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Predictability and uniqueness of weak solutions
of the stochastic differential equations

Ana Merkle

Abstract

Causality is a topic which receives much attention nowadays and
it represents a prediction property in the context of possible reduction
of available information in order to predict a given filtration. In this
paper we define the concept of dependence between stochastic processes
and between filtrations, named causal predictability, which is based on
the Granger’s definition of causality. This definition extends the ones
already given in the continuous time. Then, we provide some properties
of the given concept.

Finally, we apply the concept of causal predictability to the processes
of the diffusion type, more precisely, to the uniqueness of weak solutions
of the stochastic differential equations.

1 Introduction

After the famous paper of Granger [7] many authors considered different ways
of defining causality. The study of Granger’s causality has been mainly con-
cerned the time series. We shall, instead, consider continuous time processes,
since continuous time models are frequently used as a starting point in cli-
matology, ecology, econometric practice, demography, etc. It is important
to emphasize that the modern finance theory extensively uses diffusion pro-
cesses and deals with the solutions of stochastic differential equations. Also,
the martingale theory is widely used in finance, so it should be noted that
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the preservation of martingale property is directly connected to some of the
concepts of causality, especially with self causality. Namely, in the theory of
martingales the concept of self causality is equivalent to the hypothesis (H)
introduced in [20]. The concept of self causality could be considered as a use-
ful assumption in the theory of martingales and stochastic integration (see [1]
and [20]).

The causality concept, introduced by Mykland [15] and generalized in this
paper, can be applied to the solutions of martingale problem and to the weak
solutions of stochastic differential equations (see [15] and [8]).

The connection between the causality concept and the well known notion
of measurable separability of σ-fields is shown in [21] and it is applied on the
Bayesian experiments. As measurable separability is very important in the
parametric inference, a relationship of the concept of statistical causality with
sufficient and ancillary statistic is also given in the same paper.

The goal of our paper is to give a new concept of dependence between
filtrations and to consider different causality properties in continuous time
models and their applications. More precisely, we consider different concepts
of causality between stochastic processes and between filtrations and then
relate the given concepts of causality to the weak solutions of the following
stochastic differential equation (SDE)

dXt = at(X)dt+ bt(X)dWt, X0 = η

where W is Wiener process. Also, we consider its generalized form

dXt = ut(X)dZt, X0 = η.

where Z is a semimartingale.
The paper is organized as follows. After Introduction, in Section 2, we pro-

vide some of the known results that we need later. Especially, we present the
causality concept introduced by Mykland [15] and give some basic properties
of this concept. Also, we recall definitions of weak solutions of the SDEs.

Section 3 and 4 contain the main results. In Section 3, we introduce the
concept of dependence named causal predictability between filtrations which
is based on Granger’s definition of causality and the causality concept given by
Mykland [15]. Also, we show some major characteristics of the given concept.
In Section 4, we apply this new concept to the processes of the diffusion type,
more precisely, to the uniqueness of weak solutions of the Itô SDEs and the
SDEs with driving semimartingales. At the end of the section, we provide a
few examples that illustrates applications of the given causality concept in the
various fields.
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2 Preliminary notations and definitions

Suppose that (Ω,A,F, P ) is a filtered probability space, where (Ω,A, P ) is
a probability space and F = {Ft, t ∈ T} is a ”framework” filtration, that
is, Ft is the set of all events in the model up to and including time t, which
is a subfiltration of A. The total information F∞ carried by F is defined as
F∞ = σ{

⋃
t∈I

Ft} ≡
∨
t∈T

Ft. We suppose that the filtration F satisfies the usual

conditions (i.e. it is right continuous and complete, see [3]). The time index
set T is equal to R+, unless specified otherwise. Analogous notation will be
used for filtrations H = {Ht}, G = {Gt} and I = {It}.

It is said that filtration G is a subfiltration of F and written as G ⊆ F,
if Gt ⊆ Ft for each t.

We now recall the concept of conditional independence which is widely
used in probability theory and statistics.

Definition 2.1. (compare with [2] and [18]). Let (Ω,A, P ) be a probability
space and M1, M2 and M arbitrary sub-σ-algebras from A. It is said that M

is splitting for M1 and M2 or that M1 and M2 are conditionally independent
given M (and written as M1 ⊥M2 |M) if

E[X1X2 |M] = E[X1 |M]E[X2 |M].

where Xi denotes a nonegative Mi measurable random variable, i = 1, 2.

The basic properties of this concept are given in [5] and [6].
In the papers [4] and [5] it is shown how conditional independence can serve

as a basis for the general probabilistic theory of causality for both processes
and single events. In this paper, we also consider different concepts of causality
involving conditional independence. Motivated by Granger causality, Mykland
introduces the following definition.

