horizontal section in the ruling of Σ0:

Theorem 6.1. Let p be a closed point of Σ0 and let C be a chain with origin
p and rank r. If the element of Ci belongs to the ith-strict transform of Cm0 for
every i ∈ {1, . . . , r}, then the effective monoid M(Y0) of Y0 is generated by
C0 −

∑r
i=1 Ei, F − E1, E1 − E2, E2 − E3, . . . , Er−1 − Er, and Er. Here, Y0 is

the blowing-up of Σ0 at the r points of C, C0 is the class of the total transform
of C0

m, F is the class of the total transform of a fibre fm of Σ0, and Ej is
the class of the exceptional divisor corresponding to the jth point blown-up for
every j ∈ {1, 2, . . . , r}.

Proof. It is clear that Z+(C0−
∑r
i=1 Ei)+Z+(F−E1)+

∑r−1
i=1 Z+(Ei−Ei+1)+

Z+Er is contained in M(Y0), since C0−
∑r
i=1 Ei, F−E1, Er, and Ej−Ej+1 are

classes of prime divisors, for every j ∈ {1, 2, . . . , r − 1}. Conversely, let z be
an element of NS(Y0) such that z is effective, so z = aC0 + bF−

∑r
i=1 ciEi for

some integers a, b, c1, c2, . . . , cr, and one may assume without loss of generality
that z is irreducible, and not belonging to the set {C0−

∑r
i=1 Ei,E1−E2,E2−

E3, . . . ,Er−1 − Er,Er}. It follows that z can be written as:

a(C0 −
∑r
i=1 Ei) + b(F − E1) + (a+ b− c1)(E1 − E2)+

(2a+ b− c1 − c2)(E2 − E3) + · · ·+ ((r − 1)a+ b−
∑r−1
i=1 ci)(Er−1 − Er)+

(ra+ b−
∑r
i=1 ci)Er.

It is worth noting that the integers a, b and b−
∑r
i=1 ci are nonnegative since

C0 and F are nef, and z is different from C0 −
∑r
i=1 Ei. So, we are done.
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Example 6.2. With the notation of the previous theorem, the following ele-
ments of NS(Y0) are effective:

1. Let x be the element C0 + 3rF − E1 − · · · − Er−1 − rEr. From our
computation in the proof of Theorem 6.1, it is clear that x is effective.
Indeed, one may write this element as

(C0 −
r∑
i=1

Ei) + 3r
(
(F − E1) +

r−1∑
i=1

(Ei − Ei+1)
)

+ (2r + 1)Er.

However, it is impossible from the natural computation using Riemann-
Roch theorem to confirm the effectiveness of x. Indeed, such compu-
tation give us using the fact that h2(Y0, x) = 0 (this comes from the
nefness of F and the Serre duality) the following equality:

h0(Y0, x)− h1(Y0, x) = 2 + 6r − (r − 1)− r(r + 1)

2
,

and this number in general is negative for every r ≥ 11.

2. Let y be the element C0 + r2F− rE1− · · · − rEr. According to the proof
given in Theorem 6.1, one may write this element as

(C0 −
r∑
i=1

Ei) + r2(F − E1) +

r−1∑
i=1

(r2 + i(1− r))(Ei − Ei+1) + rEr,

and we get the fact that it is an effective element. Nevertheless, the
natural computation using Riemann-Roch theorem gives no information
about the effectiveness of y. In fact, with in hand Serre duality and the
nefness of F, that computation gives the equality

h0(Y0, y)− h1(Y0, y) = r2 + 2− r(r + 1)(2r + 1)

12
− r(r + 1)

4
,

and the latter number is negative for every r greater than 3.

3. Let z be 3C0 + r(r+1)
2 F−E1− 2E2− · · · − rEr. By the proof of Theorem

6.1, one may write this element as

3(C0−
r∑
i=1

Ei)+
r(r + 1)

2
(F−E1)+

r−1∑
i=1

(3i+
r(r + 1)− i(i+ 1)

2
)(Ei−Ei+1)+3rEr.

Observe that if one use the natural computation from the Riemann-Roch
theorem, one obtains that

h0(Y0, z)− h1(Y0, z) = 4 + 2r(r + 1)−
r∑
i=1

i(i+ 1)

2
.
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Here, h2(Y0, z) = 0 because the nefness of F and Serre duality. Now, if

r is greater than 10, the integer 4 + 2r(r+ 1)−
∑r
i=1

i(i+1)
2 is no longer

positive.

