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The spectral discretization of the second-order

wave equation

Mohamed Abdelwahed and Nejmeddine Chorfi

Abstract

In this paper we deal with the discretization of the second order
wave equation by the implicit Euler scheme for the time and the spectral
method for the space. We prove that the time semi discrete and the full
discrete problems are well posed. We show an optimal error estimates
related to both variables time and space.

1 Introduction

The phenomena of wave propagation characterize many applications. We dis-
tinguish essentially three types of waves: acoustic waves, i.e. waves which
propagate in a fluid (water or air for example); elastic waves, i.e. waves prop-
agating in a solid and finally electromagnetic waves such as light. In this
paper, We will handle the acoustic wave equation for its simplicity (scalar
model). In another side, it embodies the main concepts related to all other
types (elastic, electromagnetic...). The acoustic waves are expressed by the
same type of equations: hyperbolic equations of order 2 of the form:

∂2
t ϕ−Aϕ = 0

where A is a differential operator in space of order 2. Let Ω an open bounded
connected domain of Rd, d = 2 or 3. Γ is its Lipschitz continuous boundary
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and T a positive real number. We denote by x = (x, y) or x = (x, y, z)
according to the dimension. Let the following boundary value problem of the
wave equation 

∂2
t ϕ−∆ϕ = 0 in Ω×]0,T[,
ϕ = 0 on Γ×]0,T[,
ϕ(., 0) = ϕ0 in Ω,
∂tϕ(., 0) = ψ0 in Ω,

(1)

where the wave ϕ is the unknown defined on Ω×]0, T [ and (ϕ0, ψ0) are the
data functions defined on Ω.
Many works have been interested in the a priori and a posteriori analysis
of hyperbolic partial differential equations such as the wave equations see
[3, 7, 8, 9, 10, 14, 15]. In this paper, we propose for the second order wave
equation a discretization by an implicit Euler scheme for the time and spectral
method for the space. In our previous works, we performed a similar analysis
of the spectral element discretization but for the heat equation ([1, 2]). The
spectral method is widely used in the numerical resolution of partial differential
equations due to its high precision. It was first introduced by Patera [13] to
solve an incompressible flow problem by combining the spectral method and
the finite element method.

The paper is organized as follows:
• Section 2 is devoted to recalling the characteristics of the wave equation.
We prove some energy estimates.
• In section 3, we describe the time semi-discrete problem. We discretize the
second time derivative by using a second difference quotient of the solution on
a non-uniform temporal grid. The second-order wave equation is transformed
as a first-order system. We prove that this time discretization is equivalent to
an implicit Euler time discretization of the associated first-order system. We
show that the time semi discrete problem is stable and we prove optimal a
priori time error estimate.
• Section 4 yields the fully discrete problem where the time discretization is
combined with a space spectral discretization. We prove that the fully discrete
problem is well posed and we show an unconditional stability condition. We
establish an optimal a priori error estimate.

2 Some characteristics of the wave equation

Let Hs(Ω), s > 0, the Sobolev spaces associated with the norm ‖ . ‖s,Ω and
the semi-norm | . |s,Ω. The space H1

0 (Ω) stands for the closure in H1(Ω) of
the space of infinitely differentiable functions with compact support in Ω and
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H−1(Ω) is its dual space. The scalar product and its associate norm on the
space L2(Ω) are denoted by (., .) and ‖ . ‖. H 1

2 (∂Ω) is the space of trace of

functions in H1(Ω). Let γ ⊂ ∂Ω, H
1
2
00(γ) is the space of functions in H

1
2 (γ)

such that their extension by zero to ∂Ω/γ belongs to H
1
2 (∂Ω).

