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Finite-dimensional Zinbiel algebras and
combinatorial structures

Manuel Ceballos, Juan Núñez and Ángel F. Tenorio

Abstract

In this paper, we study the link between finite-dimensional Zinbiel
algebras and combinatorial structures or (pseudo)digraphs determining
which configurations are associated with those algebras. Some proper-
ties of Zinbiel algebras that can be read from their associated combina-
torial structures are studied. We also analyze the isomorphism classes
for each configuration associated with these algebras providing a new
method to classify them and we compare our results with the current
classifications of 2- and 3-dimensional Zinbiel algebras. We also obtain
the 3-vertices combinatorial structures associated with such algebras. In
order to complement the theoretical study, we have designed and per-
formed the implementation of an algorithm which constructs and draws
the (pseudo)digraph associated with a given Zinbiel algebra and, con-
versely, another procedure to test if a given combinatorial structure is
associated with some Zinbiel algebra.

1 Introduction

In these days, one of the most important and stimulating research in Science
and, particularly, in Mathematics is finding and studying new links between
different fields. Alternative techniques and procedures allow researchers to
solve many open problems, improve known theories and achieve new results.
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This paper deals with the relation between Zinbiel algebras and Graph Theory.
More concretely, our main goal is to continue with the research line started
in [1, 3, 4], where a link between combinatorial structures and Lie or Leibniz
algebras was established. Due to this link, several properties on those non-
associative algebras can be translated into the field of Graph Theory and vice
versa. Now, we want to extend these studies to the case of Zinbiel algebras.

Non-associative algebras have been deeply studied due to its own theo-
retical importance and its many applications to different fields like Physics,
Engineering or Applied Mathematics. A particular type of these algebras is
formed by Zinbiel algebras. They were introduced by J.-L. Loday [7] in 1995.
They are the Koszul dual of Leibniz algebras and, in fact, J.M. Lemaire (see
[8]) proposed the name of Zinbiel as a mirror of Leibniz algebras. As happens
with any class of non-associative algebras, there exist many general questions
to be solved and these questions (as, for example, the classification of Zin-
biel algebras) require alternative techniques since the traditional ones are not
sufficient.

Analogously, Graph Theory is also running at a very high level nowadays.
Graphs have been used to deal with a wide range of problems in many different
fields including non-associative algebras. For example, they have been really
helpful in order to compute degenerations of Zinbiel algebras in [6]. In this way,
we believe that graphs and simplicial complexes (its generalization to higher
dimensions) might be an useful tool in the study of non-associative algebras,
providing new ways to solve many open problems, like the above-mentioned
classification problem of Zinbiel algebras.

Hence, our main goal is to study the link between combinatoral structures
and Zinbiel algebras, giving a generalization for the techniques introduced in
[1] and then developed in [3, 4] to the case of Zinbiel algebras. We will also
provide a new method to classify this type of algebras.

The structure of this paper is the following: Section 2 focuses on review-
ing some well-known results on Zinbiel algebras and Graph Theory. Then,
Section 3 is devoted to the association between combinatorial structures and
Zinbiel algebras. In Section 4, we study some properties of Zinbiel algebras
that can be read from their associated combinatorial structure. Next, Sec-
tion 5 analyzes the structure of (pseudo)digraphs associated with Zinbiel alge-
bras and some of their properties. For each configuration, we study both the
solvability and the isomorphism classes for its associated Zinbiel algebra. In
Section 6 we study the 3-vertex combinatorial structures including full trian-
gles that are associated with Zinbiel algebras. In addition, we also show how
our algorithm may be useful for the classification of Zinbiel algebras. Finally,
Section 7 shows the implementation of the two algorithmic procedures used in
the previous sections. The first one is devoted to check if a given combinato-
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rial structure (not necessarily a (pseudo)digraph) is associated or not with a
Zinbiel algebra and, conversely, the second one computes the (pseudo)digraph,
if possible, associated with a given finite-dimensional Zinbiel algebra starting
from its law. In addition, we give a brief computational study, showing the
complexity order and computing time of the procedures here presented.

We believe that the tools and results achieved in this paper might be useful
to advance in the research line connecting Zinbiel algebras and Graph Theory.
In addition, combinatorial structures may provide us with a new method to
classify Zinbiel algebras.

2 Preliminaries

For a general overview on Zinbiel algebras and Graph Theory, the reader
can consult [7]. We only consider finite-dimensional Zinbiel algebras over the
complex number field C.

Definition 1. A Zinbiel algebra Z is a vector space with a second bilinear
inner composition law ([·, ·]), called the bracket product or commutator, which
satisfies

[[A,B], C] = [A, [B,C]] + [A, [C,B]],∀A,B,C ∈ Z.

The latter is called the Zinbiel identity. From here on, we use the notation
Z(A,B,C) = [[A,B], C]− [A, [B,C]]− [A, [C,B]].

Given a basis {ei}ni=1 of Z, its structure (or Maurer-Cartan) constants are
defined by [ei, ej ] =

∑n
h=1 c

h
i,jeh, for 1 ≤ i < j ≤ n.

Definition 2. Given a Zinbiel algebra Z, its center is defined as Z(Z)={X∈
Z | [X,Y ]=0, ∀Y ∈ Z}.

Definition 3. Given a finite-dimensional Zinbiel algebra Z, its derived series
is

Z1 = Z, Z2 = [Z,Z], . . . , Zk = [Zk−1,Zk−1], . . .

Thus, Z is called solvable if there exists m ∈ N such that Zm = {0}. In
addition, if Zm−1 6= {0} also holds, then Z is (m− 1)-step solvable.

Definition 4. Given a finite-dimensional Zinbiel algebra Z, its central series
is

Z1 = Z, Z2 = [Z,Z], . . . , Zk = [Zk−1,Z], . . .

Thus, Z is called nilpotent if there exists m ∈ N such that Zm = {0}. In
addition, if Zm−1 6= {0} also holds, then Z is (m− 1)-step nilpotent.

Remark 1. Every nilpotent algebra is trivially solvable because Zi ⊆ Zi, for
all i ∈ N.
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Remark 2. The derived algebra of a Zinbiel algebra Z will be denoted by
DZ = Z2 = Z2.

Although the reader can consult [5] as an introductory reference to Graph
Theory, some notions are recalled next.

Definition 5. A digraph consists in an ordered pair G = (V,E), where V is
a non-empty set called vertex-set and E is a set of ordered pairs (edges) of two
vertices, called edge-set.

Definition 6. A loop in the digraph G is an edge that connects a vertex with
itself. If the digraph G contains loops, then G is called a pseudodigraph.

Throughout the paper, we consider (pseudo)digraphs admitting double
edges.

Definition 7. Given a digraph G = (V,E), a vertex v ∈ V is a sink (resp. a
source) if each edge incident with v is oriented towards v (resp. from v). See
Figure 1.

Figure 1: Example of sink and source, respectively.

Definition 8. A vertex v in G is said to be simple if v has no loop. Otherwise,
it will be non-simple.

3 Associating combinatorial structures with Zinbiel al-
gebras

Let Z be a n-dimensional Zinbiel algebra with basis B = {ei}ni=1 and law
[ei, ej ] =

∑n
h=1 c

h
i,jeh. The pair (Z,B) can be associated with a combinatorial

structure by following the procedure introduced in [4, Section 3] for Leibniz
algebras.

Therefore, every Zinbiel algebra with a fixed basis can be associated with
a combinatorial structure. This method for Zinbiel algebras provides a gen-
eralization of the one described in [1] for Lie algebras, as we prove in the
following.
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Example 1. The 3-dimensional Zinbiel algebra with law [e1, e1] = e2 − e3,
[e1, e2] = [e1, e3] = −e2 + e3 is associated with the combinatorial structure
shown in Figure 2.

