
DOI: 10.2478/auom-2023-0013
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Variational inequality for a vector field on
Hadamard spaces

Sajad Ranjbar

Abstract

Our purpose is to study the variational inequality problem for a
vector field on Hadamard spaces. The existence and uniqueness of the
solutions to the variational inequality problem associated with a vector
field in Hadamard spaces are studied.

1 Introduction

One of the most significant theories in applied mathematics is variational
inequalities theory. Variational inequality problems are powerful tools for
studying optimization problems, boundary value problems of PDE’s, equilib-
rium problems, physics issues, etc. The reader can consult with the book by
Kinderlehrer and Stampacchia [9] for more details on variational inequalities
theory and its applications. The existence, uniqueness, and approximation
problems of the solutions to the variational inequalities have been considered
by many authors, (see, for example, [7, 10, 11, 12, 13, 14, 15, 16, 18, 19] and ref-
erences therein). In particular, Németh introduced the variational inequalities
on Hadamard manifolds and obtained some existence theorems and unique-
ness theorems in [15], (also, see [14]). Li et al. [13] extended the existence
and uniqueness results of [15] to Riemannian manifolds. In 2015, Khatibzadeh
and the author [10] extended the existence and uniqueness results of [15] to
Hadamard spaces for the variational inequality problem associated with a non-
expansive mapping.
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In this paper, the variational inequality problem for a vector field on
Hadamard spaces is formulated. By introducing the notions of monotone,
strictly monotone, weakly continuous, and coercive vector fields, we study the
existence and uniqueness of the solutions to the variational inequality problem
associated with a vector field in Hadamard spaces.

2 Basic definitions and preliminaries

Suppose (X, d) is a metric space, u, v ∈ X and I = [0, d(u, v)]. A geodesic
path connecting u to v in X is an isometry c : I −→ X such that c(0) =
u, c(d(u, v)) = v and d(c(a), c(b)) = |a − b| for all a, b ∈ I. The image of a
geodesic c is called a geodesic segment connecting u and v. When it is unique,
this geodesic is denoted by [u, v]. We denote the unique point z ∈ [u, v] such
that d(u, z) = td(u, v) and d(v, z) = (1 − t)d(u, v), by (1 − t)u ⊕ tv, where
0 ≤ t ≤ 1. The metric space (X, d) is called a geodesic space if u and v are
joined by a geodesic, for each u, v ∈ X. The (X, d) is said to be uniquely
geodesic if there is exactly one geodesic segment connecting u and v for each
u, v ∈ X. A subset K of X is called convex if [u, v] ⊆ K for all u, v ∈ K.

Definition 2.1. A non-positive curvature metric space or a CAT(0) space
(in honour of E. Cartan, AD. Alexandrov and V.A. Toponogov) is a geodesic
space (X, d) which comes up to the following (CN) inequality:

d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y), (2.1)

for all x, y, z ∈ X and t ∈ [0, 1].

In particular, if x, y, z, w are points in X and t ∈ [0, 1], then

d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z).

CAT(0) spaces are uniquely geodesic. A complete CAT(0) space is called
a Hadamard space. We refer the reader to the standard texts such as
[2, 4, 5, 6, 8] for other equivalent definitions and basic properties of CAT(0)
spaces. The following are some examples of Hadamard spaces:
Hilbert spaces, Hadamard manifolds (i.e. simply connected complete Rieman-
nian manifolds with non-positive sectional curvature which can be of infinite
dimension), R-trees as well as examples that have been built out of given
Hadamard spaces such as closed convex subsets, direct products, warped prod-
ucts, L2-spaces, direct limits, and Reshetnyak’s gluing (see [17], Section 3).

The concept of quasilinearization for the CAT(0) space X introduced by

Berg and Nikolaev [3]. They denoted a pair (a, b) ∈ X ×X by
−→
ab and called

it a vector. Then the quasilinearization map 〈., .〉 : (X ×X)× (X ×X)→ R
is defined by
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〈
−→
ab,
−→
cd〉 = 1

2 (d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

Clearly, 〈
−→
ab,
−→
ab〉 = d2(a, b), 〈

−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉 and 〈

−→
ab,
−→
cd〉 = 〈−→ae,

−→
cd〉+

〈
−→
eb,
−→
cd〉 are satisfied for all a, b, c, d, e ∈ X. Also, we have −→ac+

−→
cb =

−→
ab, for all

a, b, c ∈ X.
The Cauchy-Schwartz inequality for the space X is

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), (a, b, c, d ∈ X).