We introduce some notions to clarify the spaces of functions that depend
on time. The function u(x, t), defined on the domain Ω×]0, T [, can be written
as:

u :]0, T [ −→ X
t 7−→ u(t) = u(., t)

where X is a separable Banach space. We define Cj(0, T ;X) the set of time
Cj classes functions with a value on X. Cj(0, T ;X) is a Banach space for the
norm :

‖u‖Cj(0,T ;X) = sup
0≤t≤T

j∑
l=0

‖ ∂ltu ‖X

where ∂ltu is the partial derivative of order l in time of the function u. We
define also the spaces :

Lp(0, T ;X) = {v mesurable on ]0, T [ such that

∫ T

0

‖v(t)‖pXdt <∞}

and
Hs(0, T ;X) = {v ∈ L2(0, T ;X); ∂kv ∈ L2(0, T ;X); k ≤ s}.

Lp(0, T ;X) is a Banach space for the norm :

‖v‖Lp(0,T ;X) =


(

∫ T

0

‖v(t)‖pXdt)
1
p , for 1 ≤ p < +∞

sup
0≤t≤T

‖v(t)‖X , for p = +∞,

and Hs(0, T ;X) is an Hilbert space for the following scalar product:

(u, v) = ((u, v)L2(0,T ;X) +

s∑
k=0

(∂ku, ∂kv)L2(0,T ;X))
1
2 .

Finally we define the space Wm,1(0, T,X) of function in L1(0, T,X) such that
all their derivatives up to the order m belong to L1(0, T,X).
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We notice that the proofs in this section are formally presented. Their
purpose here is simply to motivate their discrete analogous estimate to be
considered later in the article.

Herein, we suppose that the data function f is different from zero in order
to have a more generalized form of our system.

∂tΦ−
(

0 1
∆ 0

)
Φ = F in Ω×]0,T[,

ϕ = 0 on Γ×]0,T[,
Φ(., 0) = Φ0 in Ω,

(2)

where Φ =

(
ϕ

ψ = ∂tϕ

)
, F =

(
f
g

)
, and Φ0 =

(
ϕ0

ψ0

)
.

Lemma 2.1. We suppose (f, g) ∈ L1(0, T ;H1
0 (Ω)) × L1(0, T ;L2(Ω)) and

(ϕ0, ψ0) ∈ H1
0 (Ω)× L2(Ω). We have the following estimate for t, 0 ≤ t ≤ T ,(

‖ ψ ‖2 + ‖ ∇ϕ ‖2
) 1

2 ≤
(
‖ ψ0 ‖2 + ‖ ∇ϕ0 ‖2

) 1
2

+

∫ t

0

(‖ f ‖ + ‖ g ‖)(s)ds.

(3)

Proof 1. We make the inner product with the function

(
−∆ϕ
ψ

)
in the first

equation of system (2), and we integrate by parts the second term which leads
to :

1

2

d

dt
(‖ ∂tϕ ‖2) +

1

2

d

dt
(‖ ∇ϕ ‖2) ≤‖ f ‖ + ‖ g ‖ .

Then integrating this inequality between 0 and t, we conclude the estimate (3).

Remark 2.1. Considering the Laplace equation with a Dirichlet boundary
condition {

−∆ϕ = h in Ω,
ϕ = 0 on Γ.

(4)

Let ϕ = (∆)−1h the solution of problem (4). The operator (∆)−1 is an
isometry of the space H−1(Ω) into H1

0 (Ω), self-adjoint and positive defined.

Thus, for any data function h ∈ H−1(Ω), we have ‖((∆)−1)
1
2h‖ = ‖h‖H−1(Ω)

(see ([12], Chap. 1, Th. 12.3) for the proof). Then if (f, g) belongs to
L1(0, T, L2(Ω)) × L1(0, T,H−1(Ω)) and making the inner product of the first
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equation of system (2) by

(
ϕ

(∆)−1ψ

)
, we conclude the following estimation :

(
‖ ψ ‖2H−1(Ω) + ‖ ϕ ‖2

) 1
2 ≤

(
‖ ψ0 ‖2H−1(Ω) + ‖ ϕ0 ‖2

) 1
2

+

∫ t

0

(‖ f ‖ + ‖ g ‖H−1(Ω))(s)ds.
(5)

In conclusion of this section, we deduce the well posedness of the system
(1) by using the Cauchy-Lipschitz theorem and the estimate (3).