Figure 2: Combinatorial structure associated with a 3-dimensional Zinbiel
algebra.

4 Reading properties from the combinatorial structure

In this section, given a Zinbiel algebra Z, we analyze the properties of Z

algebras that can be read from its associated combinatorial structure, G. More
concretely, we characterize the case when Z is a Lie algebra and then we study
the center, Z(Z), and the derived algebra DZ.

Proposition 1. Let G be the combinatorial structure associated with a Zinbiel
algebra Z. Then Z is a Lie algebra, if G satisfies the following conditions

1. There are no loops.

2. The weight for the edge from vertex i to vertex j is given by (cji,j ,−c
j
i,j).

3. The weight for the edges in a full triangle ijk is given by (cki,j ,−cki,j),
(cij,k,−cij,k) and (cji,k,−c

j
i,k).

Proof. Trivial from the self-annihilation and the skew-symmetry of the com-
mutator.

Remark 3. Given an edge in a combinatorial structure associated with a
Zinbiel algebra, both coordinates in Conditons 2 and 3 from Proposition 1 are
opposite each other and, then, only one coordinate is required for saving the
information of the structure constants as happened in [1].
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Figure 3: Combinatorial structure associated with a 3-dimensional Lie algebra.

Example 2. The combinatorial structure of Figure 3 is associated with the
3-dimensional Lie algebra with law [e1, e2] = −[e2, e1] = −2e2 + e3, [e1, e3] =
−[e3, e1] = −e2 + e3.

Proposition 2. Let G be the combinatorial structure associated with a Zinbiel
algebra Z. Then,

Z(Z) ⊃ span{ei | i ∈ Γ} ∪ span{ej | j ∈ Λ}, where

Γ is the set of simple and isolated vertices of G and Λ is the set of simple
vertices in full triangles that are adjacent only to ghost edges.

Proof. Let us assume that G = (V,E) with V = {1, . . . , n}, therefore B =
{ek}nk=1 is a basis of Z. First, if the vertex i ∈ V is a source then ∃j ∈ V
such that (cji,j , c

j
j,i) 6= (0, 0). Consequently, ei /∈ Z(Z). In case that i ∈ V

is a simple and isolated vertex then ei ∈ Z(Z) since [ei, ej ] = [ej , ei] = 0,
∀1 ≤ j ≤ n. Now, we suppose that i ∈ V is a simple vertex in a full triangle
which is adjacent only to ghost edges. In that case, [ei, ej ] = [ej , ei] = 0,
∀1 ≤ j ≤ n. Therefore, ei ∈ Z(Z).

Remark 4. Notice that the center of a Zinbiel algebra can be given by a linear
combination of the basis vectors associated to the type of vertices indicated in
Proposition 2. For example, the 3-dimensional Zinbiel algebra Z of Example
1 verifies Z(Z) = span{e2 − e3}

Proposition 3. Let G be the combinatorial structure associated with a Zinbiel
algebra Z. Then, the derived algebra of Z is given by

DZ = span

{∑
i∈Υ

chi,ieh

}
∪ span

{
cji,jej + cki,jek, c

j
j,iej + ckj,iek | j ∈ Π

}
, where

Υ is the set of non-simple vertices (vertices with a loop) and Π is the set of
vertices that are not sources.
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Proof. Let us assume that G = (V,E) with V = {1, . . . , n}, therefore B =
{ek}nk=1 is a basis of Z. First, if i is a non-simple vertex, then [ei, ei] =
n∑
h=1

chi,ieh. Consequently,

n∑
h=1

chi,ieh ∈ DZ. From now on, we will only consider

simple vertices. In case that i is a source, then cij,i = cii,j = 0, ∀1 ≤ j ≤ n.
Therefore, ei /∈ DZ. If i is not a source, then ∃j with 1 ≤ j ≤ n such
that (cii,j , c

i
j,i) 6= (0, 0). Consequently, cii,j ei , c

i
j,i ei ∈ DZ. Moreover, if i

is a vertex in a full triangle with vertices {i, j, k}, then it may happen that
(cki,j , c

k
j,i) 6= (0, 0), so we would have to consider the terms cii,j ei + cki,j ek and

cij,i ei + ckj,i ek.

5 Zinbiel algebras and (pseudo)digraphs

In this section, we study the structure of (pseudo)digraphs associated with
Zinbiel algebras. For each case, we analyze the type of Zinbiel algebra accord-
ing to its solvability and isomorphism class. Let Z be a Zinbiel algebra with
basis B such that the combinatorial structure G associated with (Z,B) con-
sists of a (pseudo)digraph; that is, there are no triangles in G. This assertion
is equivalent to affirm that the law of Z with respect to the basis B = {ei}ni=1

is given by

[ei, ej ] = cii,jei + cji,jej , 1 ≤ i 6= j ≤ n; [ek, ek] =

n∑
h=1

chk,keh (1)

and the rest of products are null.

Proposition 4. The unique (pseudo)digraph associated with a 1-dimensional
Zinbiel algebra is that formed by an isolated vertex.

Remark 5. Clearly, there is only one isomorphism class, Z1, which corre-
sponds to the 1-dimensional abelian Zinbiel algebra.

Proposition 5. If G is a (pseudo)digraph of 2 vertices, then G is associ-
ated with a 2-dimensional Zinbiel algebra Z if and only if G is isomorphic to
configurations a), b) or j) in Figure 4. The rest of configurations cannot be
associated with Zinbiel algebras.

Proof. Figure 4 includes all the possible (pseudo)digraphs of two vertices.
Configuration c) cannot be associated with a Zinbiel algebra since Z(e1, e1, e1) =
Z(e1, e1, e2) = Z(e2, e2, e2) = 0 implies that there is no loop on vertex 1. Con-
figurations d), e) and f) cannot be associated with a Zinbiel algebra since
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Figure 4: Pseudodigraphs with two vertices.

Z(e1, e2, e1)= Z(e2, e1, e1) = 0 implies the non-existence of edges from vertex
1 into vertex 2. Finally, configurations g), h) and i) cannot be associated with a
Zinbiel algebra since Z(e2, e1, e2) = Z(e1, e2, e2) = 0 implies the non-existence
of edges from vertex 2 into vertex 1.

Any other configuration in Figure 4 is associated with a Zinbiel algebra if
and only if the following restrictions hold for each of them

i) Configuration a): No constraints.

ii) Configuration b): c11,1 = 0 ∧ c21,1 6= 0.

iii) Configuration j): c11,1 =
(c12,1)2

c12,2
∧ c21,1 = − (c12,1)3

(c12,2)2
∧ c11,2 = c12,1 ∧ c21,2 =

− (c12,1)2

c12,2
∧ c22,1 = − (c12,1)2

c12,2
∧ c22,2 = −c12,1.

Proposition 6. Under the assumptions in Proposition 5,

• Configuration a) is associated with the abelian 2-dimensional Zinbiel al-
gebra.

• Configurations b) and j) are associated with 2-step nilpotent Zinbiel al-
gebras.

Proof. Let Z be the Zinbiel algebra associated with Configuration b). From
Proposition 5, Z2 = Z2 = span(e2) is an abelian ideal and, hence, Z3 = Z3 =
{0}. Consequently, Z is 2-step nilpotent. On the other hand, if Z is the Zinbiel
algebra associated with Configuration j), Proposition 5 implies that

Z2 = Z2 = span

(
(c12,1)2

c12,2
e1 −

(c12,1)3

(c12,2)2
e2, c

1
2,1e1 −

(c12,1)2

c12,2
e2, c

1
2,2e1 − c12,1e2

)
=

span

(
e1 −

c12,1
c12,2

e2

)
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Moreover,[
e1, e1 −

c12,1
c12,2

e2

]
=

(c12,1)2

c12,2
e1−

(c12,1)3

(c12,2)2
e2−

c12,1
c12,2

(
c12,1e1 −

(c12,1)2

c12,2
e2

)
= 0 and

[
e2, e1 −

c12,1
c12,2

e2

]
= [e2, e1]−

c12,1
c12,2

[e2, e2] = 0

Therefore, Z3 = Z3 = {0} and Z is a 2-step nilpotent Zinbiel algebra.

