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Ramanujan-type congruences modulo 4 for
partitions into distinct parts

Mircea Merca

Abstract

In this paper, we consider the partition function Q(n) counting the
partitions of n into distinct parts and investigate congruence identities
of the form

Q

(
p · n+

p2 − 1

24

)
≡ 0 (mod 4),

where p > 5 is a prime.

1 Introduction

Recall that a composition of a positive integer n is a sequence of positive
integers (λ1, λ2, . . . , λk) whose sum is n, i.e.,

n = λ1 + λ2 + · · ·+ λk. (1)

When the order of integers λi does not matter, the representation (1) is known
as an integer partition [1] and can be rewritten as

n = t1 + 2t2 + · · ·+ ntn,

where each positive integer i appears ti times in the partition. For consistency,
we consider a partition of n a non-increasing sequence of natural numbers
whose sum is n. For example, the partitions of 4 are given as:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). (2)
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The fastest algorithms for enumerating all the partitions of an integer have
recently been presented by Merca [8, 9]. As usual, we denote by p(n) the
number of integer partitions of n and we have the generating function

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Here and throughout this paper, we use the following customary q-series no-
tation:

(a; q)n =

{
1, for n = 0,

(1− a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever
(a; q)∞ appears in a formula, we shall assume |q| < 1.

The famous Ramanujan congruences for the partition function p(n), which
were proved by Atkin, Ramanujan and Watson [2, 3, 18], assert that

p
(
5jn+ β5(j)

)
≡ 0 (mod 5j),

p
(
7jn+ β7(j)

)
≡ 0 (mod 7[j/2]+1),

p
(
11jn+ β11(j)

)
≡ 0 (mod 11j)

for every non-negative integer n where βm(j) := 1/24 (mod mj). Congruences
modulo power of 5 and 7 for the partition functionQ(n) counting the partitions
of n into distinct parts can be seen in a paper by B. Gordon and K. Hughes
[4].

From Euler’s pentagonal number theorem

(q; q)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2

we known that almost all values of Q(n) are even, i.e,.

∞∑
n=0

Q(n) qn = (−q; q)∞ ≡ (q; q)∞ (mod 2).

Thus Q(n) is odd if and only if n is a generalized pentagonal number. This fact
was generalized by B. Gordon and K. Ono [5, Theorem 1], who demonstrated
that, for any positive integer k, almost all values of Q(n) are divisible by 2k.
More precisely, if k is a positive integer, then

Q(n) ≡ 0 (mod 2k)
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for a subset of non-negative integers n with arithmetic density one. In [13],
K. Ono and D. Penniston provided an exact formula for Q(n) modulo 8.

In this paper, we remark some congruences modulo 4 for the partition
function Q(n). Surprisingly, these congruences have not been noticed so far.

Theorem 1. For all n 6≡ 0 (mod 5),

Q(5n+ 1) ≡ 0 (mod 4).

Having Q(6) = 4, Q(11) = 12, Q(16 + 25) = 1260 and Q(21) = 76, for
α ∈ {6, 11, 16, 21} we notice that

∞∑
n=0

Q(25n+ α) qn 6≡ 0 (mod 8).

Theorem 1 follows directly from the following two identities where for any
positive integer k, fk is defined by

fk := (qk; qk)∞.

Theorem 2. For |q| < 1,( ∞∑
n=0

Q(25n+ 6) qn

)( ∞∑
n=0

Q(25n+ 21) qn

)

= 16

(
19
f182 f385
f401 f1610

+ 1431 q
f172 f335
f391 f1110

+ 19164 q2
f162 f285
f381 f610

+ 95176 q3
f152 f235
f371 f10

+ 261104 q4
f142 f185 f410

f361
+ 553344 q5

f132 f135 f910
f351

+ 838656 q6
f122 f85 f

14
10

f341

+804864 q7
f112 f35 f

19
10

f331
+ 434176 q8

f102 f2410
f321 f25

+ 98304 q9
f92 f

29
10

f311 f75

)
and( ∞∑
n=0

Q(25n+ 11) qn

)( ∞∑
n=0

Q(25n+ 16) qn

)

= 16

(
24
f182 f385
f401 f1610

+ 1321 q
f172 f335
f391 f1110

+ 20129 q2
f162 f285
f381 f610

+ 91056 q3
f152 f235
f371 f10

+ 268704 q4
f142 f185 f410

f361
+ 554624 q5

f132 f135 f910
f351

+ 816896 q6
f122 f85 f

14
10

f341

+815104 q7
f112 f35 f

19
10

f331
+ 454656 q8

f102 f2410
f321 f25

+ 98304 q9
f92 f

29
10

f311 f75

)
.
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Upon reflection, one expects that there might be an infinite family of con-
gruence identities where the congruence identity given by Theorem 1 is the
first entry.

