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Ramanujan-type congruences modulo 4 for
partitions into distinct parts

Mircea Merca

Abstract

In this paper, we consider the partition function Q(n) counting the
partitions of n into distinct parts and investigate congruence identities
of the form

-1

P —
Q(p nt+ =

) =0 (mod 4),

where p > 5 is a prime.

1 Introduction

Recall that a composition of a positive integer n is a sequence of positive
integers (A1, Ag, ..., Ar) whose sum is n, i.e.,

n=XA+A+ o+ M (1)

When the order of integers \; does not matter, the representation (1) is known
as an integer partition [1] and can be rewritten as

n ==ty 4+ 2t +--- 4+ nt,,

where each positive integer ¢ appears ¢; times in the partition. For consistency,
we consider a partition of n a non-increasing sequence of natural numbers
whose sum is n. For example, the partitions of 4 are given as:

(4), (3,1), (2,2), (2,1,1), (1,1,1,1). (2)
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The fastest algorithms for enumerating all the partitions of an integer have
recently been presented by Merca [8, 9]. As usual, we denote by p(n) the
number of integer partitions of n and we have the generating function

> pln)g" = S
n=0

(9

Here and throughout this paper, we use the following customary g-series no-

tation:
(a; Q) = 1, for n =0,
A = (1-a)(1—aq) - (1—aq"t), forn>0;

(a;9)00 = nlgngo(a;q)n-

Because the infinite product (a; ) diverges when a # 0 and |g| > 1, whenever
(a;q)so appears in a formula, we shall assume |q| < 1.

The famous Ramanujan congruences for the partition function p(n), which
were proved by Atkin, Ramanujan and Watson [2, 3, 18], assert that

p(5’n+B5(4)) =0 (mod 57),

p(7n+B7(j)) =0 (mod 7U/2+1),

p(17n+ B11(j)) =0 (mod 117)
for every non-negative integer n where 3,,(j) := 1/24 (mod m’). Congruences
modulo power of 5 and 7 for the partition function Q(n) counting the partitions
of n into distinct parts can be seen in a paper by B. Gordon and K. Hughes
[4].

From Euler’s pentagonal number theorem

o0

<QQq>oo = Z (_1)"qn(3n—1)/2

n=—oo

we known that almost all values of Q(n) are even, i.e,.
oo
> QM) ¢" = (- Q) = (:0)  (mod 2).
n=0

Thus Q(n) is odd if and only if n is a generalized pentagonal number. This fact
was generalized by B. Gordon and K. Ono [5, Theorem 1], who demonstrated
that, for any positive integer k, almost all values of Q(n) are divisible by 2*.
More precisely, if k is a positive integer, then

Q(n)=0 (mod 2¥)
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for a subset of non-negative integers n with arithmetic density one. In [13],
K. Ono and D. Penniston provided an exact formula for Q(n) modulo 8.

In this paper, we remark some congruences modulo 4 for the partition
function @Q(n). Surprisingly, these congruences have not been noticed so far.

Theorem 1. For all n 20 (mod 5),
QBn+1)=0 (mod4).

Having Q(6) = 4, Q(11) = 12, Q(16 + 25) = 1260 and Q(21) = 76, for
a € {6,11,16,21} we notice that

oo

Z Q(25n+a)g" #0 (mod 8).

n=0

Theorem 1 follows directly from the following two identities where for any
positive integer k, fi is defined by

o= (0"4)
Theorem 2. For |q| < 1,

(ZQ (250 4 6) g > <ZQ 25n +21) )

n=0 n=0
e il ik 75
=16 (19 2 s + 1431 252 +19164 2 +95176 s 7 .
1 J10 Hel i f1 fio
+ 261104 ¢ 1 31" fo fw + 553344 ¢ 5 137 15° fio fw + 838656 ¢ Gf f5
fl o i
f f 10 £24 f
+804864 g7 =2—2-10 10 + 434176 ¢ 22 + 98304 ¢° =2 >
i P2 f3 il i
and
(Z Q(25n + 11) ¢ ) (ZQ (251 + 16) ¢ )
n=0 n=0
18 38 17 £33 f f15
=16 <24 2 1321 250 + 20129 ¢ +91056 3 237
1 10 1 10 flO flO
14
+ 268704 ¢ 1 [0 f5" fio flo + 554624 ¢ 5 3213 fio fw + 816896 ¢ Gf f5

f 10 24 f
+815104¢" 2 f§’3 it + 454656 ¢° 2 f >+ 98304 ¢° 3 f>
5 5
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Upon reflection, one expects that there might be an infinite family of con-
gruence identities where the congruence identity given by Theorem 1 is the
first entry.