Now, we study the isomorphism class for Zinbiel algebras associated with
Configurations b) and j) from Figure 4. Note that Zinbiel algebras associated
with Configuration a) correspond to the 2-dimensional abelian Zinbiel algebra
and its isomorphism class is denoted by Z2

a.

Proposition 7. Zinbiel algebras associated with Configurations b) and j) from
Figure 4 belong to the isomorphism class Z2

b = span(e1, e2) with law [e1, e1] =
e2.

Proof. First, we prove that Zinbiel algebras associated with Configurations b)
and j) are isomorphic each other. Let Z2

j be a Zinbiel algebra associated with
Configuration j). According to Proposition 5, its law can be expressed as

[w1, w1] =
(c12,1)2

c12,2
w1 −

(c12,1)3

(c12,2)2
w2, [w1, w2] = [w2, w1] = c12,1w1 −

(c12,1)2

c12,2
w2

[w2, w2] = c12,2w1 − c12,1w2

By considering the basis change φ : Z2
j → Z2

j given by v1 = φ(w1) = w2;

v2 = φ(w2) = w1 −
c12,1
c12,2

w2, we obtain the following expression for the law

[v1, v1] = c12,2v2, [v1, v2] = [v2, v1] = [v2, v2] = 0.

Finally, to obtain the law of Z2
b , we only have to apply the basis change

φ′ : Z2
j → Z2

j given by e1 = φ′(v1) = 1
c12,2

v1; e2 = φ′(v2) = 1
c12,2

v2.

Proposition 8. If G is a non-connected (pseudo)digraph of 3 vertices, then
G is associated with a 3-dimensional Zinbiel algebra Z if and only if G is
isomorphic to Configurations i), ii), iii), xvii) or xviii) from Figure 5. Any
other configuration in Figure 5 cannot be associated with Zinbiel algebras.
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Figure 5: Disconnected (pseudo)digraphs with 3 vertices.

Proof. Figure 5 includes all the possible disconnected (pseudo)digraphs of
three vertices. Using an analogous reasoning to that given for Configuration
c) in the proof of Proposition 5, it is easy to prove that Configuration iv) can-
not be associated with a Zinbiel algebra. Moreover, Configurations v) to xii)
are not associated with Zinbiel algebras since Z(e2, e2, e3) = Z(e2, e3, e2) =
Z(e3, e2, e2) = 0 implies c32,3 = c33,2 = 0 and, hence, there should be no edge
from vertex 2 to vertex 3. Finally, Configurations xiii) to xvi) cannot be asso-
ciated with Zinbiel algebras since Z(e2, e3, e3) = Z(e3, e2, e3) = Z(e3, e3, e2) =
Z(e2, e2, e3) = 0 implies that there is no double edge between vertices 2 and
3.

Any other configuration from Figure 5 is associated with a Zinbiel algebra
if and only if the following restrictions hold for each of them

• Configuration i): No constraints.

• Configuration ii): c11,1 = 0∧ (c21,1 6= 0 ∨ c31,1 6= 0).

• Configuration iii): c11,1 = c31,1 = c13,3 = c33,3 = 0 ∧ c21,1 6= 0 ∧ c23,3 6= 0.

• Configuration xvii): c12,2 = 0∧c33,2 = −c22,2 = c32,3∧c32,2 = − (c32,3)2

c23,2
∧c22,3 =

−c33,3 = c23,2 ∧ c13,3 = 0 ∧ c23,3 = − (c23,2)2

c32,3
∧ c23,2 6= 0 6= c32,3.

• Configuration xviii): c11,1 = c12,2 = c13,3 = 0∧ c33,2 = −c22,2 = c32,3 ∧ c22,3 =

−c33,3 = c23,2 ∧ c21,1 =
c31,1c

2
3,2

c32,3
∧ c32,2 = − (c32,3)2

c23,2
∧ c23,3 = − (c23,2)2

c32,3
∧ c31,1 6=

0 6= c23,2 6= 0 6= c32,3.
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Proposition 9. Under the assumptions in Proposition 8,

• Configuration i) is associated with the abelian 3-dimensional Zinbiel al-
gebra.

• Configurations ii), iii), xvii) and xviii) are associated with 2-step nilpo-
tent Zinbiel algebras.

Proof. Let Z be a Zinbiel algebra associated with Configuration ii). According
to Proposition 8, Z2 = Z2 = span(c21,1e2+c31,1e3) is an abelian ideal and, hence,
Z3 = Z3 = {0}. Consequently, Z is 2-step nilpotent.

The reasoning for Configuration iii) is analogous to that for Configuration
b) in Proposition 6.

Next, if Z denotes the Zinbiel algebra associated with Configuration xviii),
then, according to Proposition 8, we obtain

[e1, e1] = −
c31,1
c23,2

[e3, e3], [e2, e2] =
(c32,3)2

(c23,2)2
[e3, e3], [e2, e3] = [e3, e2] = −

c32,3
c23,2

[e3, e3]

Therefore, Z2 = Z2 = span([e3, e3]). In addition,

[e1, [e3, e3]] = 0;

[e2, [e3, e3]] = −
(c23,2)2

c32,3
[e2, e2] + c23,2[e2, e3] = −c32,3[e3, e3] + c32,3[e3, e3] = 0;

[e3, [e3, e3]] = −
(c23,2)2

c32,3
[e3, e2]− c23,2[e3, e3] = +c23,2[e3, e3] + c23,2[e3, e3] = 0.

Therefore, Z3 = Z3 = {0} and Z is 2-step nilpotent. An analogous reasoning
can be used for the proof of Configuration xvii).

Proposition 10. Let G be a connected (pseudo)digraph of 3 vertices. Then,
G cannot be associated with any Zinbiel algebra.

Proof. First, we prove the non-existence of Zinbiel algebras associated with
connected digraphs of three vertices (see Figure 6 for all the possible digraphs).
It suffices to indicate the Zinbiel identities which involve that the weight of
some edge in the digraph is zero and, hence, there does not exist that edge.
Table 1 includes the list of those Zinbiel identities for each configuration and
the non-existing edge (i.e. its weight is zero).

Next, we prove that no pseudodigraph of 3 vertices is associated with a
Zinbiel algebra. To do so, we should consider all the possibilities by taking
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Figure 6: Connected digraphs with 3 vertices.

