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Skew-symmetric matrices related to the vector
cross product in C7

P. D. Beites, A. P. Nicolás, José Vitória

Abstract

Skew-symmetric matrices of order 7 defined through the 2-fold vector
cross product in C7, and other related matrices, are presented. More
concretely, matrix properties, namely invertibility, nullspace, powers and
index, are studied. As a consequence, results on vector cross product
equations, vector cross product differential equations and vector cross
product difference equations in C7 are established.

1 Introduction

Assuming the usual definition, as explained by Elduque in the elementary ac-
count [13] on vector cross products and their connections with the exceptional
basic classical simple Lie superalgebras, r-fold vector cross products exist only
for d-dimensional vector spaces with: r = 1 and d even; r = 2 and d = 3
or 7; r = 3 and d = 8; and r = d − 1 for an arbitrary d. The first proof of
this classical result, and an extension of it, goes back to the work [7], where
Brown and Gray presented an algebraic proof. An algebraic-topologic proof
of the same result for real euclidean spaces was given by Eckmann, who in [12]
assumed continuity – a weaker condition – instead of multilinearity. Based
on the results in [12], a variation of the latter proof was given by Whitehead
in [27]. In addition, in [16], citing the articles [12] and [27], Gray established
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results about vector cross products on manifolds. An elementary proof of the
classical result, although only valid over a field of characteristic 0, was given
by Rost in [24]. Later on, Meyberg simplified this proof in [23].

The mentioned classical result can be seen as a consequence of another clas-
sical result on the classification of Hurwitz algebras (that is, unital composition
algebras, [2], [15], [18]). The real and complex cases are due to Hurwitz, who
presented the classification in [19]. Jacobson established the classification, in
[21], over a field F of characteristic different from 2. More concretely, the
generalized Hurwitz Theorem asserts that, over F , if A is a finite dimensional
composition algebra with identity, then its dimension is equal to 1, 2, 4 or 8.
Furthermore, as Jacobson was interested in the study of the automorphisms
of Hurwitz algebras, he proved that A is isomorphic either to the base field,
a separable quadratic extension of the base field (a quadratic commutative
and associative separable algebra), a generalized quaternion algebra (a four-
dimensional algebra that is associative but not commutative) or a generalized
octonion algebra (also called Cayley algebra: an eight-dimensional algebra
that is alternative but not associative), [21].

Throughout the years, the interest in 2-fold vector cross products has re-
mained alive. In [20], Ikramov studies the complex vector cross product in
C3. Costa, Facas Vicente, Beites, Martins, Serôdio and Tadeu, in [10], use the
vector cross product in R7 to study the orthogonal projection of a point onto
a line. In [9], Catarino and Vitória express the distance between two skew
lines in R7 in terms of the double vector cross product. In [3], vector cross
product differential and difference equations are studied by Beites, Nicolás,
Saraiva and Vitória. A generalization of the standard definition of 2-fold vec-
tor cross product is proposed in [22] by Lewintan. In [5], Beites, Nicolás and
Vitória pursue an arithmetic for closed balls in Rn which includes operations
involving the 2-fold vector cross product. Using this product in R3, Beites
and Catarino establish Gelin-Cesàro’s identity for Leonardo quaternions in
[1]. Ferreira, Kaygorodov and Kudaybergenov describe derivations of complex
Filippov algebras whose realizations generalize the 3-dimensional 2-fold vector
cross product, [14].

The structure of the present work, divided into three main sections, is
as follows. In section 2, where some background is presented, known defi-
nitions, results and notations related to the 2-fold vector cross product, to
the 7-dimensional complex vector space C7, to generalized inverses and to
differential and difference equations are recalled. In section 3, properties of
matrices related to the 2-fold vector cross product in C7, namely on invert-
ibility, nullspace, powers and index, are established. Partially following the
ideas of Agudo for R3 in [11], where he uses the term “vector division”, vector
cross product equations in C7 are considered in section 4. Moreover, in C7,
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vector cross product differential equations and vector cross product difference
equations are studied. Several results presented in the works [3] – of Beites,
Nicolás, Saraiva and Vitória –, [4] – due to Beites, Nicolás and Vitória –, [17]
– whose authors are Gross, Trenkler and Troschke –, [25] – of Trenkler –, and
[26] – by Trenkler and Trenkler – are extended.

2 Preliminaries

Let V be a d-dimensional vector space over a field F of characteristic differ-
ent from 2, endowed with a nondegenerate symmetric bilinear form (·, ·). A
bilinear map × : V 2 → V is a 2-fold vector cross product in V if, for any
u, v ∈ V :

1. (u× v, u) = (u× v, v) = 0,

2. (u× v, u× v) =

∣∣∣∣ (u, u) (u, v)
(v, u) (v, v)

∣∣∣∣.
Recall that 1. implies the skew-symmetry of the trilinear map (· × ·, ·), and
so the anticommutativity of ×, [13]. In the present article, the 2-fold vector
cross product in the 7-dimensional complex vector space C7, denoted by ×, is
considered.