Definition 2.2. ([15]) Let F = {Ft}, G = {Gt} and H = {Ht} t ∈ T , be
filtrations on the same probability space. It is said that G is a cause of H
within F relative to P (and written as H |< G; F;P) if H ⊆ F, G ⊆ F and if
H∞ is conditionally independent of Ft given Gt for each t, i.e.

H∞ ⊥ Ft | Gt, (1)

that is
∀A ∈ H∞, P (A|Ft) = P (A|Gt).

If there is no doubt about P , we omit ”relative to P”.
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It is easy to see that (1) may be formulated as

Hu ⊥ Ft | Gt for all t, u ∈ T.

Intuitively, (1) means that, for arbitrary t, information about H∞ provided
by Ft is not ”bigger” than that provided by Gt.

If G and F are such that G |< G; F, we shall say that G is its own cause
within F, or, that G is self caused within F. It should be mentioned that
the notion of subordination (as introduced in [18]) is equivalent to the notion
of being one’s own cause or self causality, as defined here. The concept of
self causality could be considered as a useful assumption in the theory of
martingales and stochastic integration ([1], [20]). It is interesting to notice
that there is a strong connection between the preservation of the martingale
property and the causality concept. It is well known that the martingale
property remains valid if the filtration decreases. But, if the filtration increases
the preservation of martingale property is directly connected to the concept
of self causality. Namely, in the theory of martingales the concept of self
causality is equivalent to the hypothesis (H) introduced in [1]: if G ⊆ F, every
G-martingale is a F-martingale, that is, G is immersed in F.

If G and F are such that G |< G; G
∨

F (where G
∨

F is a family deter-
mined by (G

∨
F)t = Gt

∨
Ft), we shall say that F does not cause G. It is clear

that the interpretation of Granger’s causality is now that F does not cause G
if G |< G; G

∨
F (see [15]).

It should be mentioned that Definition 2.2 of causality is equivalent to the
definition of strong global noncausality, given by Florens and Fougères [4].

A family of σ-algebras induced by a stochastic process X = {Xt, t ∈ T} is
given by FX = {FXt , t ∈ T}, where

FXt = σ{Xu, u ∈ T, u ≤ t},

being the smallest σ-algebra with respect to which the random variables
Xu, u ≤ t are measurable.

The process X = {Xt} is adapted to F = {Ft} or F-adapted if FXt ⊆ Ft
for each t . The notation (Xt,Ft) means that process X = {Xt} is F-adapted.

A family of σ-algebras may be induced by several processes, e.g. FX,Y =
{FX,Yt , t ∈ T}, where

F
X,Y
t = FXt

∨
FYt , t ∈ T.

Definition 2.2 can be applied to stochastic processes. It will be said that
stochastic processes are in a certain relationship if and only if the corre-
sponding induced filtrations are in that relationship. Specially, an F-adapted



PREDICTABILITY AND UNIQUENESS OF WEAK SOLUTIONS OF THE
STOCHASTIC DIFFERENTIAL EQUATIONS 211

stochastic process X = {Xt} is its own cause within F if FX = {FXt } is its
own cause within F, i.e. if FX |< FX ; F;P holds (see, for example, [21]).

We consider a weak solution of a SDE

dXt = at(X)dt+ bt(X)dWt

X0 = η,
(2)

where X is a continuous d-dimensional process and W a d-dimensional Wiener
process, which is well defined when the following elements are given: the
dimension d (of X and W ), functionals at (d-dimensional vector) and bt( d×d
matrix) and d-dimensional distribution Fη function (see [12], [13], [17]).

Definition 2.3. ([12]) The object (Ω,A,F, P,W,X) is said to be a weak so-
lution of SDE (2) if

i) (Ω,A,F, P ) is a filtered probability system with time axis of the form
T = [0, t0], with Ft right continuous and with F and F0 complete,

ii) (Wt,Ft) is a d-dimensional Wiener process,

iii) {Xt} is a continuous adapted process,

iv) P (X0 ≤ x) = Fη(x),

v)
∫ t0

0
|as(X)ds| <∞ and

∫ t0
0
|bs(X)|2ds <∞ a.s.,

vi) Xt = X0 +
∫ t

0
as(X)ds+

∫ t
0
bs(X)dWs a.s.

Definition 2.4. ([12]) For given d, at, bt and Fη, a weak solution of (2)
is weakly unique if for any two solutions (Ωi,Ai,Fi, P i,W i, Xi), i=1,2, of
the system, the induced measures µX1 and µX2 coincide (where µX(B) =
P (X(ω) ∈ B)).