Conf. Zinbiel identities Non-existing Edge
1 Z(e1, e2, e1) = Z(e2, e1, e3) = Z(e3, e2, e3) = 0 1 → 2 or 3 → 2
2 Z(e1, e2, e1) = Z(e2, e3, e2) = Z(e3, e1, e2) = 0 1 → 2 or 2 → 3
3 Z(e1, e2, e2) = Z(e2, e1, e2) = 0 2 → 1
4 Z(e3, e2, e3) = Z(e2, e1, e3) = Z(e1, e3, e2) = 0 3 → 2
5 Z(e3, e2, e2) = Z(e2, e3, e2) = 0 2 → 3

6
Z(e1, e2, e3) = Z(e2, e1, e3) = Z(e2, e3, e1) =

Z(e3, e2, e1) = 0
3 → 2

7
Z(e2, e1, e2) = Z(e1, e3, e1) = Z(e3, e2, e1) =

Z(e3, e2, e3) = 0
2 → 1 or 1 → 3

8 Z(e1, e2, e1) = Z(e2, e1, e1) = 0 2 → 1
9 Z(e1, e2, e2) = Z(e2, e1, e2) = 0 1 → 2
10 Z(e1, e2, e1) = Z(e2, e1, e1) = 0 1 → 2

11
Z(e2, e1, e2) = Z(e1, e3, e1) = Z(e1, e2, e3) =

Z(e2, e3, e1) = 0
2 → 1 or 3 → 2 or 1 → 3

12
Z(e3, e1, e3) = Z(e1, e2, e3) = Z(e2, e1, e3) =

Z(e3, e2, e1) = 0
2 → 3 or 3 → 1

13 Z(e1, e2, e1) = Z(e2, e1, e1) = 0 1 → 2

Table 1: Zinbiel identities involving the non-existence of some edge in the
configuration.
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a configuration from Figure 6 and adding loops. Due to reasons of length,
we only give an explicit proof for the case of Configuration 3); an analogous
reasoning can be given for the rest of cases. Consider Configuration 3) but
inserting a loop on each vertex. From Z(e2, e1, e2) = Z(e2, e3, e2) = 0, we can
conclude that c12,1 = c32,3 = 0. By using Z(e2, e2, e2) = Z(e1, e1, e2) = 0, we
obtain c22,2 = c21,1 = 0. Finally, from Z(e1, e1, e1) = 0, c11,1 = 0 holds and
therefore c11,2 = 0 according to Z(e1, e2, e2) = 0; this comes into contradiction
with the fact that there exists an edge from vertex 2 into vertex 1.

Now, we study the isomorphism classes of Zinbiel algebras associated with
Configurations ii), iii), xvii) and xviii) from Figure 5. Notice that Zinbiel
algebras associated with Configuration i) from Figure 5 correspond to the 3-
dimensional abelian Zinbiel algebra, and its isomorphism class is denoted by
Z3
i).

Proposition 11. Zinbiel algebras associated with Configurations ii) and xvii)
from Figure 5 belong to the isomorphism class Z3

ii) = span(e1, e2, e3) defined

by the law [e1, e1] = e3.

Proof. First, we have to prove that Zinbiel algebras associated with Config-
urations ii) and xvii) are isomorphic each other. Let Z3

ii) and Z3
xvii) be the

Zinbiel algebras associated with Configurations ii) and xvii) , respectively.
According to Proposition 8, the law of Z3

xvii) can be expressed as

[w2, w2] = −
c32,3
c23,2

(c23,2w2 + c32,3w3), [w2, w3] = [w3, w2] = c23,2w2 + c32,3w3

[w3, w3] = −
c23,2
c32,3

(c23,2w2 + c32,3w3).

If we consider the basis change φ : Z3
xvii) → Z3

xvii) given by v1 = φ(w1) = w3;

v2 = φ(w2) = w1; v3 = φ(w3) = − c
2
3,2

c32,3
(c23,2w2 + c32,3w3), we obtain the unique

non-zero bracket [v1, v1] = v3. Analogously, if we consider the law of Z3
ii) given

by [e1, e1] = c21,1e2 + c31,1e3 with (c21,1, c
3
1,1) 6= (0, 0), we only need to apply the

basis change φ′ : Z3
ii) → Z3

ii) given by v1 = φ′(e1) = e1; v2 = φ′(e2) = v2;

v3 = φ′(e3) = c21,1v2 + c31,1v3.

Proposition 12. Zinbiel algebras associated with Configuration iii) from Fig-
ure 5 correspond to the isomorphism class Z3

iii) = span(e1, e2, e3) defined by

the law [e1, e1] = [e3, e3] = e2.
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Proof. For Configuration iii), it suffices to consider the basis change φ : Z→ Z

given by e1 = φ(v1) =
√
c23,3v1; e2 = φ(v2) = c23,3c

2
1,1v2; e3 = φ(v3) =

√
c21,1v3,

where Z is the Zinbiel algebra associated with Configuration iii), whose law
is [v1, v1] = c21,1v2, [v3, v3] = c23,3v2.

Theorem 1. Let G be a (pseudo)digraph with n vertices (n > 3). Then, G is
associated with a Zinbiel algebra if and only if G satisfies one of the following
conditions

(i) G is given by n isolated vertices with, at most, (n− 1) loops.

(ii) G contains a unique connected component corresponding to Configura-
tion j) from Figure 4 and the rest of connected components are isolated
vertices (with or without loops).

Moreover, configurations (i) and (ii) correspond to abelian or 2-step nilpo-
tent Zinbiel algebras.

Proof. Let us suppose that G is a (pseudo)digraph with n vertices (n > 3)
verifying condition (i). We prove that G is associated with a Zinbiel algebra.
We denote by {i1, . . . , in} the vertex set of G and consider an n-dimensional
vector space V , with basis {ei1 , . . . , ein}. We define in V the inner products
given in (1).

First, if we consider vertices without loop, then the corresponding Zinbiel
identities are trivially satisfied. Assume that we have a loop on vertex ij , with
1 ≤ j ≤ n and that i` is a vertex without loop. From Z(eij , eij , eij ) =

−cijij ,ij (
∑n
k=1 c

ik
ij ,ij

ek), we obtain that c
ij
ij ,ij

= 0. Next, Z(eij , eij , eim) =

cimij ,ij (
∑n
k=1 c

ik
im,im

ek) = 0 implies that cimij ,ij = 0, for every 1 ≤ m 6= ` ≤ n.

Therefore, we obtain a Zinbiel algebra with these restrictions: c
ij
ij ,ij

= cimij ,ij =

0, ∀1 ≤ m 6= ` ≤ n and ci`ij ,ij 6= 0, for each vertex ij containing a loop and
every vertex i` without loop.

Next, we assume that G is a (pseudo)digraph with n vertices (n > 3)
verifying condition (ii). Let us prove that G is associated with a Zinbiel
algebra. We denote the vertices of G by {i, j, k3, . . . , kn}, where ij is a double
edge with loops and {k3, . . . , kn} is a set of isolated vertices. It is easy to prove
that, from the Zinbiel identities, we obtain

cii,i =
(cij,i)

2

cij,j
, cji,i = −

(cij,i)
3

(cij,j)
2
, cii,j = cij,i, c

j
i,j = −

(cij,i)
2

cij,j
, cjj,i = −

(cij,i)
2

cij,j
,

cjj,j = −cij,i, c
kh
i,i = ckhj,j = 0, for 3 ≤ h ≤ n.
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Therefore, we obtain a Zinbiel algebra with the previous restrictions and ad-
ditionally the following ones: cji,i 6= 0 6= cij,j . Note that the vertices {kh}nh=3

may have loops or not.
Conversely, we suppose that G is a (pseudo)digraph with n vertices (n > 3)

and associated with a Zinbiel algebra. We prove that G must be as described
in (i) or (ii). Let {i, j, k} be three arbitrary vertices of G. According to
Proposition 8, we only have 4 possible allowed configurations for these three
vertices. Moreover, we cannot have two double edges from three vertices since
Configuration 6) from Figure 6 is forbidden. Consequently, and from these
considerations, it follows that G must be a set of n isolated vertices with a
maximum of (n−1) loops or a (pseudo)digraph formed by a double edge with
loops plus isolated vertices.

Finally, if G is formed by isolated vertices with no loops, then we obtain
an abelian Zinbiel algebra and otherwise, we can use an analogous reasoning
to that considered in the proof of Proposition 9 to prove that Zinbiel algebras
are 2-step nilpotent.