Proposition 2.1. For any data (ϕ0, ψ0) ∈ H1
0 (Ω) × L2(Ω), the system (1)

has a unique solution ϕ ∈ C1(0, T ;L2(Ω)) ∩ C0(0, T ;H1
0 (Ω)). Moreover this

solution satisfies

‖ ∂tϕ ‖2 + ‖ ∇ϕ ‖2=‖ ∇ϕ0 ‖2 + ‖ ϕ0 ‖2 . (6)

3 The time semi discrete problem

For the time discretization, we consider a partition of the interval [0, T ] in
sub-intervals [tk, tk+1], 1 ≤ k ≤ I, such that 0 = t0 < t1 < . . . < tK = T . We
denote by hk = tk+1 − tk by h = (h1, . . . , hK) and by |h| = max

1≤k≤K
|hk|.

To formulate the time semi-discrete problem, we apply the Euler implicit
method to the system (1). Then it consists to find the sequence functions

(ϕk)0≤k≤K in the space H1
0 (Ω)× L2(Ω)×H1

0 (Ω)
K−1

such that
ϕk+1 − ϕk

hk
− ϕk − ϕk−1

hk−1
− hk∆ϕk+1 = 0 in Ω, 1 ≤ k ≤ K,

ϕk+1 = 0 on Γ, 1 ≤ k ≤ K,
ϕ0 = ϕ0 in Ω,
ϕ1 = ϕ0 + h0ψ0 in Ω.

(7)

We suppose that the data (ϕ0, ψ0) ∈ H1
0 (Ω) × L2(Ω). Then if ϕ0 and ψ0

are known, we easily show that ϕk+1; k ≥ 1 is a solution of the following
variational problem:

Find ϕk+1 in H1
0 (Ω) such that for any ψ ∈ H1

0 (Ω) we have:∫
Ω

ϕk+1(x)ψ(x)dx+ h2
k

∫
Ω

∇ϕk+1(x)∇ψ(x)dx

=

∫
Ω

(
ϕk +

hk
hk−1

(ϕk − ϕk−1)
)
(x)ψ(x)dx.

(8)
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Proposition 3.1. For the data (ϕ0, ψ0) ∈ H1
0 (Ω) × L2(Ω), if ϕ0 and ψ0 are

known, problem (8) has a unique solution ϕk+1; k ≥ 1 in H1
0 (Ω). Moreover

the solution (ϕk)0≤k≤K of problem (7) verifies for 0 ≤ k ≤ K the following
stability condition:

‖ϕ
k+1 − ϕk

hk
‖2 + ‖∇ϕk+1‖2 ≤ ‖ψ0‖2 + 2‖∇ϕ0‖2 + 2h2

0‖∇ψ0‖2. (9)

Proof 2. It is easy to prove using the Lax-Milgram theorem that problem (8)
has a unique solution. Then by iteration on k, we deduce that problem (7) has
a unique solution.

To prove the stability condition (9) making the inner product of the first

equation of system (7) by ϕk+1−ϕk

hk
leads to

‖ϕ
k+1 − ϕk

hk
‖2+‖∇ϕk+1‖2 = (

ϕk+1 − ϕk

hk
,
ϕk − ϕk−1

hk−1
)+(∇ϕk+1,∇ϕk). (10)

Thanks to the Cauchy-Schwarz inequality we obtain,

‖ϕ
k+1 − ϕk

hk
‖2 + ‖∇ϕk+1‖2 ≤ ‖ϕ

k − ϕk−1

hk−1
‖2 + ‖∇ϕk‖2. (11)

Then by iteration on k we have

‖ϕ
k+1 − ϕk

hk
‖2 + ‖∇ϕk+1‖2 ≤ ‖ϕ

1 − ϕ0

h0
‖2 + ‖∇ϕ1‖2.

Finally, we conclude the desired estimate by using the third and the fourth
equations of system (7).