Theorem 3. Let p > 5 be a prime number such that p 6≡ 1 (mod 24). For all
n 6≡ 0 (mod p), we have

Q

(
p · n+

p2 − 1

24

)
≡ 0 (mod 4).

Theorem 4. Let p ≡ 1 (mod 24) be a prime. For all n 6≡ 0 (mod p), we have

Q

(
p · n+

p2 − 1

24

)
≡

{
2 (mod 4), if n+ p−1

24 = k(3k+1)
2 , k ∈ Z,

0 (mod 4), otherwise.

The case p = 7 of Theorem 3 reads as

Q(7n+ 2) ≡ 0 (mod 4),

for all n 6≡ 0 (mod 7). We remark that there is a stronger result.

Theorem 5. For all n 6≡ 0 (mod 7),

Q(7n+ 2) ≡ 0 (mod 8).

The organization of this paper is as follows. We will first prove Theorems
2 and 5 in Sec. 2. In Sec. 3, we will prove Theorems 3 and 4 considering
new connections between partitions and divisors. Some open problems are
introduced in the last section.

2 Ramanujan-like congruences

Although the generating function for p(n) was discovered by Euler in 1748,
almost nothing was known of the arithmetic properties of p(n) before the twen-
tieth century. The first major discoveries in this area are due to Ramanujan
[15, 16]:

∞∑
n=0

p(5n+ 4) qn = 5
f55
f61
,

∞∑
n=0

p(7n+ 5) qn = 7
f37
f41

+ 49q
f77
f81
.
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These identities allowed the derivation of the famous congruences modulo 5
and 7 for the partition function p(n).

In 1957, O. Kolberg [7] realized that these identities of Ramanujan could
be extended to include a much larger variety of similar identities for p(5n+ j),
p(7n+ j) and others. For example, Kolberg proved that( ∞∑

n=0

p(5n+ 1) qn

)( ∞∑
n=0

p(5n+ 2) qn

)
= 2

f45
f61

+ 25q
f105
f121

.

In 2015, C.-S. Radu [14] constructed an algorithm to compute identities in
the form of those discovered by Ramanujan and Kolberg above. He designed
an algorithm which takes as input a generating function of the form

∞∑
n=0

ar(n) qn =
∏
δ|M

∞∏
n=1

(1− qδn)rδ

and positive integers m and N , where M is a positive integer and (rδ)δ|M is a
sequence indexed by the positive divisors δ of M . With this data the algorithm
attempts to produce a set Pm,r(j) ⊆ {0, 1, . . . ,m − 1} which contains j and
is uniquely defined by m, (rδ)δ|M and j. Next the algorithm decides if there
exists a sequence (sδ)δ|N such that

qα
∏
δ|N

∞∏
n=1

(1− qδn)sδ ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn+ j′) qn

is a modular function with certain restrictions on its behaviour on the bound-
ary of H. Very recently, N. A. Smoot [17] provided a successful Mathematica
implementation of Radu’s algorithm. The package is called RaduRK and re-
quires 4ti2, a software package for algebraic, geometric and combinatorial
problems on linear spaces. Instructions for the proper installation for these
packages can be found in [17]. In this section, we use the RaduRK program to
prove Theorems 2 and 5.

The generating function for Q(n) is given by

∞∑
n=0

Q(n) qn = (−q, q)∞ =
(q2; q2)∞
(q; q)∞

.

This can be described by setting M = 2 and r = {−1, 1}.

Proof of Theorem 2. If we now take m = 25, guess N = 10 and take
j = 6, then we obtain
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In[1] := RK[10,2,{-1,1},25,6]∏
δ|M

(qδ; qδ)rδ∞ =

∞∑
n=0

a(n) qn

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn + j′) qn =
∑
g∈AB

g · pg(t)

Modular Curve: X0(N)

Out[2] =

N: 10

{M,(rδ)δ|M}: {2, {−1, 1}}

m: 25

Pm,r(j): {6, 21}

f1(q):
((q; q)∞)30

((
q5; q5

)
∞
)
12

q10 ((q2; q2)∞) 8 ((q10; q10)∞) 34

t:

((
q2; q2

)
∞
) ((

q5; q5
)
∞
)
5

q ((q; q)∞) ((q10; q10)∞) 5

AB: {1}

{pg(t):g ∈ AB}:
{1 572 864 t+6 946 816 t2+12 877 824 t3

+13 418 496 t4+8 853 504 t5+4 177 664 t6

+1 522 816 t7+306 624 t8+22 896 t9+304 t10}
Common Factor: 16

This gives us

f1(q) ·

( ∞∑
n=0

Q(25n+ 6) qn

)( ∞∑
n=0

Q(25n+ 21) qn

)
= 1572864 t+ 6946816 t2 + 12877824 t3 + 13418496 t4 + 8853504 t5

+ 4177664 t6 + 1522816 t7 + 306624 t8 + 22896 t9 + 304 t10,
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which yields the first identity on rearrangement.
If we now take m = 25, guess N = 10 and take j = 11, then we obtain

In[1] := RK[10,2,{-1,1},25,11]∏
δ|M

(qδ; qδ)rδ∞ =

∞∑
n=0

a(n) qn

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn + j′) qn =
∑
g∈AB

g · pg(t)

Modular Curve: X0(N)

Out[2] =

N: 10

{M,(rδ)δ|M}: {2, {−1, 1}}

m: 25

Pm,r(j): {6, 21}

f1(q):
((q; q)∞)30

((
q5; q5

)
∞
)
12

q10 ((q2; q2)∞) 8 ((q10; q10)∞) 34

t:

((
q2; q2

)
∞
) ((

q5; q5
)
∞
)
5

q ((q; q)∞) ((q10; q10)∞) 5

AB: {1}

{pg(t):g ∈ AB}:
{1 572 864 t+7 274 496 t2+13 041 664 t3

+13 070 336 t4+8 873 984 t5+4 299 264 t6

+1 456 896 t7+322 064 t8+21 136 t9+384 t10}
Common Factor: 16

This gives us

f1(q) ·

( ∞∑
n=0

Q(25n+ 11) qn

)( ∞∑
n=0

Q(25n+ 16) qn

)
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= 1572864 t+ 7274496 t2 + 13041664 t3 + 13070336 t4 + 8873984 t5

+ 4299264 t6 + 1456896 t7 + 322064 t8 + 21136 t9 + 384 t10,

which yields the second identity on rearrangement.

Proof of Theorem 5. Having Q(9) = 8, Q(16 + 49) = 18200, Q(23) = 104,
Q(30) = 296, Q(37) = 760 and Q(44) = 1816, for α ∈ {9, 16, 23, 30, 37, 44} we
notice that

∞∑
n=0

Q(49n+ α) qn 6≡ 0 (mod 16).

Thus, Theorem 5 follows directly from the following lemma.

Lemma 6. For |q| < 1,

(i)
∏

α∈{9,16,30}

∞∑
n=0

Q(49n+ α) qn ≡ 0 (mod 29)

(ii)
∏

α∈{23,37,44}

∞∑
n=0

Q(49n+ α) qn ≡ 0 (mod 29)

Proof. The proof of this lemma is quite similar to the proof of the Theorem
2, so we omit the details. To obtain the first congruence identity, we use

RK[14,2,{-1,1},49,9].

This gives us

(q; q)97∞ (q7; q7)38∞
q44 (q2; q2)37∞ (q14; q14)98∞

∏
α∈{9,16,30}

∞∑
n=0

Q(49n+ α) qn

= 512 ·
(
p1(t) + p2(t) · (q2; q2)8∞ (q7; q7)4∞

q2 (q; q)∞(q14; q14)7∞

)
,

where

p1(t) =− 648518346341351424− 1156641477899055005696 t

− 53539855219692515885056 t2 + 105450742058247729971200 t3

+ 4694768969587740888793088 t4 + 21390855376330998377611264 t5

+ 13991341992545467494301696 t6 + 11260505525461188675108864 t7

+ 44330252745473867191943168 t8 + 23643615579547387255848960 t9
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+ 8374155855608561411293184 t10 + 1805576016164080502964224 t11

+ 148251452149552490217472 t12 − 31553327537583703031808 t13

− 9888536024088676012032 t14 − 720939207186607809024 t15

+ 61469053155281728320 t16 + 10429602484567138104 t17

+ 350946686691788872 t18 + 2453846372311302 t19

+ 2345879956401t20 + 142473177t21 + 148t22

and

p2(t) =648518346341351424 + 1298450822965697183744 t

+ 99220620593049041371136 t2 + 1206009969735756425461760 t3

+ 5176826205924958811455488 t4 + 11097840813001246343430144 t5

+ 13991341992545467494301696 t6 + 11260505525461188675108864 t7

+ 5975272239407813722374144 t8 + 2057274390255339109875712 t9

+ 410447470135012141039616 t10 + 21990447479668472807424 t11

− 9901472011422939742208 t12 − 2239478040117778219008 t13

− 87172452006829977600 t14 + 19395135652819907072 t15

+ 1787542742856116928 t16 + 32903925181539592 t17

+ 97052913403920 t18 + 27860920174 t19 + 264755 t20,

with

t =
(q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q12; q14)7∞

.