Equip the 7-dimensional complex vector space C7 with the standard Her-
mitian inner product 〈·, ·〉 : C7 × C7 → C defined by

〈x, y〉 =

7∑
t=1

xtyt,

for all x =
[
x1 . . . x7

]T
, y =

[
y1 . . . y7

]T ∈ C7. It satisfies, respec-
tively, linearity in the first coordinate, Hermitian (or conjugate) symmetry
and positive definiteness:

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, (1)

〈x, y〉 = 〈y, x〉, (2)

〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0. (3)

Recall that (2) implies that 〈x, x〉 ∈ R. Recall also that (1) and (2) imply
conjugate linearity in the second coordinate, that is,

〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉. (4)
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When considering the 2-fold vector cross product in the 7-dimensional
complex vector space C7, observe that the nondegenerate symmetric bilinear
form (·, ·) referred in the first definition is defined by

(x, y) = 〈x, y〉,

for all x =
[
x1 . . . x7

]T
, y =

[
y1 . . . y7

]T ∈ C7.
Throughout the work, Cm×n denotes the set of all m×n complex matrices.

When n = 1, Cm×1 is identified with Cm. When m = n = 1, C1×1 is identified
with C.

Let B ∈ Cm×n. A matrix B(1) ∈ Cn×m is a generalized inverse of B if
BB(1)B = B. See [6] for more details on generalized inverses, also known as
(1)-inverses or g-inverses, where the subsequent result appears.

Theorem 1 ([6]). Let B ∈ Cm×n, b ∈ Cm. Then, the equation Bx = b is
consistent if and only if, for some B(1), BB(1)b = b.

Let A ∈ Cn×n.
The index Ind(A) of A is the smallest l ∈ N0 such that R(Al) = R(Al+1)

or, equivalently, N(Al) = N(Al+1), where R and N stand for the column
space (or range) and the nullspace, [8]. Alternatively, but equivalently, it can
also be defined as the smallest l ∈ N0 such that Cn = R(Al)⊕N(Al).

Let Ind(A) = l. The Drazin inverse of A is the unique matrix AD ∈ Cn×n
which satisfies

AAD = ADA, ADAAD = AD, Al+1AD = Al.

When Ind(A) ∈ {0, 1}, AD is sometimes called the group-inverse of A and
the last equality assumes the form AADA = A. There are several methods
for computing AD, as described in [8] and references therein, some of which
require all eigenvalues to be well determined.

Let A,B ∈ Cn×n and t0 ∈ R. Let f = f(t) be a Cn-valued function of the
real variable t. Throughout the work, x = x(t) stands for an unknown Cn-

valued function of the real variable t and ẋ =
dx

dt
denotes the corresponding

derivative vector of x.
A vector x0 ∈ Cn is a consistent initial vector for the differential equation

Aẋ+Bx = f (5)

if the initial value problem

Aẋ+Bx = f, x(t0) = x0, (6)

possesses at least one solution. In this case, x(t0) = x0 is said to be a consistent
initial condition. Further, (5) is called tractable if (6) has a unique solution
for each consistent initial vector x0, [8].
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Theorem 2. [8] Let A,B ∈ Cn×n. The homogeneous differential equation
Aẋ+Bx = 0 is tractable if and only if (λA+B)−1 exists for some λ ∈ C.

Let A,B ∈ Cn×n. Let f (k) = f (k)(t) ∈ Cn be the k-th term of a sequence
of vectors, k = 0, 1, 2, .... Throughout the work, x(k) = x(k)(t) ∈ Cn stands for
the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . We assume
that x(0) = x0 is given.

A vector x0 ∈ Cn is a consistent initial vector for the difference equation

Ax(k+1) = Bx(k) + f (k) (7)

if the initial value problem

Ax(k+1) = Bx(k) + f (k), k = 1, 2, . . . , x(0) = x0, (8)

has a solution for x(k). In this case, x(0) = x0 is said to be a consistent initial
condition. Furthermore, (7) is called tractable if (8) has a unique solution for
each consistent initial vector x0, [8].

Theorem 3. [8] Let A,B ∈ Cn×n. The homogeneous difference equation
Ax(k+1) = Bx(k) is tractable if and only if (λA+B)−1 exists for some λ ∈ C.

3 Properties

Let a =
[
a1 a2 a3 a4 a5 a6 a7

]T ∈ C7. Consider the linear map-
ping

a× : C7 → C7

x 7→ a×(x) = a× x.

For each a ∈ C7, there exists a unique matrix Sa ∈ C7×7 such that

a× x = Sax, (9)

where

Sa =



0 −a3 a2 −a5 a4 −a7 a6
a3 0 −a1 −a6 a7 a4 −a5
−a2 a1 0 a7 a6 −a5 −a4
a5 a6 −a7 0 −a1 −a2 a3
−a4 −a7 −a6 a1 0 a3 a2
a7 −a4 a5 a2 −a3 0 −a1
−a6 a5 a4 −a3 −a2 a1 0


. (10)

In the following result, some properties related to the matrices defined in
(9)-(10) are established.
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Proposition 4. Let a, b, c ∈ C7. Let α, β ∈ C. Then:

1. Sαa+βbc = αSac+ βSbc;

2. Sa = Sa;

3. Sa = −STa ;

4. S∗a = −Sa,

where ·∗ stands for the conjugate transpose of a matrix;