Remark 3.1. 1) We notice that the solution ϕk+1; k ≥ 1 of problem (8)
belongs to the space Hs+1(Ω) for s ≥ 1

2 . When the domain Ω is convex or of
dimension 1, s ≥ 1 is explicitly known. In general, for any 1

2 ≤ s ≤ 1, we
derive from the stability condition (9) the following inequality:

‖ ϕk+1 ‖2≤ Ch−2s
k

(
‖ψ0‖2 + 2‖∇ϕ0‖2 + 2h2

0‖∇ψ0‖2
)
, (12)

where C is a constant independent from the step h.
This inequality is not optimal since ‖ ϕk+1 ‖2 is not bounded independently of
the step h.

2) The time discretization of problem (2) using implicit Euler method gives
us:
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Find the two dimensions sequence Φk =

(
ϕk

ψk

)
, such that,

Φk+1 − Φk

hk
−
(

0 1
∆ 0

)
Φk+1 = F k+1 in Ω, 0 ≤ k ≤ K,

ϕk+1 = 0 on Γ, 0 ≤ k ≤ K,
Φ0 = Φ0 in Ω,

(13)

where F k+1 =

(
fk+1

gk+1

)
. For n 6= 0, system (13) coincides with system (7) if

F k+1 = 0; k ≥ 1. When n = 0, we propose the two following cases so that the
two systems coincide completely:
1) We replace the fourth equation of system (7) by the following implicit equa-
tion: {

ϕ1 − h2
0∆ϕ1 = ϕ0 + h0ψ0 in Ω,

ϕ1 = 0 on Γ
(14)

2) We replace the third equation of system (13):
Φk+1 − Φk

hk
−
(

0 1
∆ 0

)
Φk+1 = F k+1 in Ω, 1 ≤ k ≤ K,

ϕk+1 = 0 on Γ, 1 ≤ k ≤ K,

ψ1 =

(
ϕ0 + h0ψ0

ψ0

)
in Ω,

(15)

By multiplying the first equation of system (15) with

(
−∆ϕk+1

ϕk+1

)
, We deduce

the following stability condition:

‖ ψk+1 ‖2 + ‖ ∇ϕk+1 ‖2≤ 2
(
‖ ψ1 ‖2 + ‖ ∇ϕ1 ‖2

)
+2
( k∑
j=1

hj(‖ gj+1 ‖ + ‖ ∇f j+1 ‖)
)2

.
(16)

Nevertheless, if we make the inner product of the first equation of system (15)

with

(
ϕk+1

(∆)−1ϕk+1

)
where (∆)−1 is the operator introduced in remark 2.1, we

conclude the following stability condition in a weaker norms:

‖ ψk+1 ‖2H−1(Ω) + ‖ ϕk+1 ‖2≤ 2
(
‖ ψ1 ‖2H−1(Ω) + ‖ ϕ1 ‖2

)
+2
( k∑
j=1

hj(‖ gj+1 ‖H−1(Ω) + ‖ f j+1 ‖)
)2

.

(17)
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Herein, we’ll focus on estimating the error. For the solution ϕ of system
(1) and (ϕ)k0≤k≤K solution of system (7), we define the vector error Υk =(
e(ϕ)k

e(ψ)k

)
such that e(ϕ)k = ϕ(tk) − ϕk and e(ψ)k = ψ(tk) − ψk. We easily

show that the sequence error vector (Υ)k0≤k≤K is a solution of system (15)

where the two components of F k+1 are the two following consistency errors:

ε(ϕ)k =
ϕ(tk+1)− ϕ(tk)

hk
−∂tϕ(tk+1), ε(ψ)k =

ψ(tk+1)− ψ(tk)

hk
−∂tψ(tk+1).

(18)

Theorem 3.1. Suppose that the solution ϕ of system (1) belongs to
W 3,1(0, T ;L2(Ω)) ∩W 2,1(0, T ;H1

0 (Ω)). Then the following a priori error es-
timate between the solution ϕ and the solution (ϕ)k0≤k≤K of system (7) holds
for 0 ≤ k ≤ K:

‖ε(ϕ)k‖2 + ‖∇(ϕ(tk)−ϕk)‖2 ≤ Ch2
(∫ tk

0

(‖ ∂3
t ϕ ‖ + ‖ ∂2

t∇ϕ ‖)(s)ds
)2

(19)

where C is a positive constant independent from the step h.