6 Combinatorial structures of three vertices associated
with Zinbiel algebras

In this section, we study the combinatorial structures of 3 vertices including
full triangles and being associated with Zinbiel algebras. We also analyze
the isomorphism classes for those configurations. To do so, we consider a set
of three vertices, {i, j, k}, and define a vector space V endowed with basis
{ei, ej , ek} and law given by the following brackets

[eh, eh] = cih,hei + cjh,hej + ckh,hek, forh = i, j, k;

[ei, ej ] = cii,jei + cji,jej + cki,jek, [ej , ei] = cij,iei + cjj,iej + ckj,iek,

[ei, ek] = cii,kei + cji,kej + cki,kek, [ek, ei] = cik,iei + cjk,iej + ckk,iek,

[ej , ek] = cij,kei + cjj,kej + ckj,kek, [ek, ej ] = cik,jei + cjk,jej + ckk,jek.

where the structure constants may be zero or not. The main difficulty in this
study consists in determining under what conditions the previous vector space
is a Zinbiel algebra. By imposing the Zinbiel identities, we obtain an equation
system which has to be solved. Therefore, we have obtained the following

Proposition 13. Let G be a combinatorial structures of three vertices contain-
ing full triangles. Then, G is associated with a 3-dimensional Zinbiel algebra Z

if and only if G is isomorphic to configurations shown in Figure 7. Moreover,
the restrictions for each configuration are
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Figure 7: Combinatorial structures of 3 vertices associated with Zinbiel alge-
bras.

k) (c12,3, c
1
3,2) 6= (0, 0)

l) c22,2 = 0, c32,2(2c12,3 − c13,2) = 0, (c12,3, c
1
3,2) 6= (0, 0), (c12,2, c

3
2,2) 6= (0, 0)

m) c22,2 = c32,2 = c23,3 = c33,3 = 0, c12,2 6= 0, c13,3 6= 0, (c12,3, c
1
3,2) 6= (0, 0)

n) c12,2 =
−c32,3(2c32,3c

1
3,3 + 3c13,2c

2
3,2)

(c23,2)2
, c22,2 = −c32,3, c32,2 = −

(c32,3)2

c23,2
, c12,3 =

c32,3c
1
3,3 + 2c13,2c

2
3,2

c23,2
, c22,3 = c23,2, c33,2 = c32,3, c23,3 = −

(c23,2)2

c32,3
, c33,3 = −c23,2,

(c12,3, c
1
3,2) 6= (0, 0), c22,3 6= 0, c32,3 6= 0,

o) c11,1 = −
(c13,1)2c12,2

(c13,2)2
, c21,1 =

(c13,1)3c12,2
(c13,2)3

, c31,1 = −
(c13,1)3(c12,2)2

(c13,2)4
, c11,3 = c13,1,

c21,3 =
−(c13,1)2

c13,2
, c31,3 =

(c13,1)2c12,2
(c13,2)2

, c22,2 =
−c12,2c13,1
c13,2

, c32,2 =
(c12,2)2c13,1

(c13,2)2
,

c12,3 = c13,2, c22,3 = −c13,1, c32,3 =
c12,2c

1
3,1

c13,2
, c23,1 =

−(c13,1)2

c13,2
, c33,1 =

(c13,1)2c12,2
(c13,2)2

, c23,2 = −c13,1, c33,2 =
c12,2c

1
3,1

c13,2
, c13,2 6= 0, c13,1 6= 0, c12,2 6= 0;

p) c11,1 = −c31,3, c21,1 =
−c31,3c23,1
c13,1

, c31,1 = −
(c31,3)2

c13,1
, c11,3 = c13,1, c21,3 =

c23,1, c12,2 =
−c31,3c23,2c13,1

(c23,1)2
, c22,2 = −

c31,3c
2
3,2

c23,1
, c32,2 = −

(c31,3)2c23,2
(c23,1)2

, c12,3 =
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c23,2c
1
3,1

c23,1
, c22,3 = c23,2, c32,3 =

c31,3c
2
3,2

c23,1
, c33,1 = c31,3, c13,2 =

c23,2c
1
3,1

c23,1
, c33,2 =

c31,3c
2
3,2

c23,1
, c13,3 = −

c13,1(c13,1 + c23,2)

c31,3
, c23,3 = −

c23,1(c13,1 + c23,2)

c31,3
, c33,3 = −c13,1−

c23,2, c13,1 6= 0, c23,1 6= 0, c31,3 6= 0, c23,2 6= 0, c13,1 6= −c23,2;

q) c11,2 = −c33,2, c21,2 =
c22,3c

3
3,2

c13,2
, c31,2 = −

(c33,2)2

c13,2
, c11,3 = −c22,3, c21,3 =

(c22,3)2

c13,2
, c31,3 = −

c22,3c
3
3,2

c13,2
, c12,1 = c33,2, c22,1 = −

c22,3c
3
3,2

c13,2
, c32,1 =

(c33,2)2

c13,2
,

c12,3 = −c13,2, c32,3 = −c33,2, c13,1 = c22,3, c23,1 = −
(c22,3)2

c13,2
, c33,1 =

c22,3c
3
3,2

c13,2
,

c23,2 = −c22,3, c13,2 6= 0, c22,3 6= 0, c33,2 6= 0

r) c11,1 = −
c33,1(c12,3 + c13,2)

c13,2
, c21,1 =

c13,1c
3
3,1(c12,3 + c13,2)

(c13,2)2
, c11,2 = −

c33,1c
1
3,2

c13,1
,

c21,2 = c33,1, c31,2 = −
(c33,1)2c13,2

(c13,1)2
, c11,3 =

c12,3c
1
3,1

c13,2
, c21,3 = −

c12,3(c13,1)2

(c13,2)2
,

c31,3 =
c12,3c

3
3,1

c13,2
, c12,1 = −

c12,3c
3
3,1

c13,1
, c22,1 =

c12,3c
3
3,1

c13,2
, c32,1 = −

c12,3(c33,1)2

(c13,1)2
,

c22,3 = −
c12,3c

1
3,1

c13,2
, c32,3 =

c12,3c
3
3,1

c13,1
, c23,1 = −

(c13,1)2

c13,2
, c23,2 = −c13,1, c33,2 =

c33,1c
1
3,2

c13,1
, c31,1 = −

(c33,1)2(c12,3 + c13,2)

c13,2c
1
3,1

, c13,2 6= 0, c13,1 6= 0

s) c11,1 =
(c13,1 + c23,2)2

c13,3
, c21,1 = −

(c13,1 + c23,2)2c23,2
c12,3c

1
3,3

, c31,1 = −
(c13,1 + c23,2)3

(c13,3)2
,

c11,2 = −
(c13,1 + c23,2)c12,3

c13,3
, c21,2 =

c23,2(c13,1 + c23,2)

c13,3
, c31,2 =

(c13,1 + c23,2)2c12,3
(c13,3)2

,

c11,3 = c13,1 + 2c23,2, c21,3 = −
c23,2(c13,1 + 2c23,2)

c12,3
, c12,1 =

(c13,1 + c23,2)c12,3
c13,3

,

c22,1 = −
c23,2(c13,1 + c23,2)

c13,3
, c32,1 = −

(c13,1 + c23,2)2c12,3
(c13,3)2

, c22,3 = −c23,2, c32,3 =

−
(c13,1 + c23,2)c12,3

c13,3
, c23,1 = −

c13,1c
2
3,2

c12,3
, c33,1 = −

c13,1(c13,1 + c23,2)

c13,3
, c13,2 =

−c12,3, c33,2 =
(c13,1 + c23,2)c12,3

c13,3
, c23,3 = −

c23,2c
1
3,3

c12,3
, c33,3 = −c13,1−c23,2,c31,3 =



FINITE-DIMENSIONAL ZINBIEL ALGEBRAS AND COMBINATORIAL
STRUCTURES 84

−
(c13,1 + c23,2)(c13,1 + 2c23,2)

c13,3
, c13,3 6= 0, c12,3 6= 0

t) c11,1 = −
c33,1(c22,2 + c33,2)