5. Sab = −Sba;

6. Saa = 0;

7. Saa = 2i



Im(a2a3) + Im(a4a5) + Im(a6a7)
−Im(a1a3) + Im(a4a6)− Im(a5a7)

Im(a1a2)− Im(a4a7)− Im(a5a6)
−Im(a1a5)− Im(a2a6) + Im(a3a7)

Im(a1a4) + Im(a2a7) + Im(a3a6)
−Im(a1a7) + Im(a2a4)− Im(a3a5)

Im(a1a6)− Im(a2a5)− Im(a3a4)


;

8. Sab = Sab;

9. Sa is singular;

10. S2
a = aaT − 〈a, a〉I7;

11. S3
a = −〈a, a〉Sa;

12. the eigenvalues of Sa are 0,
√
|〈a, a〉|ei θ2 and

√
|〈a, a〉|ei( θ2+π), with θ an

argument of −〈a, a〉;

13. the nullspace of Sa, where a 6= 0, is N(Sa) = {αa : α ∈ C}.

Proof. Properties 1. and 5. are direct consequences of, respectively, the bilin-
earity and the anticommutativity of × in C7.

From (10) it is straightforward to prove 2. and 3.
Concerning 4., invoking 2. and 3. leads to S∗a = (Sa)T = (Sa)T = −Sa.
Taking b = a in 5. leads to 6.
By property 5., Saa+ Saa = 0 which, by 2., is equivalent to Saa+ Saa =

0⇔ Saa+ Saa = 0. The last equality means that each entry of Saa is either
zero or a purely imaginary complex number. Concretely, from (10), Saa is the
matrix
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a2a3 − a3a2 + a4a5 − a5a4 + a6a7 − a7a6
−a1a3 + a3a1 + a4a6 − a6a4 − a5a7 + a7a5
a1a2 − a2a1 − a4a7 + a7a4 − a5a6 + a6a5
−a1a5 + a5a1 − a2a6 + a6a2 + a3a7 − a7a3
a1a4 − a4a1 + a2a7 − a7a2 + a3a6 − a6a3
−a1a7 + a7a1 + a2a4 − a4a2 − a3a5 + a5a3
a1a6 − a6a1 − a2a5 + a5a2 − a3a4 + a4a3



=



2iIm(a2a3) + 2iIm(a4a5) + 2iIm(a6a7)
−2iIm(a1a3) + 2iIm(a4a6)− 2iIm(a5a7)

2iIm(a1a2)− 2iIm(a4a7)− 2iIm(a5a6)
−2iIm(a1a5)− 2iIm(a2a6) + 2iIm(a3a7)

2iIm(a1a4) + 2iIm(a2a7) + 2iIm(a3a6)
−2iIm(a1a7) + 2iIm(a2a4)− 2iIm(a3a5)

2iIm(a1a6)− 2iIm(a2a5)− 2iIm(a3a4)


,

from where 7. follows.
Applying 2. allows to arrive at 8. since Sab = Sa b.
As far as 9., on the one hand, if a = 0 then Sa = 0, a singular matrix. On

the other hand, if a 6= 0 then, from 6., Saa = 0. If Sa were invertible then
a = 0, a contradiction.

As S2
a = [sij ]7×7 with

sij =


−

7∑
t=1,
t 6=i

a2t if i = j

aiaj if i 6= j

,

aaT = [dij ]7×7 with

dij =

{
a2i if i = j
aiaj if i 6= j

,

and

〈a, a〉 =

7∑
t=1

a2t ,

then 10. follows.
Taking into account 10., S3

a = aaTSa − 〈a, a〉Sa. By 3. and 6., aaTSa =
a(STa a)T = −a(Saa)T = 0. Hence, 11. follows.
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Regarding 12., the characteristic equation of Sa is

det(Sa − λI7) = 0 ⇔ −λ(λ2 + 〈a, a〉)3 = 0

⇔ λ = 0 ∨ λ2 = −〈a, a〉
⇔ λ = 0 ∨ λ =

√
|〈a, a〉|ei θ2 ∨ λ =

√
|〈a, a〉|ei( θ2+π),

with θ an argument of −〈a, a〉.
Let a ∈ C7\{0}. The inclusion ⊇ in 13. follows from property 6. since,

for all γ ∈ C, Sa(γa) = γSaa = 0. By the proof of 12., the eigenvalue 0 has
algebraic multiplicity 1. As 0 6= a ∈ N(Sa), the geometric multiplicity of 0 is
1. Hence, dim N(Sa) = dim {αa : α ∈ C} = 1, and 13. is obtained.

The subsequent results concern powers and traces of the matrices defined
in (9)-(10).