Now, let us consider the following stochastic differential equation

dXt = ut(X)dZt
X0 = η.

(3)

where Z = {Zt, t ∈ T} is a m−dimenisonal semimartingale and coefficient
ut is a (n ×m)−dimensional predictable functional (see [8] and [9] for more
details). Jacod and Memin [9] have studied the existence and the uniqueness
of solutions of equation (3), which was generalized by Lebedev [11]. We adopt
the approach developed by Mykland [15] of considering a probability measure
P on (Ω,A) such that the given process X is a solution with respect to the
given process Z, which is typically a sort of the problem related to the so-called
martingale problem. The following definitions connected with the solution of
equation (3) are taken from [16].
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Definition 2.5. ([16]) For the stochastic differential equation (3), (Ω,A,F, P,
Z,X) is a regular weak solution if

i) µ(A) = P (Z ∈ A) coincides with a predetermined measure on the func-
tion space where Z takes values;

ii) X and Z satisfy (3);

iii) Z is its own cause within F = {Ft} relative to P , i.e. FZ |< FZ ; F;P
holds.

Definition 2.6. ([16]) A regular solution is weakly unique if for every regular
solution (Ω,A,F, P, Z,X) of equation (3) there is no measure Q on FX,Z∞ such
that (Ω,FX,Z∞ ,FX,Z , Q, Z,X) is a regular solution of (3).

Definition 2.7. ([16]) An extremal regular weak solution (Ω,A,F, P, Z,X)
of (3) is a regular weak solution such that there are measures Q1 and Q2

on FX,Z∞ satisfying P = a1Q1 + a2Q2, a1, a2 > 0 on FX,Z∞ and such that
(Ω,FX,Z∞ ,FX,Z , Qi, Z,X) is a regular weak solution, then Q1 = Q2 = P on
FX,Z∞ .

3 Causal predictability between filtrations

In this section, we consider a generalization of causality concept given in De-
finition 2.2. More precisely, we develop a concept named causal predictability
between filtrations which is based on the causality concept from Section 2.
This concept is shown to be connected to a generalization of the notion of
weak uniqueness of weak solutions of the stochastic differential equations. The
relation that we want to show between the filtrations FX and FX,W in a weakly
unique solution of stochastic differential equation (2) is that for any filtration
F and for any probability measure P satisfying that (Wt, Ft) is a Wiener
process relative to P we must have that

FX |< FX,W ; F;P.

However, there is no probability space that can contain all possible F, so we
have to use isomorphisms between probability spaces.

A probability space (Ω̂, Â, P̂ ) is an extension of (Ω,A, P ) if there is a
measurable function

f : (Ω̂, Â) −→ (Ω,A)

such that P̂ f−1 = P on A (see [8]).
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For filtrations G = {Gt}, H = {Ht} and I = {It}, t ∈ T , on the same
probability space (Ω,A, P ), we have

Ĝt = {f−1(A) : A ∈ Gt}, Ĥt = {f−1(A) : A ∈ Ht}, Ît = {f−1(A) : A ∈ It}.

Note that there may be filtrations on the probability space (Ω̂, Â) which are
not defined as an inverse image of some filtration on the original probability
space (Ω,A). Also, note that Â 6= f−1(A).

Motivated by the previous considerations, through the following definition
we introduce the main concept used in the paper.

Definition 3.1. Let G = {Gt}, H = {Ht} and I = {It}, t ∈ T , be filtrations
on the same probability space (Ω,A, P ) with a common time axis T . It is said
that I is causally predictable by H relative to G if

H ⊆ G (4)

and
H |< G; G′;P, (5)

where
G′ = G ∨ I (6)

and if
any extension (Ω̂, Â, P̂ ) of the probability space (Ω,G′∞, P ) (with P̂ f−1 =

P ) containing filtrations F̂, Ĝ′, Ĝ, Ĥ and Î satisfying

a)

Ĝ′ ⊆ F̂; (7)

b) for every A ∈ H∞ and t ∈ T

g(A) = P (A | G′t) (P -a.s.)
g is G′t-measurable

}
⇒ g ◦ f(A) = P̂ (f−1(A) | Ĝ′t) (P̂ -a.s.);

c)

Ĥ |< Ĝ; F̂; P̂ ;

must also satisfy
Î |< Ĝ′; F̂; P̂ . (8)

If G = H in the above definition, we say that I is causally predictable by H.

It should be noted that causal predictability is a notion of dependence.