Theorem 3. Let p > 5 be a prime number such that p Z 1 (mod 24). For all
n # 0 (mod p), we have

2

24

Q<p nt 2 1)0 (mod 4).

Theorem 4. Let p =1 (mod 24) be a prime. For alln #Z 0 (mod p), we have

Q(p’rﬁpz_l)_{z (mod 4), ifn+ L =MD p o7

24 0 (mod4), otherwise.
The case p = 7 of Theorem 3 reads as
Q(Tn+2)=0 (mod 4),
for all n # 0 (mod 7). We remark that there is a stronger result.
Theorem 5. For alln £ 0 (mod 7),
Q(Tn+2)=0 (mod 8).

The organization of this paper is as follows. We will first prove Theorems
2 and 5 in Sec. 2. In Sec. 3, we will prove Theorems 3 and 4 considering
new connections between partitions and divisors. Some open problems are
introduced in the last section.

2 Ramanujan-like congruences

Although the generating function for p(n) was discovered by Euler in 1748,
almost nothing was known of the arithmetic properties of p(n) before the twen-
tieth century. The first major discoveries in this area are due to Ramanujan
[15, 16]:

Zp5n+4 5f5

7
Zp(7n+5)q f1+49 fg.
— f fi
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These identities allowed the derivation of the famous congruences modulo 5
and 7 for the partition function p(n).

In 1957, O. Kolberg [7] realized that these identities of Ramanujan could
be extended to include a much larger variety of similar identities for p(5n+ j),
p("n + j) and others. For example, Kolberg proved that

(Zp5n+1 )(Zp5n+2 > ;56+25 ﬁ.

n=0 n=0

In 2015, C.-S. Radu [14] constructed an algorithm to compute identities in
the form of those discovered by Ramanujan and Kolberg above. He designed
an algorithm which takes as input a generating function of the form

damg =] [a-""
n=0

§|M n=1

and positive integers m and N, where M is a positive integer and (rs)s/as is a
sequence indexed by the positive divisors § of M. With this data the algorithm
attempts to produce a set Py, ,(j) € {0,1,...,m — 1} which contains j and
is uniquely defined by m, (rs)s/a and j. Next the algorithm decides if there
exists a sequence (ss)sy such that

e IIIIa-<m ]I Z a(mn + j')

§|N n=1 J' €Pm r(§) 1

is a modular function with certain restrictions on its behaviour on the bound-
ary of H. Very recently, N. A. Smoot [17] provided a successful Mathematica
implementation of Radu’s algorithm. The package is called RaduRK and re-
quires 4ti2; a software package for algebraic, geometric and combinatorial
problems on linear spaces. Instructions for the proper installation for these
packages can be found in [17]. In this section, we use the RaduRK program to
prove Theorems 2 and 5.
The generating function for Q(n) is given by

(0% ¢%) o
ZQ (=0 q) 7((1, o

This can be described by setting M = 2 and r = {—1,1}.