Lemma 5. Let a ∈ C7 such that 〈a, a〉 6= 0. For m ∈ N,

S2m
a = (−1)m+1〈a, a〉m−1aaT + (−1)m〈a, a〉mI7 (11)

and
S2m+1
a = (−1)m〈a, a〉mSa. (12)

Proof. The proof goes by induction on m.
For (11), by 10. in Proposition 4, the base case holds. Also from 10. in

Proposition 4 and the induction hypothesis, we have

S2(m+1)
a = S2m

a S2
a

= [(−1)m+1〈a, a〉m−1aaT + (−1)m〈a, a〉mI7](aaT − 〈a, a〉I7)

= (−1)m+1〈a, a〉maaT − (−1)m+1〈a, a〉maaT

+(−1)m〈a, a〉maaT − (−1)m〈a, a〉m+1I7

= (−1)m+2〈a, a〉maaT + (−1)m+1〈a, a〉m+1I7,

and the induction step holds too.
For (12), by 11. in Proposition 4, it is straighforward to see that the base

case holds. As for the induction step, by 10. in Proposition 4 and the induction
hypothesis, we obtain

S2m+3
a = S2m+1

a S2
a

= (−1)m〈a, a〉mSa(aaT − 〈a, a〉I7)

= (−1)m〈a, a〉m(Saa)aT + (−1)m+1〈a, a〉m+1Sa.

From here, taking into account 6. in Proposition 4, the second part of the
result follows.
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Theorem 6. Let a ∈ C7 such that 〈a, a〉 6= 0. For m ∈ N, tr(S2m+1
a ) = 0 and

tr(S2m
a ) = 6(−1)m〈a, a〉m. (13)

Proof. From (12) in Lemma 5, it is clear that

tr(S2m+1
a ) = (−1)m〈a, a〉mtr(Sa) = 0.

From (11) in Lemma 5, taking into account aaT written for the proof of
10. in Proposition 4,

tr(S2m
a ) = (−1)m+1〈a, a〉m−1tr(aaT ) + (−1)m〈a, a〉mtr(I7)

= −(−1)m〈a, a〉m + 7(−1)m〈a, a〉m,

and the expression for the trace of S2m
a in (13) is obtained.

The following results are devoted to generalized inverses, invertibility and
inverses of matrices related to the matrices defined in (9)-(10).

Theorem 7. Let a ∈ C7 such that 〈a, a〉 6= 0. A generalized inverse of Sa is

S(1)
a = −〈a, a〉−1Sa. (14)

Proof. With 〈a, a〉 6= 0, 11. in Proposition 4 leads to (14) since

Sa
(
−〈a, a〉−1Sa

)
Sa = −〈a, a〉−1S3

a = Sa.

Proposition 8. Let a, b ∈ C7 and γ ∈ C. The matrix γSa + Sb is singular.

Proof. As Sa and Sb are skew-symmetric matrices, then, for any γ ∈ C, γSa+
Sb is also skew-symmetric of odd order. Hence, det(γSa + Sb) = 0.

Lemma 9. Let a ∈ C7 and α ∈ C. The matrix Sa + αI7 is non-singular if
and only if α 6= 0 and α is not a square root of −〈a, a〉.

Proof. A straightforward calculation of det(Sa +αI7) leads to α(α2 + 〈a, a〉)3.
In the stated conditions, det(Sa + αI7) = 0 if and only if α = 0 or α2 =
−〈a, a〉.

Theorem 10. Let a ∈ C7. Let α ∈ C\{0} such that α is not a square root of
−〈a, a〉. Then

(Sa + αI7)−1 = −(α2 + 〈a, a〉)−1(Sa − αI7 − α−1aaT ). (15)
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Proof. From Lemma 9, Sa + αI7 is invertible. Invoking properties 6. and 10.
of Proposition 4, we get

(Sa + αI7)(−(α2 + 〈a, a〉)−1(Sa − αI7 − α−1aaT ))
= −(α2 + 〈a, a〉)−1(S2

a − αSa − α−1SaaaT + αSa − α2I7 − aaT )
= −(α2 + 〈a, a〉)−1(−〈a, a〉I7 − α2I7)
= I7.

In the last results of the present section, the indexes of matrices related to
the matrices defined in (9)-(10) are determined.

Theorem 11. Let a ∈ C7 such that 〈a, a〉 6= 0. Then Ind(Sa) = 1.

Proof. The matrix Sa has index 1 if C7 = R(Sa)⊕N(Sa).
First of all, from 10. in Proposition 4, every x ∈ C7 can be written as

x = 〈a, a〉−1(aaTx − S2
ax). Clearly, S2

ax ∈ R(Sa). By 6. in Proposition 4,
aaTx ∈ N(Sa) since Sa(aaTx) = (Saa)(aTx) = 0.

Secondly, let x ∈ R(Sa) ∩N(Sa). As x ∈ R(Sa), there exists y ∈ C7 such
that x = Say. In addition, x ∈ N(Sa) which, together with 11. in Proposition
4, allows to write 0 = S2

ax = S3
ay = −〈a, a〉Say. Consequently, y ∈ N(Sa),

which implies x = 0.

Theorem 12. Let u, v ∈ C7 such that 〈u, u〉 6= 0. Let α ∈ C\{0} such that α
is not a square root of −〈v, v〉. Then Ind((Sv + αI7)−1Su) = 1.

Proof. By Lemma 9, Sv +αI7 is non-singular. Notice that N((Sv +αI7)−1Su)
⊆ N(((Sv + αI7)−1Su)2). Suppose that

N((Sv + αI7)−1Su) ( N(((Sv + αI7)−1Su)2).