c33,2
, c21,1 =

c22,2(c33,1)2

(c33,2)2
, c11,2 = −c22,2 − c33,2, c21,2 =

c22,2c
3
3,1

c33,2
, c31,2 =

c31,1c
3
3,2

c33,1
, c11,3 = −

(c33,1)2(c22,2 + c33,2)

c31,1c
3
3,2

, c21,3 =
c22,2(c33,1)3

(c33,2)2c31,1
,

c31,3 = c33,1, c12,1 = −c22,2 − c33,2, c22,1 =
c22,2c

3
3,1

c33,2
, c32,1 =

c31,1c
3
3,2

c33,1
, c12,2 =

−
(c22,2 + c33,2)c33,2

c33,1
, c32,2 =

c31,1(c33,2)2

(c33,1)2
, c12,3 = −

c33,1(c22,2 + c33,2)

c31,1
, c22,3 =

c22,2(c33,1)2

c33,2c
3
1,1

, c32,3 = c33,2, c13,1 = −
(c33,1)2(c22,2 + c33,2)

c31,1c
3
3,2

, c23,1 =
c22,2(c33,1)3

(c33,2)2c31,1
,

c13,2 = −
c33,1(c22,2 + c33,2)

c31,1
, c23,2 =

c22,2(c33,1)2

c33,2c
3
1,1

, c13,3 = −
(c33,1)3(c22,2 + c33,2)

c33,2(c31,1)2
,

c23,3 =
(c33,1)4c22,2

(c33,2)2(c31,1)2
, c33,3 =

(c33,1)2

c31,1
, c33,2 6= 0, c33,1 6= 0, c31,1 6= 0

Proof. Similar to the proof of Proposition 10.

Now, we study the isomorphism class for Zinbiel algebras associated with
configurations shown in Figure 7.

Theorem 2. Let Z3
α be the Zinbiel algebra associated with Configuration α,

where α ∈ {k, l,m, n, o, p, q, r, s, t} from Figure 7 and let Z3
xviii) be the Zinbiel

algebra associated to Configuration xviii) from Figure 5. Then, we have the
following isomorphisms (∼=)

1) Z3
m
∼= Z3

p
∼= Z3

t
∼= Z3

xviii)

2) Z3
l
∼= Z3

n
∼= Z3

o
∼= Z3

r
∼= Z3

s

Proof. We start proving 1) that Z3
m
∼= Z3

xviii). According to Proposition 8,

the law of Z3
xviii) is given by

[v1, v1] =
c31,1c

2
3,2

c32,3
v2 + c31,1v3, [v2, v2] = −c32,3v2 −

(c32,3)2

c23,2
v3,

[v3, v3] = −
(c23,2)2

c32,3
v2 − c23,2v3, [v2, v3] = [v3, v2] = c23,2v2 + c32,3v3
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By considering the basis change φ : Z3
xviii) → Z3

xviii) given by e1 = φ(v1) =

c23,2v2 + c32,3v3; e2 = φ(v2) = v2 + 2c32,3v1; e3 = φ(v3) = −v3 + 1
c31,1

v1,

[e2, e2] = c32,3(4c31,1−
1

c23,2
)e1, [e3, e3] =

1

c32,3
(

1

c31,1
−c23,2)e1, [e2, e3] = [e3, e2] = e1

With a trivial scale on the coefficients, we obtain the law of Z3
m. In order to

prove 2), we bear in mind that, from Proposition 13, the law of Z3
n is

[v2, v2] = −
c32,3(2c32,3c

1
3,3 + 3c13,2c

2
3,2)

(c23,2)2
v1 − c32,3v2 −

(c32,3)2

c23,2
v3,

[v3, v3] = c13,3v1 −
(c23,2)2

c32,3
v2 − c23,2v3, [v3, v2] = c13,2v1 + c23,2v2 + c32,3v3

[v2, v3] =
c32,3c

1
3,3 + 2c13,2c

2
3,2

c23,2
v1 + c23,2v2 + c32,3v3

Next, we consider the basis change φ : Z3
n → Z3

n given by e1 = φ(v1) = v1;
e2 = φ(v2) = c23,2v2 + c32,3v3; e3 = φ(v3) = v3, we obtain the law

[e3, e3] = c13,3e1 −
c23,2
c32,3

e2, [e2, e3] = 2[e3, e2] = 2(c32,3c
1
3,3 + c13,2c

2
3,2)e1

Relabeling the vertices, we get the law of Z3
l . We continue proving that Z3

o
∼=

Z3
l . According to Proposition 13, the non-zero brackets of Z3

o are

[v1, v1] = −
(c13,1)2c12,2

(c13,2)2
v1 +

(c13,1)3c12,2
(c13,2)3

v2 −
(c13,1)3(c12,2)2

(c13,2)4
v3,

[v1, v3] = [v3, v1] = c13,1v1 −
(c13,1)2

c13,2
v2 +

(c13,1)2c12,2
(c13,2)2

v3,

[v2, v2] = c12,2v1 −
c12,2c

1
3,1

c13,2
v2 +

(c12,2)2c13,1
(c13,2)2

v3,

[v2, v3] = [v3, v2] = c13,2v1 − c13,1v2 +
c12,2c

1
3,1

c13,2
v3

Now, we consider the basis change φ : Z3
o → Z3

o given by e1 = φ(v1) = v3;

e2 = φ(v2) = c12,2v1 −
c13,1c

1
2,2

c13,2
v2 +

c13,1(c12,2)2

(c13,2)2
v3; e3 = φ(v3) = v1, we obtain the

law

[e3, e3] = −
(c13,1)2

(c13,2)2
e2, [e1, e3] = [e3, e1] =

c13,1
c13,2

e2
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After exchanging subindexes, we obtain the law of Z3
l . By using the same

reasoning, one can prove the isomorphism of statement 3). Next, we prove
statement 4). In order to do so, we consider the law of Z3

r obtained from
Proposition 13:

[v1, v1] = −
c33,1(c12,3 + c13,2)

c13,2
v1 +

c13,1c
3
3,1(c12,3 + c13,2)

(c13,2)2
v2 −

(c33,1)2(c12,3 + c13,2)

c13,2c
1
3,1

v3,

[v1, v2] = −
c33,1c

1
3,2

c13,1
v1+c33,1v2−

(c33,1)2c13,2
(c13,1)2

v3, [v1, v3] =
c12,3c

1
3,1

c13,2
v1−

c12,3(c13,1)2

(c13,2)2
v2

+
c12,3c

3
3,1

c13,2
v3, [v2, v1] = −

c12,3c
3
3,1

c13,1
v1 +

c12,3c
3
3,1

c13,2
v2 −

c12,3(c33,1)2

(c13,1)2
v3,

[v2, v3] = c12,3v1 −
c12,3c

1
3,1

c13,2
v2 +

c12,3c
3
3,1

c13,1
v3,

[v3, v1] = c13,1v1 −
(c13,1)2

c13,2
v2 + c33,1v3, [v3, v2] = c13,2v1 − c13,1v2 +

c33,1c
1
3,2

c13,1
v3

Let us consider v = v1 −
c13,1
c13,2

v2 +
c33,1
c13,1

v3. Then,

[v1, v1] = −
c33,1(c12,3 + c13,2)

c!3,2
v, [v1, v2] = −

c33,1c
1
3,2

c13,1
v, [v1, v3] =

c12,3c
1
3,1

c13,2
v,

[v2, v1] = −
c12,3c

3
3,1

c13,1
v, [v2, v3] = c12,3v, [v3, v1] = c13,1v, [v3, v2] = c13,2v

Now, we consider the basis change φ : Z3
r → Z3

r given by e1 = φ(v1) = v1;
e2 = φ(v2) = v; e3 = φ(v3) = v3, we obtain the law

[e1, e1] = −
c33,1(c12,3 + c13,2)

c13,2
e2, [e1, e3] =

c12,3
c13,2

[e3, e1] =
c12,3c

1
3,1

c13,2
e2

Relabeling the vertices 1 and 2, the law of the algebra Z3
l is obtained. Finally,

with a similar reasoning, it is possible to prove that Z3
s
∼= Z3

l and Z3
t
∼= Z3

m.