Proof of Theorem 2. If we now take m = 25, guess N = 10 and take
J = 6, then we obtain
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In[1] := RK[10,2,{-1,1},25,6]
[1@:a)z => amq
1M n=0
fi(@)- [ Yamn+3)g*= 3 g-p,(t)
j’EPm,r(j) n=0 gEAB
Modular Curve: Xo(N)
Out[2] =
N: 10
{0, (55} 2.{-1,1}}
m: 25
Pu,r(J) {6,21}
£1(@) ((4:9)00)* (6% 6°) )
% ((¢% %) =) 8 ((qlo,qo)oo)g"1
. ((¢%4*) ) ((¢°:4°) ) °
q((¢:9) o) ((¢'%¢"°) )
AB: {1}
{15728641+6946816 12 +12877 824 1>
{pg(t):g € AB}: +13 418496 ¢*+8 853 504 ¢°+4 177 664 ¢°
+1 522816 t74306 624 t3422 896 t°+304 tm}
Common Factor: 16

This gives us

(ZQ (25n +6) g ) (ZQ 25n + 21) g )

= 1572864 ¢ + 6946816 > + 12877824 3 + 13418496 t* + 8853504 t°
+ 4177664 t5 + 1522816 ¢7 + 306624 t° + 22896 ¢ + 304 ¢1°
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which yields the first identity on rearrangement

If we now take m = 25, guess N = 10 and take j = 11, then we obtain

In[1] := RK[10,2,{-1,1},25,11]
[[@5d)2=> amq
dIM n=0
f(@ 1 Samm+i)q = X g-py(t)
j’GPm,r(j)n=0 gEAB
Modular Curve: Xo(N)
Out[2] =
N: 10
M (ré)é\M} {2,{-1,1}}
m: 25
Pu,x(j) {6,21}
((¢: 9)00)* ((¢° 5) o) 2
fule (% ) ) ® (@ 1) ) P
. ((¢*¢%) =) ((¢°:4°) )
q((¢59) ) ((¢'%¢'9) ) ®
AB: {1}
{1 572864 t+7274496 t2+13 041664t
{pg(t):g € AB}:

+13070336 t*4+8 873 984 ° 44 299 264 t°
+1456 896 t”+322 064 t5+21 136 t°4-384 tm}

16

Common Factor:

This gives us

(2_:(,2 (25 +11) ¢ ) <ZQ 25n + 16) ¢ )
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= 1572864 ¢ + 7274496 t> + 13041664 ¢> + 13070336 t* + 8873984 ¢°
+ 4299264 t5 + 1456896 7 + 322064 5 + 21136 ¢° 4 38410,

which yields the second identity on rearrangement.

Proof of Theorem 5. Having Q(9) = 8, Q(16 +49) = 18200, Q(23) = 104,
Q(30) = 296, Q(37) = 760 and Q(44) = 1816, for a € {9, 16,23, 30, 37, 44} we
notice that

i Q(4In+a)q¢" #0 (mod 16).
n=0

Thus, Theorem 5 follows directly from the following lemma.
Lemma 6. For |q| < 1,

(i) H i@(49n+a) ¢" =0 (mod 2°)

«e{9,16,30} n=0

(i) H Z Q491 + ) ¢" =0 (mod 2%)

a€{23,37,44} n=0

Proof. The proof of this lemma is quite similar to the proof of the Theorem
2, so we omit the details. To obtain the first congruence identity, we use

RK[14,2,{-1,1},49,9].

This gives us

(o)
o0
g (¢% ¢*)2 (¢" ") II > eun+a)
e ’ % 4€{9,16,30} n=0
(¢*¢*)5% (@745 )
(4 Do ()T, )

=512 | p1(t) + pa2(t) -

where

p1(t) = — 648518346341351424 — 1156641477899055005696 ¢
— 53539855219692515885056 ¢* + 105450742058247729971200 ¢
+ 469476896958 7740888793088 t* + 21390855376330998377611264 ¢
+ 13991341992545467494301696 t° + 11260505525461188675108864 ¢
+ 44330252745473867191943168 t* + 23643615579547387255848960 ¢
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+ 8374155855608561411293184 t'° + 1805576016164080502964224 !
+ 148251452149552490217472 12 — 31553327537583703031808 13