Hence, there exists x ∈ C7\{0} such that ((Sv + αI7)−1Su)2x = 0 and (Sv +
αI7)−1Sux 6= 0. It is clear that N((Sv + αI7)−1Su) = N(Su). By 13. of
Proposition 4, as (Sv + αI7)−1Sux ∈ N((Sv + αI7)−1Su),

(Sv + αI7)−1Sux = δu

for some δ ∈ C\{0}, that is, Sux = δ(Svu + αu). This implies that δαu =
u×x− δv×u and so, 〈δαu, u〉 = 〈u×x− δv×u, u〉 = 0, that is, δα〈u, u〉 = 0,
which is a contradiction. Thus, N((Sv + αI7)−1Su) = N(((Sv + αI7)−1Su)2).
Finally, N(((Sv+αI7)−1Su)0) 6= N((Sv+αI7)−1Su). The result is proved.
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4 Equations

4.1 Vector Cross Product Equations

In the following results, some vector cross product equations in C7 are pre-
sented.

Lemma 13. Let a, b ∈ C7 such that 〈a, a〉 6= 0. Then, the equation a× x = b
is consistent in C7 if and only if 〈a, b〉 = 0.

Proof. Observe that, from (9), the matrix form of the equation a × x = b is

Sax = b. By Theorem 7, S
(1)
a = −〈a, a〉−1Sa is a generalized inverse of Sa.

Invoking Theorem 1, Sax = b is consistent if and only if SaS
(1)
a b = b. Finally,

applying 10. in Proposition 4, notice that

SaS
(1)
a b = b⇔ −〈a, a〉−1a(atb) + b = b⇔ −〈a, b〉〈a, a〉−1a = 0⇔ 〈a, b〉 = 0.

Theorem 14. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the
solutions in C7 of the equation a× x = b are

−〈a, a〉−1Sab+ λa, (16)

where λ ∈ C.

Proof. From Lemma 13, the equation a × x = b is consistent. Furthermore,
from (9), the matrix form of the equation a × x = b is Sax = b. Let a0 be a
particular solution of this equation. Then, for each λ ∈ C, a0+λa is a solution
of the same equation since, by 6. in Proposition 4,

Sa(a0 + λa) = Saa0 + λSaa = b.

Observe that there are no other solutions for the considered equation. In
fact, if a1 and a2 are two solutions then Sa(a1 − a2) = 0. Hence, a1 − a2 ∈
N(Sa) and, by 13. of Proposition 4, a1 = a2 + βa for some β ∈ C.

From the calculations in the proof of Lemma 13 with 〈a, b〉 = 0, as

Sa
(
−〈a, a〉−1Sa

)
b = SaS

(1)
a b = b

then −〈a, a〉−1Sab is a solution of the equation in question. Therefore, the
solutions in C7 of this equation are the ones stated in (16).

Corollary 15. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the
solutions in C7 of the equation x× a = b are

〈a, a〉−1Sab+ λa, (17)

where λ ∈ C.
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Proof. In order to obtain (17), after observing that Sxa = b ⇔ Sax = −b by
5. in Proposition 4, it suffices to apply Theorem 14.

Corollary 16. Let a, b ∈ C7 such that 〈a− b, a− b〉 6= 0. The solutions in C7

of the equation a× x = b× x are λ(a− b) with λ ∈ C.

Proof. As, by 1. in Proposition 4, Sax = Sbx ⇔ S(a−b)x = 0, then the
corollary follows invoking Theorem 14.

Corollary 17. Let a, b ∈ C7 such that 〈a+ b, a+ b〉 6= 0. The solutions in C7

of the equation a× x = x× b are λ(a+ b) with λ ∈ C.

Proof. As, by 1. and 5. in Proposition 4, Sax = Sxb⇔ S(a+b)x = 0, then the
result follows from Theorem 14.

Corollary 18. Let a, b, c ∈ C7 such that 〈a− b, a− b〉 6= 0 and 〈a− b, c〉 = 0.
Then, the solutions in C7 of the equation a× x = b× x+ c are

−〈a− b, a− b〉−1Sa−bc+ λ(a− b), (18)

where λ ∈ C.

Proof. From 1. in Proposition 4, Sax = Sbx + c ⇔ Sa−bx = c. Thus, by
Theorem 14, (18) is obtained.

Corollary 19. Let a, b, c ∈ C7 such that 〈a+ b, a+ b〉 6= 0 and 〈a+ b, c〉 = 0.
Then, the solutions in C7 of the equation a× x = x× b+ c are

−〈a+ b, a+ b〉−1Sa+bc+ λ(a+ b), (19)

where λ ∈ C.

Proof. By 1. and 5. in Proposition 4, Sax = Sxb+ c⇔ Sa+bx = c. Thus, (19)
is got from Theorem 14.

In the next corollary, denote the composition of 2m+ 1 functions equal to

a× by a
◦(2m+1)
× .

Corollary 20. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the

solutions in C7 of the equation a
◦(2m+1)
× x = b are

(−1)m+1〈a, a〉−m−1Sab+ λa, (20)

where λ ∈ C.