Now, to get more familiar with the concept of causal predictability, we are
going to give some of the main properties of the introduced concept.
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Lemma 3.1. Let G = {Gt}, H = {Ht} and I = {It}, t ∈ T , be filtrations on
the same probability space (Ω,A, P ). If conditions a) and b) of Definition 3.1

of causal predictability are satisfied for (Ω̂, Â, P̂ ), Ĝ′, Ĝ, Ĥ and Î, and if (5)
is satisfied, then

Ĥ |< Ĝ; Ĝ′; P̂ . (9)

Proof. Let A ∈ H∞ and t ∈ T . By (5), there is a Gt-measurable g satisfying

g = P (A|G′t).

By condition b) and the definition of Ĝt, P̂ (f−1(A)|Ĝ′t) can be chosen to be

Ĝt−measurable. Now, (9) follows by the definition of Ĥ∞.

Lemma 3.2. Condition c) of the definition of causal predictability can be
replaced by

c′) Ĥ |< Ĝ
′
; F̂; P̂ .

Proof. According to Proposition 2.2 in [15], from (6) and (7) it follows that

Ĥ |< Ĝ; F̂; P̂ is equivalent with

Ĥ |< Ĝ; Ĝ′; P̂ and Ĥ |< Ĝ′; F̂; P̂ .

The result is proved.

Corollary 3.3. The following statements are equivalent:

i) I is causally predictable by H relative to G.

ii) I is causally predictable by H relative to G′ and conditions (4)− (5) are
satisfied.

Proof. Replace c) by c′) in Definition 3.1. The only difference between causal
predictability relative to G and relative to G′ are (4) and (5).

In the following result we prove the invariance of causal predictability under
stochastic equivalence.

Proposition 3.4. Let G, G̃, H, H̃, I and Ĩ be filtrations in a probability
space (Ω,A, P ) such that

G = G̃, H = H̃, I = Ĩ a.s.

and
H̃ ⊆ G̃.

If I is causally predictable by H relative to G, then Ĩ is causally predictable by
H̃ relative to G̃.
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Proof. According to Theorem 4.4. from [14], this result follows from the in-
variance of causality, in the sense of Definition 2.2, under stochastic equiva-
lence.

4 Some applications

In the following result we show how the theory of causal predictability can be
applied to the weak uniqueness of weak solution of the stochastic differential
equation (2)

dXt = at(X)dt+ bt(X)dWt, X0 = η.

Theorem 4.1. Assume that SDE (2) has a weak solution. If for every weak
solution (Ω,A,F, P,W,X) of (2), FX is causally predictable by FW relative
to FX,W , then the solution is weakly unique.

Proof. If FX is causally predictable by FW relative to FX,W , from Definition
3.1 of causal predictability for (Ω̂, Â, P̂ ) = (Ω,A, P ), it follows that X is
entirely caused by itself and by W within F, i.e. FX |< FX,W ; F;P holds.

Now, let (Ωi,Ai,Fi, P i,W i, Xi), i = 1, 2, be two weak solutions of (2) and
without loosing generality suppose that Ω1 ∩ Ω2 = ∅. Set

Ω = Ω1 ∪ Ω2

A =
{
A ∪B : A ∈ A1, B ∈ A2

}
Ft =

{
A ∪B : A ∈ F1

t , B ∈ F2
t

}
P (A ∪B) =

1

2
[P (A) + P (B)], for A ∈ A1, B ∈ A2

Wt(ω) =

{
W 1
t (ω) for ω ∈ Ω1

W 2
t (ω) for ω ∈ Ω2 ,

Xt(ω) =

{
X1
t (ω) for ω ∈ Ω1

X2
t (ω) for ω ∈ Ω2 ,

It is easy to see that (Ω,A,Ft, P,Wt, Xt) is a weak solution of (2).
Set

j(ω) =

{
1, for ω ∈ Ω1

2, for ω ∈ Ω2 ,

X0 and j are independent. It follows that FX∞ is conditionally independent
of F0 given FX0 (using W0 = 0), since X is entirely caused by itself and by W
within F. From Theorem 2.5 in [14] it follows that FX∞ is independent of j,
which implies that P (X ∈ A|j) is constant for A ∈ B(Cd) P-a.s. Now, as

P (X ∈ A|j)(ω) = P (Xi ∈ A)
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holds for almost all ω ∈ Ωi (P -a.s. and P i-a.s.), we have

P (X1 ∈ A) = P (X2 ∈ A),

which shows that the solution is weakly unique.

Now it is easy to prove the following result.

Proposition 4.2. Assume that SDE (2) has a weak solution. If for every
weak solution (Ω,A,F, P,W,X) of (2), X is its own cause within F, then the
solution is weakly unique.

