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Properties of n-ary hypergroups relevant for
modelling trajectories in HD maps

Štěpán Křehĺık, Michal Novák and Melis Bolat

Abstract

In the paper we show that trajectories used in HD maps of auto-
nomous vehicles can be well modelled by means of n-ary hyperoperations
and hypergroups. We investigate some properties of such hypergroups.

1 Introduction

Our paper deals with a challenging issue relevant for the self-navigation of
autonomous vehicles. It is a continuation of studies in which automata the-
ory, rough sets and various generalizations of algebraic concepts as well as
concepts of linear algebra are used to model some aspects of self-navigation
such as modelling trajectories or processing information. It is to be noted
that autonomous driving requires a set of advanced technologies both in the
vehicles themselves and in the infrastructure. Since these technologies must
continuously communicate, they need to be linked or even integrated. Obvi-
ously, it is a high definition (HD) map, real-time and as precise as possible –
and discussed in this paper, that is the key component of autonomous driving.

Since our paper relies on the tools of the broad field of algebra, we give
a selection of similarly oriented papers. For our own results concerning the
topic of self-navigation of autonomous vehicles cf e.g. [12, 13].

Paper [15] gives a real-time analysis of building Normal Distribution Trans-
formation (NDT). There, in one of the steps of the transformation, the point
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cloud M is discretized into a grid β with regularly sized cubic cells βi, i =
1, 2, ...,m, according to a predefined cell size. In [26], a novel system ar-
chitecture including a massive multi-input multi-output (MIMO) or a reconfig-
urable intelligent surface (RIS) and multiple autonomous vehicles is considered
in vehicle location systems. By means of geometrical algebraic notions and
properties such as associativity, commutativity and distributivity, the authors
transform the global coordinate system into a local one. In [10], the algebraic
specification of activities performed during network security risk management
is given. This is a useful tool to consider the automation of the process of
risk management without considering the implementation issues. The authors
of [9] formalise IT security risk management as an algebraic datatype specifica-
tion to check the consistency of security risk analyses viewed as algebras. Prob-
ability of occurrence and severity of consequence are modelled as metrics over
attack actions to select optimal countermeasures using multi-objective optimi-
sation. While focusing on security management, their algebraic datatype is an
inspiration for a further formalisation of consequences and assets. However,
their action abstraction and the use of communicating sequential processes
offers a design method for safety controllers as opposed to the more abstract
attack model proposed in [10], which focuses on risk assessment. In [9], “RISK
STRUCTURES” are considered as an algebraic framework of risk modelling,
which is meant to support the design of safe controllers for risk aware ma-
chines. Using the concept of risk factor as a primitive modelling tool, such a
framework provides equipment for construction, investigation and safeguard-
ing of such controllers. The authors of [9] prove desired algebraic properties
of such equipment and show their applicability by using them to specify key
aspects of safety control units for autonomous driving and risk-cautious collab-
orative robots. In order to handle the issue of directional planning in motion
planning of autonomous driving, [1] makes use of the global path informa-
tion by proposing a conditional deep Q-network (DQN) with fuzzy logic. The
aim [1] is to make directional planning for an end-to-end autonomous driving
systems. In the paper, the architecture of the proposed conditional DQN with
fuzzy logic is described. In [23], the design and implementation of a fuzzy
logic system for the steering control of autonomous vehicles inside the round-
about is proposed. Cascade architecture for lateral control and parametric
trajectory generation are used. Paper [3] presents a model for lane changing
in highway driving. It consists of two main parts: threat assessment by as-
sessing the interaction between traffic participants captured in terms of fuzzy
logic and a decision making approach based on the concept of Markov Deci-
sion Process (MDP). The combined system forms a predictive Fuzzy Markov
Decision Process (FMDP). A model predictive control (MPC) scheme for tra-
jectory generation/control complements this decision process. Study [27] aims
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at developing a heterogeneous model of traffic flow which could be used to
study the possible influence of connected autonomous vehicles (CAV) on the
flow. The authors of the proposed model make use of cellular automata, which
had been used to construct a two-state safe-speed model. Notice that the au-
tonomous vehicle (AV) intelligence is not sufficient to solve the complex traffic
situations. However, the concept of exclusive traffic lanes bypasses the so far
insufficient technology. In [16], the advanced model of cellular automata is
used to study the influence of exclusive traffic lanes setting on the traffic flow
and stability on highways. Finally, [25] introduces a cellular automaton de-
sign for single lane highway sections in order to model automated and human
vehicle agents in heterogeneous as well as homogeneous traffic.