Proof. By (12) in Lemma 5, S2m+1
a x = b ⇔ Sax = (−1)m〈a, a〉−mb. Hence,

Theorem 14 allows to arrive at (20).
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The last result of the present section gives a characterization of the column
space of Sa.

Corollary 21. Let a ∈ C7 such that 〈a, a〉 6= 0. The column space of Sa is
R(Sa) = {y ∈ C7 : 〈y, a〉 = 0}.

Proof. (⊇) Let y ∈ C7 such that 〈y, a〉 = 0. As 〈a, y〉 = 〈y, a〉, then, from 5.
in Proposition 4 and the proof of Theorem 14,

Sa
(
〈a, a〉−1Sya

)
= Sa

(
−〈a, a〉−1Say

)
= y.

Thus, y ∈ R(Sa).
(⊆) Let b ∈ R(Sa) such that 〈b, a〉 6= 0. There is d ∈ C7 such that

Sad = b, which means that d is a solution of Sax = b. By Lemma 13, this
equation is consistent in C7 if and only if 〈a, b〉 = 0, that is, 〈b, a〉 = 0 – a
contradiction.

4.2 Vector Cross Product Differential Equations

In the present section, some vector cross product differential equations in C7

are considered. First, we introduce a technical result.

Lemma 22. Let b ∈ C7 such that 〈b, b〉 6= 0. Then

e−tSb = cos(βt)I7 −
sin(βt)

β
Sb +

1− cos(βt)

β2
bbT , (21)

where β = |〈b, b〉|1/2ei
θ
2 , with θ an argument of 〈b, b〉.

Proof. Using Lemma 5, the expression of e−tSb as a infinite power series can
be written in the following way

e−tSb = (1− 〈b,b〉2 t2 + 〈b,b〉2
4! t4 + · · · )I7

−(t− 〈b,b〉3! t
3 + 〈b,b〉2

5! t5 − · · · )Sb
+( 1

2 t
2 − 〈b,b〉4! t

4 + 〈b,b〉2
6! t6 − · · · )bbT .

From the infinite power series expansions of the complex functions cos(βt) and
sin(βt), (21) is obtained.

Theorem 23. Let b ∈ C7 such that 〈b, b〉 6= 0 and let x = x(t) be an unknown
C7-valued function of the real variable t. The unique solution of the vector
cross product differential equation

ẋ+ b× x = 0, (22)
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with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))

β2
bbTx0, (23)

where β = |〈b, b〉|1/2ei
θ
2 , with θ an argument of 〈b, b〉.

Proof. From (9), equation (22) assumes the form ẋ + Sbx = 0, which is a
tractable equation by Theorem 2. In fact, from Lemma 9, (λI7 + Sb)

−1 exists
for every λ ∈ C\{0} such that λ2 6= −〈b, b〉. As the coefficient of the term in
ẋ is a non-singular matrix, the classical theory recalled in [8, p.171] applies
to the homogeneous initial value problem ẋ+ Sbx = 0, x(t0) = x0. Its unique
solution is given by

x(t) = e−(t−t0)Sbx0.

Invoking Lemma 22, we obtain (23).

Theorem 24. Let b ∈ C7 such that 〈b, b〉 6= 0, let f = f(t) be a C7-valued
function of the real variable t, continuous in some interval containing t0, and
let x = x(t) be an unknown C7-valued function of the real variable t. The
unique solution of the vector cross product differential equation

ẋ+ b× x = f, (24)

with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))

β2
bbTx0+∫ t

t0

(
cos(β(t− s))− sin(β(t− s))

β
Sb +

1− cos(β(t− s))
β2

bbT
)
f(s)ds,

(25)

where β = |〈b, b〉|1/2ei
θ
2 , with θ an argument of 〈b, b〉.

Proof. Again by (9), we can rewrite equation (24) as ẋ+ Sbx = f , where the
coefficient of the term in ẋ is a non-singular matrix. Thus, the classical theory
applies to the inhomogeneous initial value problem ẋ + Sbx = f, x(t0) = x0.
Its unique solution is given by

x(t) = e−(t−t0)Sbx0 +

∫ t

t0

e−(t−s)Sbf(s)ds.

From Lemma 22, we obtain (25).
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Theorem 25. Let a, b ∈ C7\{0} and let x = x(t) be an unknown C7-valued
function of the real variable t. The vector cross product differential equation

a× ẋ+ b× x = 0 (26)

is not tractable.

Proof. From (9), the rewriting of equation (26) leads to Saẋ + Sbx = 0. By
Proposition 8, for any λ ∈ C, λSa + Sb is a singular matrix and the result
follows from Theorem 2.

Taking into account the previous result, the remaining part of the section
is devoted to the study of differential equations which can be considered as
perturbations of (26).