Remark 6.3. It is worth noting that the effective classes of the elements x, y,
and z in the above example are not regular. Here, an invertible sheaf G on a
smooth projective surface W is regular if h1(W,G) is equal to zero.

In the second case, we select a fibre in the ruling of Σ0:

Theorem 6.4. Let p be a closed point of Σ0 and let C be a chain with origin
p and rank r. If the element of Ci belongs to the ith-strict transform of fm for
every i ∈ {1, . . . , r}, then the effective monoid M(Z0) is equal to Z+(C0−E1)+

Z+(F −
∑r
i=1 Ei) +

∑r−1
i=1 Z+(Ei − Ei+1) + Z+Er. Here, Z0 is the blowing-up

of Σ0 at the r points of C, C0 is the class of the total transform of C0
m, F

is the class of the total transform of a fibre fm of Σ0, and Ej is the class
of the exceptional divisor corresponding to the jth point blown-up for every
j ∈ {1, 2, . . . , r}.

Proof. It is enough to prove that Z+(C0−E1)+Z+(F−
∑r
i=1 Ei)+

∑r−1
i=1 Z+(Ei−

Ei+1)+Z+Er contains M(Z0), for C0−E1, F−
∑r
i=1 Ei, Er, and Ej−Ej+1 are

classes of prime divisors, for every j ∈ {1, 2, . . . , r − 1}. Let z be an element
of M(Z0), so z = aC0 + bF −

∑r
i=1 ciEj for some integers a, b, c1, c2, . . . , cr,

and one may assume that z is irreducible, and not belonging to the set
{F0 −

∑r
i=1 Ei,E1 − E2,E2 − E3, . . . ,Er−1 − Er,Er}. It turns out that z can

be written as:

a(C0 − E1) + b(F −
∑r
i=1 Ei) + (b+ a− c1)(E1 − E2)+

(2b+ a− c1 − c2)(E2 − E3) + · · ·+ ((r − 1)b+ a−
∑r−1
i=1 ci)(Er−1 − Er)+

(rb+ a−
∑r
i=1 ci)Er.

Noting that the integers a, b and a−
∑r
i=1 ci are nonnegative (since C0 and F

are nef, and z is different from F0 −
∑r
i=1 Ei), we conclude the proof.

7 Discussion

The effective monoid of an algebraic variety is an interesting object very close
to the cone of curves of the variety. Finite generation of the cone of curves
and of the Cox ring are interesting matters in the minimal model program
which was very investigated in the last decade. The minimal model program
is addressed to higher dimensional varieties but not much is known about fi-
nite generation of Cox rings and cone of curves of rational surfaces. The main
available result which states that such finite generation holds is a criterion
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when the surface X is rational smooth and its anticanonical Iitaca dimension
is 1 ([1, Theorem 4.2, p. 5259]). The subject of our study is a new family
F of rational projective surfaces defined over an algebraically closed field of
arbitrary characteristic. Surfaces in F are obtained after blowing-ups of a
projective quadric surface Σ0 at a constellation of infinitely near points. This
constellation contains two closed points O and O′ in Σ0 and finitely many
infinitely near points which are a) those that follow the strict transforms of
the unique fibre (respectively, horizontal smooth projective rational curve) in
Σ0 going through O and O′ and b) infinitely near points which are succes-
sively proximate to a fixed set of points at the exceptional divisors EO and
EO′ obtained by blowing-ups O and O′. Our main interest was to give an
explicit set of generators of the effective monoid M(X) of the surfaces X in
F , proving that for those surfaces M(X) is finitely generated. In this direc-
tion we proved that the Cox ring of surfaces as above is finitely generated.
Moreover, we were able to prove another interesting result concerning the set
of other generators for the effective monoid for special subfamilies of F . The
obtained result permits to decide about effectiveness of divisors for which this
property cannot be deduced from Riemann-Roch Theorem. Further studies
on the finite generation of Cox rings of smooth projective rational surfaces
which are different from ours can be found in [1], [7], [10], [11], [22], [33], [45]
and [49]. We add some few comments: Theorem 6.4 may be obtained directly
from Theorem 6.1 by changing the fibration of Σ0. We include it in order to
make the decomposition of every effective divisor ready to use without any
effort.

The proofs of Theorems 6.1 and 6.4 give efficient ways of decomposing any
effective divisor class in the Néron-Severi group of those families of surfaces
Y0 and Z0 with respect to the lists given in these theorems.
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Xambó-Descamps, S. (2018), Springer Nature Switzerland AG, Chapter
12, 319–342.

[10] B. L. De La Rosa-Navarro, J.B. Fŕıas-Medina, M. Lahyane, I. Moreno-
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