In our paper we reflect the fact that no matter how precise and accurate
HD maps are, autonomous vehicles are not capable of exact copying the sug-
gested trajectory because of effects such as inaccuracies of sensorics, vehicle
speed, etc. Instead, they move in its relative vicinity. Therefore we suggest
a solution using algebraic hypercompositional structures in which the hyper-
operation (or hypercomposition) includes all trajectories acceptable for safe
drive. The necessity of such a hyperoperation for modelling the trajectory of
the autonomous vehicle is explained in Section 2. In Section 3 we summarize
the basic algebraic terminology required to study our model. Our main results
are included in Section 4, in which we study the n-ary hyperoperations in the
context of HD maps. We also define some new properties of n-ary hyper-
groupoids which are motivated by the context of trajectories. In Section 5 we
shortly summarize our results and outline possiblities of future study such as
the use of fractions and n-ary transposition axiom to model trajectories back
in time.

2 Motivation

Our paper is motivated by the vibrant and so far still ongoing process of
development and tailoring HD maps, i.e. high-definition maps, which are
being developped as an advanced component and sensor used in the course
of movement of autonomous vehicles. These very precise HD maps consist of
five layers: base layer, geometric layer, semantic map layer, map priors layer
and real-time layer ; see [2] for a scheme giving all these layers, or [14, 11, 8]
for more details.

In spite of the fact that HD maps are intended as high precision map data,
the process of their creation is not error-free. The errors, or imprecisions,
include global accuracy error such as GPS error, error of localization of the
inspection vehicle with recording set for creating the HD maps, local accuracy
error caused e.g. by the speed used for recording, accuracy in objects local-
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ization, hardware precision, etc., and local sampling error, i.e. precission of
sampling. For details, see [6, 24, 17, 15]. One of the intended purposes of
HD maps is to facilitate localization of autonomous vehicles at places with
weak GNSS availability. This is an important task assigned to the the first
three layers of HD maps. Recall that the remaining two layers, i.e. map pri-
ors layer and real-time layer, provide information on real-time traffic such as
traffic density, traffic jams, car parks occupancy, etc.

As a result, autonomous vehicles process enormous amount of data. This
is the reason why elements such as IOT (internet of things) or various cloud
storages are considered to be employed in the process. However, it becomes
obvious that, when driving, the autonomous vehicle will not have read its
planned course in its entirety but will be reading it by parts instead. This im-
plies demands in telecommunication standards of mobile networks. However,
not even this means perfection in localization of autonomous vehicles because
imprecissions must be still be counted with.

Figure 1: Errors is HD maps: a. . . lane width, sv. . . car width, δm. . . HD map
error

When driving, the autonomous vehicle, represented in the course of its
movement and localization by a mass point, moves in a certain band (or strip)
induced by the errors suggested in Fig. 1. Therefore, in this paper, we regard
algebraic structures which can be used to conveniently model the ideal tra-
jectory of the vehicle taking into account, for safety purposes, its immediate
vicinity. Our structures work with an adjustable HD map error δm. Therefore
the error already includes car width, which allows us to model a corridor for
a safe passage of the autonomous vehicle. Further on, we will write r (disc
radius) instead of δm.
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3 Basic notions

In this section we collect definitions and trivia regarding concepts that will
be used further on. For furher details or properties of the below mentioned
notions cf e.g. [4] for a deeper insight and context see overview papers [18, 19].
Notice thatn-ary hypergroups were introduced in [7] and studied e.g. from the
point of view n-ary relations, see [5]. Recently, e.g. [22] studied them in the
context of composition hyperrings, i.e. hypercompositional structures with
two (hyper)operations.

Definition 1. Denote by Hn the Cartesian product H × . . . × H, where H
appears n times. A mapping f : Hn −→ P∗(H), where P∗(H) is the power
set of H excluding the empty set ∅, is called an n-ary hyperoperation (or n-
ary hypercomposition); with n being the arity of the hyperoperation. For all
x, y ∈ H we by f(x1, . . . , xn) mean a subset of P∗(H) and by f(A1, . . . , An)
the set

⋃
f(x1, . . . , xn) ⊆ P∗(H), where, for all i = 1, . . . , n, there is xi ∈ Ai.

A non-empty set H with an n-ary hyperoperation f : Hn → P∗(H) is called
n-ary hypergroupoid and is denoted (H, f).

Notation 1. In order to simplify notation, one may use lower and upper in-
dices. Thus one may write f(xn1 ) instead of f(x1, . . . , xn) or e.g.
f(xi1, y

j
i+1, z

n
j+1), where i < j, instead of f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn).

However, at most places we prefer not to use this type of notation.

Commutativity of n-ary hypergroupoids is not defined while associativity
is defined as equality of sets for all possibilities of bracketing elements.

Definition 2. By an n-ary semihypergroup we mean an n-ary hypergroupoid
(H, f) such that there is

f(xi−11 , f(xn+i−1
i ), x2n−1n+i ) = f(xj−11 , f(xn+j−1

j ), x2n−1n+j ) (1)

for all i, j ∈ {1, 2, . . . , n} and all x1, x2 . . . , x2n−1 ∈ H.

n-ary hypergroups can be defined in two different ways – by means of the
reproductive law or by means of existence of a solution of equations. We
present both alternatives.