Theorem 26. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let x = x(t) an unknown C7-valued
function of the real variable t. A vector x0 ∈ C7 is a consistent initial vector
for the vector cross product differential equation

a× ẋ+ b× x+ αx = 0 (27)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (28)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa. (29)

Moreover, if x0 ∈ C7 is a consistent initial vector for (27), then the unique
solution of (27), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0. (30)

Proof. According to (9), equation (27) assumes the form Saẋ+(Sb+αI7)x = 0
where α ∈ C\{0} is such that α2 6= −〈b, b〉. Let us denote Sb + αI7 by B,
matrix which, due to Lemma 9, is non-singular. Thus, (λSa +B)−1 exists for
λ = 0 and, by Theorem 2, Saẋ+Bx = 0 is a tractable equation.

Following the notation in [8], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ C is such that λSa + B is non-singular. By [8, Theorem 9.2.2, p.
174], the consistency of an initial vector for (27) and its general solution are
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independent of the used λ. Hence, in what follows, we drop the subscripts λ
and take λ = 0.

From Theorem 12, Ind(Ŝa) = 1. Invoking [8, Theorem 9.2.3, p. 175], we

obtain the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a

vector x0 ∈ C7 to be a consistent initial vector for (27). Since ŜDa Ŝa = ŜaŜDa ,
we get (28). As Ŝa = B−1Sa, then, by (15) in Theorem 10, we obtain (29).

Assume now that x0 ∈ C7 is a consistent initial vector for (27). As B̂ = I7,
once again from [8, Theorem 9.2.3], the unique solution of the homogeneous
initial value problem Saẋ+Bx = 0, x(t0) = x0, is given by (30).

Theorem 27. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let f = f(t) be a C7-valued function
of the real variable t, continuously differentiable around t0, and let x = x(t)
an unknown C7-valued function of the real variable t. A vector x0 ∈ C7 is a
consistent initial vector for the vector cross product differential equation

a× ẋ+ b× x+ αx = f (31)

if and only if x0 is of the form

x0 = (I − ŜaŜDa )f̂(t0) + ŜaŜ
D
a q, (32)

for some vector q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa (33)

and
f̂ = −(α2 + 〈b, b〉)−1

(
Sb − αI7 − α−1bbT

)
f. (34)

Moreover, if x0 ∈ C7 is a consistent initial vector for (31), then the unique
solution of (31), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0+e−Ŝ

D
a t

∫ t

t0

eŜ
D
a sŜDa f̂(s) ds+(I7− ŜaŜDa )f̂(t). (35)

Proof. By (9), we can rewrite equation (31) as Saẋ+ (Sb + αI7)x = f , where
α ∈ C\{0} is such that α2 6= −〈b, b〉. As in the proof of Theorem 26, let

B = Sb + αI7, Ŝa = B−1Sa, B̂ = I7, f̂ = B−1f .
Taking into account Theorem 12, Ind(Ŝa) = 1. The necessary and sufficient

condition x0 ∈ {(I7 − ŜaŜDa )f̂(t0) + R(ŜDa Ŝa)} for a vector x0 ∈ C7 to be a
consistent initial vector for (31) comes from [8, Theorem 9.2.3, p. 175], which
leads to (32). By (15) in Theorem 10, we obtain (33) and (34).

Suppose now that x0 ∈ C7 is a consistent initial vector for (31). Once again
from [8, Theorem 9.2.3], the unique solution of the inhomogeneous initial value
problem Saẋ+Bx = f, x(t0) = x0, is given by (35).
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4.3 Vector Cross Product Difference Equations

In the present section, some vector cross product difference equations in C7

are studied.

Theorem 28. Let b ∈ C7 such that 〈b, b〉 6= 0 and let x(k) ∈ C7 be the k-th
term of an unknown sequence of vectors, k = 0, 1, 2, ... The unique solution of
the vector cross product difference equation

x(k+1) = b× x(k), (36)

with initial condition x(0) = x0, is

x(k) =


x0, k = 0

(−1)
k−1
2 βk−1Sbx0, k ∈ N, odd(

(−1)
k
2+1βk−2bbT + (−1)

k
2 βkI7

)
x0, k ∈ N, even

(37)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof. Due to (9), equation (36) assumes the form x(k+1) = Sbx
(k), which is a

tractable equation by Theorem 3. In fact, from Lemma 9, (λI7 + Sb)
−1 exists

for every λ ∈ C\{0} that is not a square root of −〈b, b〉. Taking into account
the recurrence relation, the unique solution of the homogeneous initial value
problem x(k+1) = Sbx

(k), k = 0, 1, 2, . . . , x(0) = x0, is given by

x(k) = Skb x0, k = 0, 1, 2, ...

From Lemma 5, we arrive at (37).

Theorem 29. Let b ∈ C7 such that 〈b, b〉 6= 0. Let f (k) ∈ C7 be the k-th term
of a sequence of vectors, k = 0, 1, 2, ..., and let x(k) ∈ C7 be the k-th term of
an unknown sequence of vectors, k = 0, 1, 2, .... The unique solution of the
vector cross product difference equation

x(k+1) = b× x(k) + f (k), (38)

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2 βkI7

)
x0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, even

(39)

where β = |〈b, b〉|1/2ei
θ
2 , with θ an argument of 〈b, b〉.
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Proof. Again by (9), equation (38) assumes the form x(k+1) = Sbx
(k) + f (k).