— 9888536024088676012032 t'* — 720939207186607809024 t°

+ 61469053155281728320 ¢ 4 10429602484567138104 7

+ 350946686691788872 t'® 4- 2453846372311302 ¢

4 2345879956401%0 4 142473177t%1 + 148t

and

pa(t) =648518346341351424 + 1298450822965697183744 t
+ 99220620593049041371136 > 4+ 1206009969735756425461760 ¢
+ 5176826205924958811455488 t* 4+ 11097840813001246343430144 t°
+ 13991341992545467494301696 t5 + 11260505525461188675108864 7
+ 5975272239407813722374144 t% 4 2057274390255339109875712 t°
4 410447470135012141039616 10 + 21990447479668472807424 !
—9901472011422939742208 t'% — 2239478040117778219008 ¢'3
— 87172452006829977600 t'* 4 19395135652819907072 t*°
+ 1787542742856116928 t16 + 32903925181539592 ¢17
+ 97052913403920 18 + 27860920174 t*° + 264755 ¢2°,

with

(4% 4%)0 (475 4")%
7% (¢ Qoo (4% 4T
The second congruence identity can be obtain if we consider

RK[14,2,{-1,1},49,23].

This gives us

(@:0)2 (¢":a")3% > .
0B (2 )% (g1 1) B II > Quin+a)g
e © 4e{23,37,44} n=0
192. <p1(t) +po(t) - ( (%65 (@554 4% %) (45 4D% ))
P (G5 P (6D (¢ ) )7

I
wt

p1(t) = — 1225330379415709810688 t — 53029217109217902592000 ¢*
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+ 105983774141947582611456 t* + 4693406907223237652905984 t*

+ 21391706936249368704974848 t° 4 45081888311211073791328256 °
+ 55665041474406949037539328 7 + 44330265479324457999794176 5
+ 23643634407320564948533248 t7 + 8374136065999589712330752 +'°
+ 1805578003899798851158016 ¢! + 148249603339947942608896 t'2
— 31552596215454669209600 '3 — 9888451479055942475776 14

— 720885796539747899392 t1° + 61470755478154756480 16

+ 10429851285495028344 17 + 350957576681349999 18

+ 2453307890300554 9 4 2342867920924 t2° + 152283143 >

and

pa(t) =1349629729131135500288 ¢ + 99543891507576485969920 ¢
+ 1205372780933149538385920 > + 5177219767184086813114368 t*
+ 11097850826933138685427712 % + 13991238397774790068797440 t°
+ 11260542562648728386142208 t” + 5975262039538114523824128 t°
4 2057270115516818175033344 t + 410453459809019650637824 ¢ 1°
+ 21990450677627612037120 t'! — 9901615893689232523264 ¢ 12
— 2239649077347891544064 t3 — 87188088020470964224 4
4 19394405130087151616 ¢° 4 1787438044885791360 ¢'6
+ 32905858181925128 17 + 97126492812313 ¢18
+ 27745559755 t19 + 280345 ¢2°

with

(4% 9%)0 (475 4")%

@ (43 @)oo (24T

t:

3 Connections between partitions and divisors

One of the well-known identities in the partition theory is given by the follow-
ing theta series of Gauss

1 +2Z(_q)n2 — ((Q;Q)oo (3)
n=1

—¢;q)oo
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Very recently [11], we consider this theta identity and obtained the following
truncated form for it: For the positive integers k and r, we have:

(—4;9) 1—|—22

(=40)c ("3 4") o k r(k+1)2 )oo
= +2(—=1)%q"
(—¢"14") oo =1) z_% o

2k:+2] +3)rj

,q2’“ (@@ ktjr1

As a consequence of this theorem, we derived in [11] an infinite family of
linear inequalities for the partition function @(n) counting the partitions of n
into distinct parts: For n > 0, m > 1,

m

(- Z 1Q(n—35%) = bna, | 20,
k=0

=4 2]

is the kth generalized pentagonal number.
The limiting case m — oo of this inequality reads as: For n > 0,

where

1, ifn=
N (i S

0, otherwise.

Another proof of this recurrence relation can be seen in [12]. We invoke the
recurrence relation (4) in order to prove some unexpected congruences that
combine the partition function Q(n) and the divisor function 7(n) that counts
the positive divisors of n.

Theorem 7. Let r € {0,2}. For any nonnegative integer n,
Qn)=r (mod4) <<= 71(24n+1)=r (mod4).