Proof 3. Since the sequence error vector (Υ)k0≤k≤K is a solution of system

(15) where the second member of the equality is the vector F k+1 then applying
the stability condition (16) leads to:

‖ e(ϕ)k ‖2 + ‖ ∇e(ϕ)k ‖2 ≤ 2
(
‖ e(ψ)0 ‖2 + ‖ ∇e(ϕ)0 ‖2

)
+ 2
( k∑
j=1

hj(‖ ε(ψ)j ‖ + ‖ ∇ε(ϕ)j ‖)
)2

.
(20)

Thanks to the Taylor’s theorem with remainder integral to bound the terms
‖ ε(ψ)j ‖, ‖ ∇ε(ϕ)j ‖, ‖ e(ψ)0 ‖ and ‖ ∇e(ϕ)0 ‖ which permits us to conclude
the desired estimate.

Finally, using the same steps of the proof of Theorem 3.1 and replacing
the stability condition (16) by the stability condition (17), we find the error
estimate in a weaker norms.

Corollary 3.1. Suppose that the solution ϕ of system (1) belongs to
W 3,1(0, T ;L2(Ω)) ∩W 2,1(0, T ;H1

0 (Ω)). Then the following a priori error es-
timate between the solution ϕ and the solution (ϕ)k0≤k≤K of system (7) holds
for 0 ≤ k ≤ K:

‖ε(ϕ)k‖2H−1(Ω) + ‖∇(ϕ(tk)−ϕ
k)‖2 ≤ Ch2

(∫ tk

0

(‖ ∂3
t ϕ ‖H−1(Ω) + ‖ ∂

2
t∇ϕ ‖)(s)ds

)2

(21)
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where C is a positive constant independent from the step h.

The estimates (20) and (21) are optimal of order 1 in time since the dis-
cretization is based on the implicit Euler scheme which is of order 1.

4 The full spectral discrete problem

In the following henceforth, we assume that Ω is a rectangle for the dimension
two or a parallelepiped rectangle for the dimension three.

Let PN (Ω) the polynomials space with degree ≤ N for each variable where
N ≥ 2, and P0

N (Ω) = PN (Ω)∩H1
0 (Ω). We define the set of nodes ζi, 0 ≤ i ≤ N ,

roots of the polynomial (1 − x2)L′N such as LN is the Legendre polynomial
and the set weights %i, 0 ≤ i ≤ N of the Gauss Lobatto quadrature formula
on the interval ]− 1, 1[. We then recall the following equality:

∀ηN ∈ P2N−1(]− 1, 1[)

∫ 1

−1

ηN (x)dx =

N∑
i=0

ηN (ζi)%i. (22)

We also recall the following property (see [6, 5]):

‖ηN‖2L2(]−1,1[) ≤
N∑
i=0

η2
N (ζi)%i ≤ 3‖ηN‖2L2]−1,1[, ∀ηN ∈ PN (]− 1, 1[). (23)

The reference domain ] − 1, 1[d, (d = 2, 3) is transformed to the domain Ω
using the affine mapping T then the scalar product is defined on continuous
functions u and v by:

(u, v)N =


meas(Ω)

4

N∑
i=0

N∑
j=0

(u ◦ T )(ζi, ζj)(v ◦ T )(ζi, ζj)%i%j , if d = 2,

meas(Ω)
8

N∑
i=0

N∑
j=0

N∑
k=0

(u ◦ T )(ζi, ζj , ζk)(v ◦ T )(ζi, ζj , ζk)%i%j%k, if d = 3.

(24)

Remark 4.1. To simplify the analysis, we assume that the spectral grid does
not change as a function of time which means that the discretization is fixed
over time.