The recurrence relation allows to obtain the unique solution of the inhomoge-
neous initial value problem x(k+1) = Sbx

(k) + f (k), k = 0, 1, 2, . . . , x(0) = x0,
given by

x(k) = Skb x0 +

k−1∑
i=0

Sk−1−ib f (i), k = 1, 2, ... (40)

From Lemma 5, we obtain (39).

Corollary 30. Let b ∈ C7 such that 〈b, b〉 6= 0, c ∈ C7 and let x(k) ∈ C7 be
the k-th term of an unknown sequence of vectors, k = 0, 1, 2, .... The unique
solution of the vector cross product difference equation

x(k+1) = b× x(k) + c, (41)

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sibc, k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2 βkI7

)
x0 +

k−1∑
i=0

Sibc, k ∈ N, even

(42)

where β = |〈b, b〉|1/2ei
θ
2 , with θ an argument of 〈b, b〉.

Proof. A particular case of the previous result, putting c instead of the se-
quence

(
f (k)

)
k∈N0

.

Theorem 31. Let a, b ∈ C7\{0} and let x(k) ∈ C7 be the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, ... The vector cross product difference
equation

a× x(k+1) = b× x(k) (43)

is not tractable.

Proof. From (9), the rewriting of equation (43) leads to Sax
(k+1) = Sbx

(k).
From Proposition 8, for any λ ∈ C, λSa + Sb is a singular matrix and the
result follows from Theorem 3.

Similarly to subsection 4.2, due to the previous result, perturbed versions
of the difference equation (43) are now studied.
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Theorem 32. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let x(k) ∈ C7 be the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ C7 is a consistent
initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) (44)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (45)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa. (46)

Moreover, if x0 ∈ C7 is a consistent initial vector for (44), then the unique
solution of (44), with initial condition x(0) = x0, is

x(k) =
(
ŜDa

)k
x0, k = 0, 1, 2, . . . (47)

Proof. From (9), equation (44) assumes the form Sax
(k+1) = Bx(k) where

B = Sb + αI7 with α ∈ C\{0} such that α is not a square root of −〈b, b〉. By
Lemma 9, B is non-singular. Owed to this fact, λSa+B is also a non-singular
matrix if λ = 0 and, by Theorem 3, (44) is a tractable equation.

Following the notation in [8], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ C is such that λSa + B is non-singular. By [8, Theorem 9.2.2, p.
174], the consistency of an initial vector for (44) and its general solution are
independent of the used λ. Hence, in what follows, we drop the subscripts λ
and take λ = 0.

By Theorem 12, Ind(Ŝa) = 1. Invoking [8, Theorem 9.3.2, p. 182-183], we

get the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a vector

x0 ∈ C7 to be a consistent initial vector for (44). As ŜDa Ŝa = ŜaŜDa , we obtain
(45). Since Ŝa = B−1Sa, then, by (15) of Theorem 10, we arrive at (46).

Suppose now that x0 ∈ C7 is a consistent initial vector for (44). Since B̂ =
I7, once again from [8, Theorem 9.3.2], the unique solution of the homogeneous
initial value problem Sax

(k+1) = Bx(k), k = 0, 1, . . . , x(0) = x0, is given by
(47).

Theorem 33. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let f (k) ∈ C7 be the k-th term of
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a sequence of vectors, k = 0, 1, 2, ..., and let x(k) ∈ C7 the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ C7 is a consistent
initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) + f (k), k = 0, 1, 2, . . . , (48)

if and only if x0 is of the form

x0 = −
(
I7 − ŜaŜDa

)
f̂ (0) + ŜaŜ

D
a q, (49)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa (50)

and
f̂ (k) = −(α2 + 〈b, b〉)−1

(
Sb − αI7 − α−1bbT

)
f (k). (51)

Moreover, if x0 ∈ C7 is a consistent initial vector for (48), then the unique
solution of (48), with initial condition x(0) = x0, is x(k) given by

x0, k = 0(
ŜDa

)k
ŜaŜ

D
a x0 + ŜDa

k−1∑
i=0

(
ŜDa

)k−i−1
f̂ (i) −

(
I7 − ŜaŜDa

)
f̂ (k), k = 1, 2, . . .

(52)

Proof. By (9), the rewriting of equation (48) leads to Sax
(k+1) = Bx(k) +f (k),

where B = Sb + αI7 with α ∈ C\{0} such that α2 6= −〈b, b〉. As in the proof

of Theorem 32, let Ŝa = B−1Sa, B̂ = I7, f̂ (k) = B−1f (k).
From Theorem 12, Ind(Ŝa) = 1. The necessary and sufficient condition

x0 ∈ {−(I7 − ŜaŜDa )f̂ (0) + R(ŜDa Ŝa)} for a vector x0 ∈ C7 to be a consistent
initial vector for (48) comes from [8, Theorem 9.3.2, p. 182-183]. Thus, we
obtain (49). By (15), we get (50) and (51).

Assume now that x0 ∈ C7 is a consistent initial vector for (48). Once
again from [8, Theorem 9.3.2], the unique solution of the inhomogeneous initial
value problem Sax

(k+1) = Bx(k) + f (k), k = 0, 1, 2, . . . , x(0) = x0, is given by
(52).
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