Proof. Let R(n) be the number of representation of n as the sum of a gen-
eralized pentagonal number and thrice a square number. When n is not a
generalized pentagonal number it is clear that R(n) is even. In [6], Hirschhorn
proved the following result:

R(Tl) = d178(24n + 1) + d3)8(24771 + ].) — d5,8(24n + 1) — d778(24n + 1),
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where dg () is the number of positive divisors d of x with d = ¢ (mod m).
Considering the recurrence relation (4), we deduce that

QR(n)=0 (mod4) < %n) =0 (mod 2)
and
Qn)=2 (mod4) <= @ =1 (mod 2).

If £ € {1,3} and d is a divisor of 24n + 1 such that d = ¢ (mod 8), then
(24n +1)/d = £ (mod 8). On the other hand, when n is not a generalized
pentagonal number, the integer 24n + 1 is not a square. Thus we deduce that

R(n) 7(24n+1)
2 + 2

=d15(24n+1) +d3s(24n + 1)

is an even number. This means that the integers %n) and % have the
same parity. O
Theorem 8. Let n be a nonnegative integer.

(i) If n is congruent to 0 or 3 mod 4, then

) (3n22+ n> =41 (mod4) <= T((6n+ 1)2) =41 (mod 4).

(i) If n is not congruent to 0 or 3 mod 4, then

Q<3n22+n>:il (mod 4) <= 7((6n+1)*) =F1 (mod 4).

(i1i) If n is congruent to 2 or 3 mod 4, then

0 (3n22— n) =41 (mod4) <= 7((6n-1)?)=+1 (mod 4).

(iv) If n is not congruent to 2 or 3 mod 4, then

0 (3n22— N> =+1 (mod 4) = T((6n _ 1)2) =F1 (mod 4).
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Proof. The proof of this theorem is quite similar to the proof of Theorem 7.
Considering our recurrence relations (4), we deduce that

| (mod 4), R((6n+1)?) —1

3n?24+n\ 2
Q( 2 >: R((6n+1)?) —1
3 (mod4), —

2

is even,

is odd.

Let dg,m, (z) be the number of positive divisors d of  with d = ¢ (mod m). On
the one hand, it is not difficult to prove that

d17g((6n + 1)2) + d3)8<(6n + 1)2) -1

is even if and only if n is congruent to 0 or 3 mod 4. On the other hand, it is
not difficult to prove that

di,s((6n —1)%) +d3s((6n —1)%) — 1

is even if and only if n is congruent to 2 or 3 mod 4. This concludes the
proof O

Proof of Theorems 3 and 4. According to Theorem 7, we have

2

Q(p-n—i—pQ;l)EO (mod 4) <= 7(24-p-n+p*)=0 (mod4).

Taking into account that n # 0 (mod p), we obtain
ged(p, 24n +p) = 1.
Then we deduce that
(24 -p-n+p?) =7(p) - T(24n + p) = 2- 7(24n + p).

On the one hand, if p is a prime such that p Z 1 (mod 24) then it is not
difficult to prove that 24n 4 p cannot be a square. On the other hand, it is
well known that 24n+ 1 is a square if and only if n is a generalized pentagonal
number. When p is a prime such that p = 1 (mod 24), we deduce that 24n+p
is a square if and only if n + pT;l is a generalized pentagonal number. This
concludes the proof.
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4 Open problems and concluding remarks

Infinite families of Ramanujan-type congruences modulo 4 for the partition
function Q(n) have been obtained in this paper considering new connections
between partitions and divisors.

Inspired by the case p = 7 of Theorem 2, we experimentally found the
following congruence identities, where

S ={(11,5), (13,6), (17,8), (19,9), (23,11), (31,3), (37,6),

(41,8), (43,9), (47,11), (59,6), (61,6), (67,10), (71,13),
(79,3), (83,5), (89,9), (103,3), (107,6), (109,6), (113,9)}.

Conjecture. Let (p,k) € S. For alln 20 (mod p), we have

2

24

Q<pon+p >—O (mod 2%).

We were unable to prove these congruences due to the running time of
the RaduRK program. Another approach to these congruences would be very
interesting.
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