We suppose that ϕ0 and ψ0 are respectively continuous on Ω and on
Ω×]0, T [. The discrete problem is deduced from the system (7) by using the
Galerkin method combined with the numerical integration.
Find ϕkN ∈ P0

N (Ω)× PN (Ω)× (P0
N (Ω))K−1, 0 ≤ k ≤ K such that:

ϕ0
N = IN (ϕ0) and ϕ1

N = IN(ϕ0) + h0IN(ψ0) in Ω (25)



THE SPECTRAL DISCRETIZATION OF THE SECOND-ORDER WAVE
EQUATION 14

and, for 1 ≤ k ≤ K,

(
ϕk+1
N − ϕkN
hk

−
ϕkN − ϕ

k−1
N

hk−1
, ψN )N + hk(∇ϕk+1

N ,∇ψN )N = 0, ∀ψN ∈ P0
N (Ω),

(26)
where IN is the interpolating operator from L2(Ω) into PN (Ω).
In the same way as in (8), we notice that ϕk+1

N , 1 ≤ k ≤ K is the solution of
the following discrete variational formulation:

(ϕk+1
N , ψN )N + h2

k(∇ϕk+1
N ,∇ψN )N = (ϕkN +

hk
hk−1

(ϕkN − ϕk−1
N ), ψN )N . (27)

Proposition 4.1. For the data (ϕ0, ψ0) ∈ H1
0 (Ω)×L2(Ω). If ϕ0

N and ψ0
N are

known, problem (27) has a unique solution ϕk+1
N ; k ≥ 1 in H1

0 (Ω). Moreover,
the solution (ϕkN )0≤k≤K of problem (25)–(26) verifies for 0 ≤ k ≤ K the
following stability condition:

‖ϕ
k+1
N − ϕk

N

hk
‖2+‖∇ϕk+1

N ‖2 ≤ (3d)
K
(
‖IN (ψ0)‖2+2‖∇IN (ϕ0)‖2+2h2

0‖∇IN (ψ0)‖2
)
.

(28)

Proof 4. By using the Lax-Milgram theorem and the property (23), it is easy
to show that the discrete variational formulation (27) has a unique solution.
Then, by iteration on k we deduce that system (25)–(26) has a unique solution.
Before starting the proof of the stability condition (28), we define ‖ · ‖d the
discrete norm deduced from the discrete scalar product (., .)N .
To prove the stability condition (28), making the discrete inner product of the

equation (26) by
ϕk+1

N −ϕk
N

hk
leads to:

‖
ϕk+1
N − ϕkN
hk

‖2d+‖∇ϕk+1
N ‖2d = (

ϕk+1
N − ϕkN
hk

,
ϕkN − ϕ

k−1
N

hk−1
)N +(∇ϕk+1

N ,∇ϕkN )N .

Thanks to the Cauchy-Schwarz inequality and property (23), we have

‖
ϕk+1
N − ϕkN
hk

‖2 + ‖∇ϕk+1
N ‖2 ≤ 3d

(
‖
ϕkN − ϕ

k−1
N

hk−1
‖2 + ‖∇ϕk‖2

)
.

Then by iteration on k, we obtain

‖ϕ
k+1 − ϕk

hk
‖2 + ‖∇ϕk+1‖2 ≤ (3d)

K
(
‖ϕ

1 − ϕ0

h0
‖2 + ‖∇ϕ1‖2

)
.

Thus, estimate (28) is deduced from (25).
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We end this section by estimating the a priori error between the full discrete
solution of problem (27) and the semi discrete solution in time of problem (8).

Proposition 4.2. If ϕ0, ψ0 are continuous on Ω and ϕ0
N , ψ

0
N are known. The

error estimate between the solution ϕk+1, k ≥ 1 of problem (8) and ϕk+1
N , k ≥ 1

solution of problem (27) holds

‖ϕk+1 − ϕk+1
N ‖ ≤ C

(
inf

χk+1
N ∈P0

N (Ω)
‖ϕk+1 − χk+1

N ‖+

+

[
‖ϕ0 − ϕ0

N‖+ ‖ψ0 − ψ0
N‖

k∑
j=1

(E1,j + E2,j + E3,j)

])
.