Theorem 2.1. [3, Corollary 3] A geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwartz inequality.

The concept of dual space of the Hadamard space X introduced by Ahmadi
Kakavandi and Amini [1]. They define the map Θ : R×X ×X → C(X,R) by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. By
the Cauchy-Schwartz inequality, Θ(t, a, b) is a Lipschitz function with Lipschitz
semi-norm L(Θ(t, a, b)) = |t|d(a, b), (t ∈ R, a, b ∈ X), where L(ϕ) =

sup{ϕ(x)−ϕ(y)
d(x,y) : x, y ∈ X,x 6= y} is the Lipschitz semi-norm for any function

ϕ : X → R. Then, they define the pseudometric D on R×X ×X by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

Lemma 2.1. [1, Lemma 2.1] D((t, a, b), (s, c, d)) = 0 if and only if t〈
−→
ab,−→xy〉 =

s〈
−→
cd,−→xy〉, for all x, y ∈ X.

Lemma 2.1 shows there is an equivalent relation on R × X × X, where the
equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d).

Obviously, [−→aa] = [
−→
bb] for all a, b ∈ X. We write 0 = [−→oo] as the zero of the

dual space where o ∈ X. Note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Also, we use the following notation:

〈αx∗+βy∗,−→xy〉 := α〈x∗,−→xy〉+β〈y∗,−→xy〉, (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).
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3 Main Results

Throughout this section, let (X, d) be a Hadamard space with dual space
X∗, o ∈ X and K be a closed and convex subset of X. For all x ∈ X, set
X∗x := {[α−→yx] : α ≥ 0, y ∈ X}. Then X∗ =

⋃
x∈X X∗x .

Definition 3.1. The operator A : K → X∗ is a vector field on K if Ax ⊆ X∗x
for all x ∈ K.

The variational inequality problem associated with the vector field A :
K → X∗ is formulated by

Find x ∈ K such that 〈Ax,−→xy〉 ≥ 0, ∀y ∈ K. (3.1)

Theorem 3.1. Let A : K → X∗ be a vector field on K and x ∈ int(K)
(interior of K) be a solution of problem (3.1), then Ax = 0.

Proof. Let Ax = [α−→zx], where α ≥ 0 and z ∈ X. If α = 0, that is nothing to
prove. Let α > 0. There exists ε > 0 such that {y ∈ X : d(x, y) < ε} ⊂ K.
Choose 0 < t < 1 such that d(x, tx ⊕ (1 − t)z) = (1 − t)d(x, z) < ε. Thus
tx⊕ (1− t)z ∈ K. Therefore, by (3.1), we have

0 ≤ 2〈Ax,
−−−−−−−−−−−→
x(tx⊕ (1− t)z)〉

= 2α〈−→zx,
−−−−−−−−−−−→
x(tx⊕ (1− t)z)〉

= α(d2(z, tx⊕ (1− t)z)− d2(x, z)− d2(x, tx⊕ (1− t)z))
= α(t2d2(x, z)− d2(x, z)− (1− t)2d2(z, x))

= −2α(1− t)d(x, z) ≤ 0

Hence, −2α(1− t)d(x, z) = 0 which implies d(x, z) = 0. Therefore

Ax = [α−→xx] = 0.

Definition 3.2. The vector field A : K → X∗ is

• monotone if 0 ≤ 〈Ax−Ay,−→yx〉, ∀x, y ∈ K,

• strictly monotone if 0 < 〈Ax−Ay,−→yx〉, ∀x, y ∈ K.

Definition 3.3. The vector field A : K → X∗ is weakly continuous if

〈A(tz ⊕ (1− t)x),−→zx〉 → 〈Ax,−→zx〉, ∀z, x ∈ K as t→ 0.
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Example 3.1. Let T : K → X be a nonexpansive mapping (i.e. d(Tx, Ty) ≤
d(x, y), for all x, y ∈ K). Define A : K → X∗ with Ax = [

−−−→
(Tx)x]. Then

〈
−−−→
(Tx)x−

−−−→
(Ty)y,−→yx〉 = 〈

−−−−−−→
(Tx)(Ty) +

−−−→
(Ty)y +−→yx−

−−−→
(Ty)y,−→yx〉

= 〈
−−−−−−→
(Tx)(Ty),−→yx〉+ 〈−→yx,−→yx〉

≥ d2(x, y)− d(Tx, Ty)d(x, y)

= d(x, y)(d(x, y)− d(Tx, Ty)) ≥ 0,

which shows A is a monotone vector field. Moreover, we have

d(T (tz ⊕ (1− t)x), y)→ d(Tx, y), ∀x, y, z ∈ K as t→ 0,

which implies A is weakly continuous.