Proof. Suppose that X is its own cause within F, i.e. that FX |< FX ; F holds.
From Definition 2.2 of causality and since FX ⊆ FX,W ⊆ F, we have

∀A ∈ FX∞, P (A|FXt ) = P (A|Ft) = P (A|FX,Wt ).

It follows that X is caused by itself and by W within F, i.e. FX |< FX,W ; F;P.
Now, following the procedure from the proof of Theorem 4.1 we conclude that
the solution is weakly unique.

The following example illustrates the usefulness of the causality concept
presented in this paper.

Example 4.1. Considering the concrete SDE of the form (2), the well known
result of Theorem 4.12 in [12] gives conditions for a weak uniqueness of weak
solutions. Now, we have new conditions in terms of causal predictability from
Definition 3.1. Namely, from Theorem 4.3 it follows that for weakly uniqueness
of the given weak solution it is enough to check whether for every weak solution
(Ω,A,F, P,W,X) of (2), FX is causally predictable by FW relative to FX,W .

Now, we give another example of the application of causal predictability
considering SDE (3)

dXt = ut(X)dZt, X0 = η,

which generalizes the diffusion equation (2). The definition of weak solution
of SDE (3) in terms of causality (in the sense of Definition 2.2) is given in
Definition 2.3. Now, we prove the following result which gives conditions for
a solution of stochastic differential equation (3) to be weakly unique in terms
of causal predictability.

Theorem 4.3. Assume that SDE (3) has a weak solution. If for every weak
solution (Ω,A,F, P, Z,X) of (3), FX,Z is causally predictable by FX relative
to FX,Z , then the solution is weakly unique.
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Proof. Suppose that for the weak solution (Ω,A,F, P, Z,X) of (3) we have
that FX,Z is causally predictable by FX relative to FX,Z .

We will first show that P is extremal on FX,Z∞ . Suppose that P is not
extremal, i.e. P = a1Q1 + a2Q2, a1, a2 > 0, so that Q1 and Q2 coincide on
F
X,Z
−∞ , but Q1 6= Q2. Set the extension of probability space (Ω,FX,Z∞ , P ) in the

definition of causal predictability as follows

Ω̂ = Ω× {p, q}

F̂t = F
X,Z
t × {φ, {p}, {q}, {p, q}}

and

P̂ (A× {p} ∪B × {q}) =
1

2
(Q1(A) +Q2(B)) .

It is straightforward to check that the conditions in the definition of causal
predictability are satisfied, but that (8) is not, i.e.

F̂X,Z |< F̂X,Z ; F̂, P̂

does not hold, which contradicts the assumption that FX,Z is causally pre-
dictable by FX relative to FX,Z . Hence, P is extremal on every weak solution.
Now, from [15] it follows that the solution is weakly unique.

Remark 1. It should be noted that the results from Theorem 4.1, Proposition
4.2 and Theorem 4.3 remain valid even when we consider different ways of
defining causal predictability as given in Lemma 3.1 and Lemma 3.2.

The concept of causality is widely used in financial mathematics and the
default risk modeling which was extensively studied in numerous recent papers.
Here, a special attention is paid to the hypothesis (H), i.e. the concept of
self causality. When hypothesis (H) is satisfied, all the contingent claims are
hedgeable.

In the following example we will establish a sufficient condition for the
martingale hazard process Λ to determine the conditional survival probability
of τ given the σ-field F in terms of causality.

Example 4.2. Assume that G is its own cause within F, i.e. that G |< G; F
holds and that the G -martingale hazard process Λ of τ is continuous. If the
process V given by the formula

Vt = E(eΛt−Λs |Ft), ∀t ∈ [0, s]

is continuous at τ , that is, ∆Vs∧τ = Vs∧τ − V(s∧τ)− = 0, then for any t ≤ s
we have

P (τ > s|Ft) = I{τ>t}E(eΛt−Λs |Gt).
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It is well known that the theory of optimal transport in continuous time
and stochastic analysis are powerfully connected. Now, we give an example
illustrating the connection with the causality concept from Definition 3.1.

Example 4.3. A pair (X,Y ) of continuous processes is a causal coupling if
FY is causally predictable by FX.

In the future work, it might be interesting to deal with the case of pro-
gressive causal predictability, i.e. with the case when {It, t ∈ τ ∩ (−∞, u)}
is causally predictable by {Ht, t ∈ τ ∩ (−∞, u)} for stopping time τ and all
u ∈ R.

Also, it might be interesting to see how the theory of causal predictability
can be applied to stochastic filtering and control theory (see, for example,
[19]).
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