Finally, we clarify how all the isomorphism classes obtained in Sections
5 and 6 correspond to those in the well-known classification of 2- and 3-
dimensional Zinbiel algebras. We will relate the notation given in [2, Theorem
1.7] with that used in this paper for the isomorphism classes.
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Z1 Z2
a Z2

b Z3
i) Z3

ii) Z3
iii)

A Q(0) Q(1) R(0, 0, 0, 0) R(1, 0, 0, 0) R(1, 0, 0, 1)

Z3
xviii) Z3

k Z3
l

R(α, 1, 1,
−c32,3
c23,2

) R(0, β, γ, 0) W(3)

Table 2: Comparison with the classification of 2- and 3-dimensional Zinbiel
algebras.

Remark 6. We have not included configuration q) from Figure 7 in Table 2,
since it corresponds to a Lie algebra with the following law:

[e1, e2] = −[e2, e1] = −c33,2e1 +
c22,3c

3
3,2

c13,2
e2 −

(c33,2)2

c13,2
e3,

[e1, e3] = −[e3, e1] = −c22,3e1 +
(c22,3)2

c13,2
e2 −

c22,3c
3
3,2

c13,2
e3,

[e2, e3] = −[e3, e2] = −c13,2e1 + c22,3e2 − c33,2e3

7 Algorithmic procedures

This section is devoted to introduce two algorithmic procedures: The first
one checks if a given combinatorial structure is associated or not with a Zin-
biel algebra; the second one, conversely, computes the (pseudo)digraph as-
sociated with a given finite-dimensional Zinbiel algebra starting from its law
when this is not providing full triangles. Let us note that the procedure pre-
sented in Subsection 7.1 is developed starting from the techniques to prove
the existence or non-existence of Zinbiel algebras associated with combinato-
rial (pseudo)digraphs in previous sections; moreover, this procedure has been
run later to check the theoretical results for dimensions 2 and 3.

7.1 Checking if a given combinatorial structure is associated with
a Zinbiel algebra

We have implemented this algorithmic procedure by using the symbolic com-
putation package Maple, working the implementation in version 12 or higher.
To do this, we have used the libraries linalg and combinat to activate com-
mands related to Linear and Combinatorial Algebra. This algorithmic proce-
dure consists of the following three steps:
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a) Defining the values of the structure constants according to the combina-
torial structure.

b) Generating the law which should be satisfied by the Zinbiel algebra,
starting from the structure constants.

c) Checking if the Zinbiel identities are satisfied for this law.

In order to develop the implementation, we use three subprocedures for the
two first steps and one main procedure for the last one. Before running the
procedure, we must restart all the variables and delete all the computations
saved in the kernel by using the command restart. The first step of this
algorithm is executed by the subprocedure assignment, which allows us to
define the dimension and the value of the structure constants of the vector
space associated with the combinatorial structure and to determine the candi-
date for the bracket product. To do so, assignment receives the following two
inputs: The list V with the vertices of the combinatorial structure as natural
numbers, and the set E with its weighted, directed edges. The elements of the
set E are inserted as [[i, j, k], l], denoting cki,j = l. As output, we obtain the
value of the variable dim with the dimension of the combinatorial structure
and also the value of all the non-zero structure constants.

> restart:

> assignment:=proc(V,E)

> local B,L;

> B:=[];L:=[];

> for x from 1 to nops(V) do

> B:=[op(B),e[x]]; od;

> assign(dim,nops(V));

> for i from 1 to nops(E) do

> assign(c[E[i][1][1],E[i][1][2],E[i][1][3]],E[i][2]); od;

> end proc:

Now, we can run the second subprocedure, named law, which receives two
natural numbers as inputs. These numbers represent the subindexes of two
vectors in the endowed vector space or, equivalently, two vertices from the
combinatorial structure. The subroutine computes the bracket of these two
vectors. In the implementation, we use a local variable, v, to save the value
of the bracket, which is computed by using the structure constants defined in
the previous subprocedure.

> law:=proc(i,j)

> local v; v:=0;

> for k from 1 to dim do

> if type(c[i,j,k],numeric)=true then

> v:=v+c[i,j,k]*e[k]; fi; od;

> v;

> end proc:
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Next, we implement the subprocedure called bracket to compute the prod-
uct between two arbitrary vectors expressed as linear combinations of the basis
vectors used in the previous subprocedure.

> bracket:=proc(u,v,n)

> local exp; exp:=0;

> for i from 1 to n do

> for j from 1 to n do

> exp:=exp + coeff(u,e[i])*coeff(v,e[j])*law(i,j); od; od;

> exp;

> end proc:

Finally, we show the implementation of the main procedure called Zinbiel,
which checks if the vector space is or is not a Zinbiel algebra. This procedure
receives as input the dimension n of the vector space Z and returns a message
which will be “True” in case that the vector space Z is a Zinbiel algebra and
“False” otherwise.

>Zinbiel:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i]; od;

> M:=permute(L,3);

> for j from 1 to nops(M) do

> eq[j]:=bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][3]],n)

-bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][3]],n),n)

-bracket(e[M[j][1]],bracket(e[M[j][3]],e[M[j][2]],n),n); od;

> N:=[seq(eq[k], k=1..nops(M))];

> for i from 1 to nops(N) do

> if N[i]<>0 then

> P:=[op(P),N[i]]; fi; od;

> if P=[] then return "True"

> else return "False"; if;

> end proc:

Example 3. To illustrate the algorithmic procedure, we show an example by
considering the combinatorial structure of Figure 2.

According to the notation that we are using in this algorithm, we have to
consider

> V=[1,2,3];

> E={[[1,1,2],1],[[1,1,3],-1],[[1,2,2],-1],[[1,2,3],1],[[1,3,2],-1],[[1,3,3],1]};

Now, we run all the procedures obtaining

> assignment(V,E);

> Zinbiel(dim);

> "True"

Therefore, the combinatorial structure is associated with a 3-dimensional
Zinbiel algebra.
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7.2 Obtaining (pseudo)digraphs associated with Zinbiel algebra

In this subsection, we show an algorithmic procedure that computes the
(pseudo)digraph associated with a given Zinbiel algebra with finite dimen-
sion. According to the notation previously used, we consider a n-dimensional
Zinbiel algebra Z with basis B and whose non-zero brackets are the ones given
in (1). In this way, there will be no full triangles in the configuration.

To implement the algorithm, we have used the symbolic computation pack-
age MAPLE 12, loading the libraries linalg, combinat, GraphTheory and
Maplets[Elements]. The first three libraries allow us to apply commands of
Linear Algebra, Combinatorics and Graph Theory, respectively; whereas the
last is used to display a message so that the user introduces the required input
in the first subprocedure, corresponding to the definition of the law of the
algebra Z. Our algorithm is based on the following four steps

1. Obtaining the bracket between basis vectors of B.

The implementation of this step is carried out by the subprocedure law2,
which receives as input the subindexes of two basis vectors in B. The
output is the bracket between these vectors. Moreover, conditional sen-
tences are necessary for the non-zero brackets. Since the subprocedure
must be completed by the user, according to the law of Z, we have added
a sentence at the beginning recalling this fact. We also have to restart
all the variables and delete the previous calculations before updating the
value of dim, which is the variable saving the dimension of Z.

> restart:

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets

of the algebra and its dimension in subprocedure law",

’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law2:=proc(i,j)

> if (i,j)=... then ...; fi;

> if ....