Proposition 3.2. Let A : K → X∗ be a weakly continuous and monotone
vector field. Then x is a solution of the problem (3.1) if and only if

〈Ay,−→xy〉 ≥ 0, ∀y ∈ K.

Proof. If x is a solution of the problem (3.1) then, by monotonicity, we have

0 ≤ 〈Ay −Ax,−→xy〉, ∀y ∈ K,

which implies
0 ≤ 〈Ax,−→xy〉 ≤ 〈Ay,−→xy〉, ∀y ∈ K.

That is desired result.
Now, suppose 〈Ay,−→xy〉 ≥ 0, ∀y ∈ K. Thus, if z ∈ K, we get

0 ≤ 〈A(tz ⊕ (1− t)x),
−−−−−−−−−−−→
x(tz ⊕ (1− t)x)〉.

Moreover, there exists α ≥ 0 and w ∈ X such that

A(tz ⊕ (1− t)x) = [α
−−−−−−−−−−−→
w(tz ⊕ (1− t)x)].

Hence

0 ≤ 2α〈
−−−−−−−−−−−→
w(tz ⊕ (1− t)x),

−−−−−−−−−−−→
x(tz ⊕ (1− t)x)〉

= α(d2(w, tz ⊕ (1− t)x)− d2(x,w) + d2(x, tz ⊕ (1− t)x))

≤ α(td2(w, z) + (1− t)d2(w, x)− t(1− t)d2(x, z) + t2d2(z, x)− d2(x,w))

= tα(d2(w, z)− d2(w, x)− d2(x, z)) + 2αt2d2(z, x)

= 2tα〈−→wx,−→xz〉+ 2αt2d2(z, x),
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which follows
0 ≤ 〈[α−→wx],−→xz〉+ td2(z, x).

Now, t→ 0 in the last inequality, we get

0 ≤ 〈[α−→wx],−→xz〉.

Therefore, it is enough that we show 〈[α−→wx],−→xz〉 = 〈Ax,−→xz〉. By weakly
continuity of A, we have

lim
t→0

(〈A(tz ⊕ (1− t)x),−→zx〉) = 〈Ax,−→zx〉.

On the other hand,

2〈A(tz ⊕ (1− t)x),−→zx〉 = 2α〈
−−−−−−−−−−−→
w(tz ⊕ (1− t)x),−→zx〉

= α(d2(w, x)− d2(w, z) + d2(tz ⊕ (1− t)x, z)− d2(tz ⊕ (1− t)x, x))

= α(d2(w, x)− d2(w, z) + (1− t)2d2(x, z)− t2d2(z, x)),

which, as t→ 0, is converges to

α(d2(w, x)− d2(w, z) + d2(x, z)) = 2〈[α−→wx],−→zx〉.

Hence, we obtain 〈[α−→wx],−→xz〉 = 〈Ax,−→xz〉. This completes the proof.

Remark 3.1. By Proposition 3.2, if A : K → X∗ is a weakly continuous
and monotone vector field, then the set of the solution of the problem (3.1) is
closed.

Generally, if K is not bounded then the problem (3.1) does not always

admit a solution. For this, let X = K = R and Ax =
−−−→
(Tx)x, then the

variational inequality

Find x ∈ K : (x− Tx)(y − x) ≥ 0, ∀y ∈ K,

has no solution for Tx = x+ 1.
We do not know whether the problem (3.1) has a solution if K is bounded.
Set KR = K ∩ BR(o), where BR(o) := {y ∈ K : d(o, y) ≤ R}. Clearly, the
problem

xR ∈ KR : 〈AxR,−−→xRy〉 ≥ 0, ∀y ∈ KR, (3.2)

admits a solution whenever KR 6= ∅ and the following condition is satisfied,

Λ : Variational inequality (3.1) is solvable, when K is bounded.
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The condition Λ is satisfied for Ax = [
−−−→
(Tx)x], where T : K → X is a nonex-

pansive mapping, (see [10, Theorem 3.1]). Also, the condition Λ is satisfied
for continuous vector fields in Hadamard manifolds, (see [15]).