The second congruence identity can be obtain if we consider

RK[14,2,{-1,1},49,23].

This gives us

(q; q)97∞ (q7; q7)38∞
q43 (q2; q2)37∞ (q14; q14)98∞

∏
α∈{23,37,44}

∞∑
n=0

Q(49n+ α) qn

= 512 ·
(
p1(t) + p2(t) ·

(
(q2; q2)8∞ (q7; q7)4∞
q3 (q; q)4∞(q14; q14)8∞

− 4 (q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q14; q14)7∞

))
,

where

p1(t) =− 1225330379415709810688 t− 53029217109217902592000 t2
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+ 105983774141947582611456 t3 + 4693406907223237652905984 t4

+ 21391706936249368704974848 t5 + 45081888311211073791328256 t6

+ 55665041474406949037539328 t7 + 44330265479324457999794176 t8

+ 23643634407320564948533248 t9 + 8374136065999589712330752 t10

+ 1805578003899798851158016 t11 + 148249603339947942608896 t12

− 31552596215454669209600 t13 − 9888451479055942475776 t14

− 720885796539747899392 t15 + 61470755478154756480 t16

+ 10429851285495028344 t17 + 350957576681349999 t18

+ 2453307890300554 t19 + 2342867920924 t20 + 152283143 t21

and

p2(t) =1349629729131135500288 t+ 99543891507576485969920 t2

+ 1205372780933149538385920 t3 + 5177219767184086813114368 t4

+ 11097850826933138685427712 t5 + 13991238397774790068797440 t6

+ 11260542562648728386142208 t7 + 5975262039538114523824128 t8

+ 2057270115516818175033344 t9 + 410453459809019650637824 t10

+ 21990450677627612037120 t11 − 9901615893689232523264 t12

− 2239649077347891544064 t13 − 87188088020470964224 t14

+ 19394405130087151616 t15 + 1787438044885791360 t16

+ 32905858181925128 t17 + 97126492812313 t18

+ 27745559755 t19 + 280345 t20

with

t =
(q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q12; q14)7∞

.

3 Connections between partitions and divisors

One of the well-known identities in the partition theory is given by the follow-
ing theta series of Gauss

1 + 2

∞∑
n=1

(−q)n
2

=
(q; q)∞

(−q; q)∞
. (3)
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Very recently [11], we consider this theta identity and obtained the following
truncated form for it: For the positive integers k and r, we have:

(−q; q)∞

1 + 2

k∑
j=1

(−1)jqr·j
2


=

(−q; q)∞(qr; qr)∞
(−qr; qr)∞

+ 2(−1)kqr(k+1)2 (qr; q2r)∞
(q; q2)∞

∞∑
j=0

q(2k+2j+3)rj

(q2r; q2r)j(qr; q2r)k+j+1
.

As a consequence of this theorem, we derived in [11] an infinite family of
linear inequalities for the partition function Q(n) counting the partitions of n
into distinct parts: For n > 0, m > 1,

(−1)m

Q(n) + 2

m∑
j=1

(−1)jQ(n− 3j2)−
∞∑
k=0

δn,Gk

 > 0,

where

Gk =
1

2

⌈
k

2

⌉⌈
3k + 1

2

⌉
is the kth generalized pentagonal number.

The limiting case m→∞ of this inequality reads as: For n > 0,

Q(n) + 2

∞∑
j=1

(−1)jQ(n− 3j2) =

{
1, if n = Gk, k ∈ N0,

0, otherwise.
(4)

Another proof of this recurrence relation can be seen in [12]. We invoke the
recurrence relation (4) in order to prove some unexpected congruences that
combine the partition function Q(n) and the divisor function τ(n) that counts
the positive divisors of n.

Theorem 7. Let r ∈ {0, 2}. For any nonnegative integer n,

Q(n) ≡ r (mod 4) ⇐⇒ τ(24n+ 1) ≡ r (mod 4).

Proof. Let R(n) be the number of representation of n as the sum of a gen-
eralized pentagonal number and thrice a square number. When n is not a
generalized pentagonal number it is clear that R(n) is even. In [6], Hirschhorn
proved the following result:

R(n) = d1,8(24n+ 1) + d3,8(24n+ 1)− d5,8(24n+ 1)− d7,8(24n+ 1),



RAMANUJAN-TYPE CONGRUENCES MODULO 4 FOR PARTITIONS INTO
DISTINCT PARTS 196

where d`,m(x) is the number of positive divisors d of x with d ≡ ` (mod m).
Considering the recurrence relation (4), we deduce that

Q(n) ≡ 0 (mod 4) ⇐⇒ R(n)

2
≡ 0 (mod 2)

and

Q(n) ≡ 2 (mod 4) ⇐⇒ R(n)

2
≡ 1 (mod 2).