(29)

where

E1,j = 1
h2
j

sup
ψN∈P0

N (Ω)

∫
Ω

(ϕj+1 − ϕj)ψN dx− (χj+1
N − χjN , ψN )N

‖ ψN ‖
,

E2,j = sup
ψN∈P0

N (Ω)

∫
Ω

∇ϕj+1∇ψN dx− (∇χj+1
N ,∇ψN )N

‖ ψN ‖
,

E3,j = sup
ψN∈P0

N (Ω)

∫
Ω

(ϕj − ϕj−1)ψN dx−
(
IN (ϕj − ϕj−1), ψN

)
N

‖ ψN ‖
,

and C is a positive constant independent of N .

Proof 5. Consider χk+1
N ∈ P0

N (Ω). Using the triangular inequality we have:

‖ϕk+1 − ϕk+1
N ‖ ≤ ‖ϕk+1 − χk+1

N ‖+ ‖χk+1
N − ϕk+1

N ‖.

To estimate the term ‖ϕk+1
N −χk+1

N ‖, we write the two problems (7) and (27).
For ψN ∈ P0

N (Ω), we obtain∫
Ω

ϕk+1(x)ψN (x)dx+ h2
k

∫
Ω

∇ϕk+1(x)∇ψN (x)dx

=

∫
Ω

(
ϕk +

hk
hk−1

(ϕk − ϕk−1)
)
(x)ψN (x)dx,

and

(ϕk+1
N , ψN )N + h2

k(∇ϕk+1
N ,∇ψN )N = (ϕkN +

hk
hk−1

(ϕkN − ϕk−1
N ), ψN )N .
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Let τk = hk

hk−1
. By doing the difference term by term, leads,

(ϕk+1
N −χk+1

N , ψN )N+h2
k(∇(ϕk+1

N −χk+1
N ),∇ψN )N = (ϕkN−χkN , ψN )N+τkK

k(ψN )

such that,

Kk(ψN ) =
1

h2
k

(∫
Ω

(ϕk+1 − ϕk)ψN dx− (χk+1
N − χkN , ψN )N

)

+

∫
Ω

∇ϕk+1∇ψN dx− (∇χk+1
N ,∇ψN )N

+

∫
Ω

(ϕk − ϕk−1)ψN dx−
(
IN (ϕj − ϕj−1), ψN

)
N
.

We simply prove that the operator Kk is linear and continuous on the space
P0
N (Ω) which is an Hilbert space for the discrete scalar product (., .)N . Thus,

thanks to Riesz theorem, we deduce that there exists a unique element ϑkN in
P0
N (Ω) such that,

Kk(ψN ) = (ϑN , ψN )N .

Then by applying the result proved in ([11], Prop. 4.1) and [4], we obtain,

‖ϕk+1
N − χk+1

N ‖ ≤ C

‖ϕ0 − ϕ0
N‖+ ‖ψ0 − ψ0

N‖+

k∑
j=1

‖ϑjN‖
2

1/2

,

where C is a positive constant independent of N .
We take note there exists C a positive constant independent of N such that,

‖ϑjN‖ ≤ C sup
ψN∈P0

N (Ω)

(ϑjN , ψN )N
‖ ψN ‖

,

which permits us to conclude (29).

To find the order of convergence as a function of N , it is necessary to
estimate each of the terms of the second member of the inequality (29).
• Estimation of E1,j

We consider $j+1 = ϕj+1 − ϕj , and χj+1
N − χjN = Π1,0

N−1($j+1). By the
exactness of the Gauss-Lobatto quadrature formula (22), the two terms∫

Ω

Π1,0
N−1($j+1) ψN dx and (Π1,0

N−1($j+1), ψN )N are equal, then

E1,j ≤‖ $j −Π1,0
N−1($j) ‖ . (30)



THE SPECTRAL DISCRETIZATION OF THE SECOND-ORDER WAVE
EQUATION 17

Π1,0
N is the orthogonal projection operator from H1

0 (Ω) into P0
N (Ω) related to

the scalar product defined by the semi norm | . |1,Ω. See ([6], Lem. VI.2.5)
and [5] for all the properties of this operator.