Theorem 3.3. Suppose A : K → X∗ is a vector field. Then, the problem (3.1)
admits a solution if and only if there exist R > 0 and a solution xR ∈ KR of
problem (3.2) such that d(o, xR) < R.

Proof. It is clear that if there exists a solution x of the problem (3.1), then x
is a solution of the problem (3.2) whenever d(o, x) < R. Suppose now that a
solution xR ∈ KR of the problem (3.2) satisfies d(o, xR) < R and y ∈ K. Let
AxR = [α−−−→zRxR]. We can choose a 0 < t < 1 such that d(o, (1−t)xR⊕ty) ≤ R.
Thus (1− t)xR ⊕ ty ∈ KR. The problem (3.2) implies

0 ≤ 2α〈−−−→zRxR,
−−−−−−−−−−−−−→
xR((1− t)xR ⊕ ty)〉

= α(d2(zR, (1− t)xR ⊕ ty)− d2(zR, xR)− d2(xR, (1− t)xR ⊕ ty))

≤ α((1− t)d2(zR, xR) + td2(zR, y)− t(1− t)d2(xR, y)− d2(zR, xR)− t2d2(xR, y))

= 2tα〈−−−→zRxR,
−−→xRy〉.

Consequently, 〈AxR,−−→xRy〉 ≥ 0, which implies xR is a solution of the problem
(3.1).

Let A : K → X∗ be a vector field. We say A is coercive if there exists
x0 ∈ K such that

〈Ax,−−→x0x〉 − 〈Ax0,−−→x0x〉
d(x, x0)

→∞, as d(x, o)→∞, x ∈ K. (3.3)

Theorem 3.4. Suppose A : K → X∗ is a vector field, the condition Λ is
satisfied and A is coercive at x0. Then, the problem (3.1) has a solution.

Proof. LetAx0 = [α0
−−→z0x0]. By coerciveness condition, chooseH > α0d(x0, z0)

and R > d(x0, o) such that

〈Ax,−−→x0x〉 − 〈Ax0,−−→x0x〉 ≥ Hd(x0, x), for d(x, o) ≥ R, x ∈ K.

Then,

〈Ax,−−→x0x〉 ≥ α0〈−−→z0x0,−−→x0x〉+Hd(x0, x)

≥ −α0d(x0, z0)d(x0, x) +Hd(x0, x)

≥ (−α0d(x0, z0) +H)(d(x, o)− d(x0, o))

> 0.
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Now, if xR ∈ KR is a solution of the problem (3.2), then

〈AxR,−−−→x0xR〉 = −〈AxR,−−−→xRx0〉 ≤ 0,

which implies d(xR, o) < R. Hence, by Theorem 3.3, the problem (3.1) has a
solution.

Generally, the solution of the variational inequality problem (3.1) is not
unique. In the following theorem, we present a natural condition that ensures
uniqueness.

Theorem 3.5. Let the vector field A : K → X∗ be strictly monotone. Then,
the solution of the variational inequality (3.1) is unique.

Proof. By contradiction, suppose x, z ∈ K are two distinct solutions of the
problem (3.1). Then,

(i) 〈Ax,−→xy〉 ≥ 0, ∀y ∈ K,

(ii) 〈Az,−→zy〉 ≥ 0, ∀y ∈ K.
Set y = z in (i) and y = x in (ii). Summing (i) with (ii), we obtain

〈Ax−Az,−→xz〉 ≥ 0,

which is contradiction with strictly monotonicity of A.

4 Conclusion

The existence and uniqueness of the solutions of the variational inequalities on
Hilbert spaces, Banach spaces, Hadamard manifolds, and Riemannian mani-
folds are investigated, (see [9, 11, 12, 13, 15, 18, 19] and the references therein).
In this paper, the existence and uniqueness of the solution of the variational in-
equality for a vector field on complete CAT(0) metric spaces are discussed. In
general, the variational inequality problem on the subset K of the Riemannian
manifold M does not have a solution, even if the set K is totally convex and
compact and the vector field is continuous, (see [13, Example 4.1]). However,
it seems that the existence and uniqueness results of the solution of the vari-
ational inequality are satisfied locally on subset A of the generic Remainnian
manifold M . Therefore, it is valuable to extend the results to other spaces.
Extending the results to CAT(κ) spaces for κ > 0 or other spaces, and de-
signing algorithms to approximate the solution of the variational inequality
problem can be considered as future works.
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