> else 0; fi;

> end proc;

The ellipsis in command assign are for dim(Z). The other suspension
points correspond to the introduction of the non-zero brackets of Z.

2. Computing the bracket between two arbitrary vectors given as a linear
combination of vectors from B.

We use the implementation of bracket shown in Subsection 7.1.
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3. Solving the equation system obtained when imposing the Zinbiel iden-
tity.

In this step we show the implementation of the routine Zinbiel2. This
one is devoted to checking if the vector space Z is a Zinbiel algebra or
not. The input is dim(Z) and the output is the solution of the equation
system obtained after imposing all the Zinbiel identities. In order to do
that we use the permutations of each 3 basis vectors. In case that the
system has no solution, then Z will not be a Zinbiel algebra. Otherwise,
the conditions over the structure constants cki,j will be obtained so that
Z is a Zinbiel algebra.

>Zinbiel2:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i,i]; od;

> M:=permute(L,3);

> for j from 1 to nops(M) do

> eq[j]:=bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][3]],n)

-bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][3]],n),n)

-bracket(e[M[j][1]],bracket(e[M[j][3]],e[M[j][2]],n),n); od;

> N:=[seq(eq[k], k=1..nops(M))];

> for k from 1 to nops(N) do

> for h from 1 to n do

> P:=[op(P),coeff(N[k],e[h])=0]; od; od;

>solve(P);

>end proc:

4. Drawing the (pseudo)digraph associated with Z.

In this last step we implement the routine drawing to represent the
(pseudo)digraph associated with the Zinbiel algebra obtained in the pre-
vious step. Firstly, for each solution generated by the main procedure
Zinbiel2 we execute the command associate in order to define the val-
ues of the structure constants. The input of this procedure drawing is
dim(Z) and the output is the drawing of the associated (pseudo)digraph.
To implement the procedure, we have to consider five local variables: E,
G, L, S and V. The list E saves all the edges of the (pseudo)digraph, G
is the variable used to generate such a (pseudo)digraph, list L will save
the vertices with loops, list V consists of the list of vertices in G, and S is
used to save the permutations of vertices in V chosen two by two. The
general idea of the implementation is to evaluate which edges appear in
the (pseudo)digraph studying if their weight is zero or not.

Let us note that Maple cannot draw loops within a pseudodigraph. In or-
der to solve this drawback, we have used the command HighlightVertex
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to change colour to dark blue for those vertices with loops. We use yellow
color for the remaining vertices.

>drawing:=proc(n)

> local E,G,L,S,V;

> L:=[];E:=[]; V:=[seq(i,i=1..n)]; S=permute(V,2);

> for i from 1 to nops(S) do

> if law(S[i][1],S[i][2])<>0 then

> E:={op(E),S[i]}; fi; od;

> for j from 1 to n do

> if law(j,j)<>0 then

> L:={op(L),[j,j]}; fi; od;

> G:=Digraph(V,E);

> for k from 1 to nops(L) do

> HighlightVertex(G,L[k]); od;

> DrawGraph(G);

>end proc:

Example 4. Now, we show an example with Configuration xvii) from Figure
5 with the 3-dimensional Zinbiel algebra given by the law

[e2, e3] = c22,3e2+c32,3e3; [e3, e2] = c23,2e2+c33,2e3; [e2, e2] = c12,2e1+c22,2e2+c32,2e3,

[e3, e3] = c13,3e1 + c23,3e2 + c33,3e3.

First, we have to complete the implementation of the subprocedure law2 as
follows

> if (i,j)=(2,2) then c221*e[1]+c222*e[2]+c223*e[3]; end if;

> if (i,j)=(2,3) then c231*e[1]+c232*e[2]+c233*e[3]; end if;

> if (i,j)=(3,2) then c321*e[1]+c322*e[2]+c323*e[3]; end if;

> if (i,j)=(3,3) then c331*e[1]+c332*e[2]+c333*e[3];

> else 0;

After that, we must run the subprocedure bracket and procedure Zinbiel2.
Now, if we evaluate the main procedure over the variable dim, we obtain the
restrictions

{c221=0,c222=-c233,c223=-c233^2/c322,c232=c322,c233=c233,c322=c322,c323=c233,

c331=0,c332=-c322^2/c233,c333=-c322}

From the previous output, we have obtained a family of Zinbiel algebras,
where c23,2 6= 0 and c32,3 6= 0. In fact, it can be proved that every algebra in this
family is isomorphic to the one with law

[e2, e2] = [e3, e3] = −e2 − e3; [e2, e3] = [e3, e2] = e2 + e3

Therefore we execute the order
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> assign({c221=0,c222=-1,c223=-1,c232=1,c233=1,c322=1,c323=1,c331=0,c332=-1,

c333=-1});

Finally, we evaluate the procedure drawing, obtaining Figure 8, which cor-
responds to Configuration xvii) from Figure 5.

> drawing(dim);

Figure 8: Digraph corresponding to Configuration xvii).

7.3 Computational and complexity study

Here, we develop a computational study of the algorithmic procedure carried
out in Subsection 7.2, which has been implemented with MAPLE 18, in an
Intel(R) Core(TM) i7-4510U CPU with a 2.60 GHz processor and 12.00 GB
of RAM. Table 3 shows computational data about the computing time and
memory used to complete the whole procedure starting from the value of
dim(Z).

For this computational study, we have considered the family of 2-step nilpo-
tent Zinbiel algebras associated with the generalization of configuration xvii)
from Figure 5.

Now, we show some brief statistics about the relation between the comput-
ing time and the memory used by the implementation of the previous proce-
dure. Figures 9 and 10 show, respectively, the behavior of the computing time
(C.T.) and used memory (U.M.) with respect to the dimension n. We can
see how the computing time increases faster than the used memory and both
of them fit a positive exponential model. Figure 11 represents a frequency
diagram for the quotient between used memory and computing time. In this
case, the behavior corresponds to a negative exponential model.

Finally, we compute the complexity of the algorithm taking into account
the number of operations carried out in the worst case. We have used the
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Input Computing time Used memory
n = 3 0.17 s 4.81 MB
n = 4 0.29 s 4.93 MB
n = 5 0.42 s 5.18 MB
n = 6 0.59 s 5.31 MB
n = 7 1.15 s 6.56 MB
n = 8 1.62 s 7.62 MB
n = 9 2.68 s 10.06 MB
n = 10 4.01 s 12.62 MB
n = 11 6.45 s 14.62 MB
n = 12 9.96 s 20.93 MB
n = 13 15.64 s 26.68 MB

Table 3: Computing time and used memory.

Figure 9: Graph for the C.T. with respect to dimension.

Figure 10: Graph for the U.M. with respect to dimension.
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Figure 11: Graph for quotients U.M./C.T. with respect to dimension.

big O notation to express the complexity. To recall the big O notation, the
reader can consult [9]: Given two functions f, g : R → R, we could say that
f(x) = O(g(x)) if and only if there exist M ∈ R+ and x0 ∈ R such that
|f(x)| < M · g(x), for all x > x0.

We denote by Ni(n) the number of operations when considering the Step i.
This function depends on dim(Z). Table 4 shows the number of computations
and the complexity of each step.

Step Routine Complexity Operations

1 law2 O(n2) N1(n) = 2 + n(n−1)
2

2 bracket O(n4) N2(n) =

n∑
i=1

n∑
j=1

N1(n)

3 Zinbiel2 O(n7)

N3(n) = O(n) +O(n3)

+2

n3∑
i=1

N2(n)+

n3∑
j=1

n∑
k=1

1

4 drawing O(n4) N4(n) = O(n) +O(n2) + 2

n2∑
i=1

N1(n)

Table 4: Complexity and number of operations.
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