• Estimation of E2,j

Using the exactness of the Gauss-Lobatto quadrature formula (22) for a poly-
nomial of degree ≤ 2N − 1, we obtain:∫

Ω

∇ϕj+1∇ψN dx− (∇χj+1
N ,∇ψN )N =

∫
Ω

∇(ϕj+1 −Π1,0
N−1ϕ

j+1)∇ψN dx

−
(
∇(χj+1

N −Π1,0
N−1χ

j+1
N ),∇ψN

)
N
.

(31)

Thanks to the triangular and Cauchy-Schwarz inequalities, we have:

sup
ψN∈P0

N (Ω)

∫
Ω

∇ϕj+1∇ψN dx− (∇χj+1
N ,∇ψN )N

‖ ψN ‖
≤

(
|ϕj+1 −Π1,0

N−1ϕ
j+1|1,Ω

+|χj+1
N −Π1,0

N−1χ
j+1
N |1,Ω

)
.

(32)
Then we conclude by using the properties of operator Π1,0

N−1.

• Estimation of E3,j

Let θj = ϕj − ϕj−1. We use for this estimation ΠN−1 the orthogonal projec-
tion from L2(Ω) into PN−1(Ω). Then by the exactness of the Gauss-Lobatto
quadrature formula, for a polynomial of degree ≤ 2N − 1, we have:∫

Ω
θj(x)ψN (x) dx− (INθ

j , ψN )N =

∫
Ω

(θj −ΠN−1θ
j)(x)ψN (x) dx

−(INθ
j −ΠN−1θ

j , ψN )N .

Using the inequality (23) in each direction, leads to:∫
Ω

θj(x)ψN (x) dx− (INθ
j , ψN )N ≤

[
‖θj −ΠN−1θ

j‖2 + 9‖θj −INθ
j‖2
]
‖ψN‖.

Using the approximation properties of operator ΠN−1 (see [5], Theo. 7.1) and
IN (see [5], Theo. 14.2). For θj ∈ Hs(Ω); s > 1, we obtain:

sup
ψN∈PN (Ω)

∫
Ω

θj(x)ψN (x) dx− (θj , ψN )N

‖ ψN ‖
≤ CN−2s‖θj‖2s,Ω. (33)
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Finally, to estimate respectively the best approximation errors

inf
χk+1
N ∈P0

N (Ω)
‖ϕk+1 − χk+1

N ‖, ‖ϕ0 − ϕ0
N‖ and ‖ψ0 − ψ0

N‖, (34)

we just choose respectively χk+1
N = Π1,0

N ϕk+1, ϕ0
N = Π1,0

N ϕ0 and ψ0
N = ΠNψ0

then we conclude by means of the properties of operators Π1,0
N and ΠN .

So, from the estimations (30), (32), (33) and (34), we have the following main
theorem about a priori error estimate.

Theorem 4.1. For a data (ϕ0, ψ0) continuous on Ω̄, and the solution (ϕk)0≤k≤K
of problem (7) belongs to Hs(Ω); s > 1. Then the error between ϕk+1 solution

of problem (8) and ϕk+1
N solution of problem (27) holds:

‖ϕk+1 − ϕk+1
N ‖ ≤ C

[
N−s

(
‖ϕk+1‖s,Ω +

k∑
j=1

(
h−2
j ‖ϕ

j+1 − ϕj‖s,Ω + ‖ϕj − ϕj−1‖s,Ω
))

+N1−s
k∑

j=1

‖ϕj+1‖
]
,

(35)

where C is a positive constant independent of N .

Conclusion

This work concerns the numerical analysis of the implicit Euler scheme in time
and the spectral discretization in space of the second order wave equation.
We prove an optimal error estimate in time and in space. These estimations
depend only on the regularity of the solution. The more difficult case where the
spectral discretization depends on the time and its numerical implementation
will be the subject of a forthcoming work.
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