If ` ∈ {1, 3} and d is a divisor of 24n + 1 such that d ≡ ` (mod 8), then
(24n + 1)/d ≡ ` (mod 8). On the other hand, when n is not a generalized
pentagonal number, the integer 24n+ 1 is not a square. Thus we deduce that

R(n)

2
+
τ(24n+ 1)

2
= d1,8(24n+ 1) + d3,8(24n+ 1)

is an even number. This means that the integers R(n)
2 and τ(24n+1)

2 have the
same parity.

Theorem 8. Let n be a nonnegative integer.

(i) If n is congruent to 0 or 3 mod 4, then

Q

(
3n2 + n

2

)
≡ ±1 (mod 4) ⇐⇒ τ

(
(6n+ 1)2

)
≡ ±1 (mod 4).

(ii) If n is not congruent to 0 or 3 mod 4, then

Q

(
3n2 + n

2

)
≡ ±1 (mod 4) ⇐⇒ τ

(
(6n+ 1)2

)
≡ ∓1 (mod 4).

(iii) If n is congruent to 2 or 3 mod 4, then

Q

(
3n2 − n

2

)
≡ ±1 (mod 4) ⇐⇒ τ

(
(6n− 1)2

)
≡ ±1 (mod 4).

(iv) If n is not congruent to 2 or 3 mod 4, then

Q

(
3n2 − n

2

)
≡ ±1 (mod 4) ⇐⇒ τ

(
(6n− 1)2

)
≡ ∓1 (mod 4).
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Proof. The proof of this theorem is quite similar to the proof of Theorem 7.
Considering our recurrence relations (4), we deduce that

Q

(
3n2 ± n

2

)
≡


1 (mod 4), ⇐⇒

R
(
(6n± 1)2

)
− 1

2
is even,

3 (mod 4), ⇐⇒
R
(
(6n± 1)2

)
− 1

2
is odd.

Let d`,m(x) be the number of positive divisors d of x with d ≡ ` (mod m). On
the one hand, it is not difficult to prove that

d1,8
(
(6n+ 1)2

)
+ d3,8

(
(6n+ 1)2

)
− 1

is even if and only if n is congruent to 0 or 3 mod 4. On the other hand, it is
not difficult to prove that

d1,8
(
(6n− 1)2

)
+ d3,8

(
(6n− 1)2

)
− 1

is even if and only if n is congruent to 2 or 3 mod 4. This concludes the
proof

Proof of Theorems 3 and 4. According to Theorem 7, we have

Q

(
p · n+

p2 − 1

24

)
≡ 0 (mod 4) ⇐⇒ τ(24 · p · n+ p2) ≡ 0 (mod 4).

Taking into account that n 6≡ 0 (mod p), we obtain

gcd(p, 24n+ p) = 1.

Then we deduce that

τ(24 · p · n+ p2) = τ(p) · τ(24n+ p) = 2 · τ(24n+ p).

On the one hand, if p is a prime such that p 6≡ 1 (mod 24) then it is not
difficult to prove that 24n + p cannot be a square. On the other hand, it is
well known that 24n+1 is a square if and only if n is a generalized pentagonal
number. When p is a prime such that p ≡ 1 (mod 24), we deduce that 24n+p
is a square if and only if n + p−1

24 is a generalized pentagonal number. This
concludes the proof.
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4 Open problems and concluding remarks

Infinite families of Ramanujan-type congruences modulo 4 for the partition
function Q(n) have been obtained in this paper considering new connections
between partitions and divisors.

Inspired by the case p = 7 of Theorem 2, we experimentally found the
following congruence identities, where

S = {(11, 5), (13, 6), (17, 8), (19, 9), (23, 11), (31, 3), (37, 6),

(41, 8), (43, 9), (47, 11), (59, 6), (61, 6), (67, 10), (71, 13),

(79, 3), (83, 5), (89, 9), (103, 3), (107, 6), (109, 6), (113, 9)}.

Conjecture. Let (p, k) ∈ S. For all n 6≡ 0 (mod p), we have

Q

(
p · n+

p2 − 1

24

)
≡ 0 (mod 2k).

We were unable to prove these congruences due to the running time of
the RaduRK program. Another approach to these congruences would be very
interesting.
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