Definition 3. [7] By an n-ary hypergroup we mean such an n-ary semihyper-
group (H, f) in which the equation

b ∈ f(ai−11 , xi, a
n
i+1) (2)

has the solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤
n.
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Remark 1. Notice that, in accordace with Notation 1, by (2) we mean that b
is an element of f(a1, . . . , ai−1, xi, ai+1, . . . an).

Remark 2. Alternatively, we may write that n-ary hypergroup is such a n-ary
semihypergroup (H, f) that the n-ary reproductive law holds, i.e. that there is

f(Hi−1, x,Hn−i) = H (3)

for all x ∈ H and all i = {1, 2, . . . , n}.

In the context of binary hyperoperations we mention the extensivity of the
hyperoperation. Notice that the hyperoperation f : H ×H → P(H) is called
extensive if, for all a, b ∈ H, there is {a, b} ⊆ f(a, b). It is easy to verify that
every extensive semihypergroup is a hypergroup.

In our paper we work with points in plane. Notice that we denote these as
P = [x, y].

4 Modelling trajectories in HD maps using n-ary hyper-
structures

Consider discs with center C = [m,n] and perimeter r in real plane, i.e. sets
of points

discC=[m,n],r = {[x, y] ∈ R2 | (x−m)2+(y−n)2 ≤ r2;m,n ∈ R, r ∈ R+}. (4)

Denote Sdisc the set of all such discs. On Sdisc we define a binary hyperoper-
ation ◦ : Sdisc × Sdisc −→ P∗(Sdisc) by:

discA,r ◦ discB,r = {discC,r ∈ Sdisc | C ∈ |AB|} (5)

In other words, we fix the perimeter and move the disc along the line
segment |AB| from A to B.

The following, rather obvious lemma, will make some of our further con-
siderations more easily explicable.

Lemma 1. The set of points induced by discA,r ◦ discB,r is convex regardless
of A,B or r.

Proof. Obvious.

Before we proceed, we explain the difference between “◦” defined by (5)
and the below hyperoperation “∗” (6) which one might consider as well (and
which was, in fact, considered at a very preliminary stage of our research at
the 14th Conference on Algebraic Hyperstructures and Applications in 2020;
unpublished):
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[x1, y1] ∗ [x2, y2] = (6){
[x, y];

√
(x− u)2 + (y − v)2 ≤ r, r ∈ R, u ∈ tx1 + (1− t)x2, v ∈ ty1 + (1− t)y2, t ∈ 〈0, 1〉

}

If we examine the resulting sets of points in the real plane, the hyperop-
erations seem to be the same (see the area of A ∗ B, A ◦ B in Fig. 2 and
3). However, they are not because they work with different kinds of objects:
points vs discs. Indeed, in “∗” the hyperproduct is defined for points and
results in the set of points while “◦” is defined for discs and results in the set
of discs.

In Fig. 2 we explain why “∗” is only weakly associative and not associative.
Assume points A = [x1, y1], B = [x2, y2], C = [x3, y3] and construct (A∗B)∗C.
In this case A∗B is the set of all points of discs with centers on the line segment
|AB|. As a result, (A ∗B) ∗C will include points of discs with centers beyond
A and B which will expand the set. However, this expansion will be different
for A ∗ (B ∗ C) because in B ∗ C we include discs with points beyond B and
C instead.

However, as depicted in Fig. 3, the hyperoperation “◦” is associative be-
cause we work with discs with centers in the line respective line segments only
(and do not move beyond the points).

Figure 2: Weak associativity of “∗” (for clarity reasons circles depicted instead
of discs)

Further on we will study the properties of (Sdisc, ◦). First of all we show
that it is a hypergroup.

Theorem 1. (Sdisc, ◦) is a hypergroup.
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Figure 3: Associativity of “◦”

Proof. Proof of associativity is obvious given the considerations above and
Fig. 3. Indeed, for all discA,r, discB,r, discC,r, where A = [x1, y1], B = [x2, y2],
C = [x3, y3], we have

(discA,r ◦ discB,r) ◦ discC,r =

=
⋃

D=[x4,y4]∈{[x,y]|x∈x3t+(1−t)u,y∈y3t+(1−t)v,u∈x1l+(1−l)x2,v∈y1l+(1−l)y2,t,l∈[0,1]}

discD,r,

i.e. the union of all discs on sides and inside the triangle ABC. The calculation
for discA,r ◦ (discB,r ◦ discC,r) is analogous, the sets are obviously equal.

The reproductive axiom holds automaticly because the hyperoperation is
extensive.

From our “Motivation” section it is obvious that the binary hypereopera-
tion of Theorem 1 is not sufficient for modelling the trajectory of autonomous
vehicles. In HD maps such vehicles move along curves and follow certain
boundaries within which they move. However, the binary operation of Theo-
rem 1 describes movement along line segments only which prevents us to con-
struct reservation fields. If we want to model real-life trajectories, we would
have to consider curves instead of straight lines. However, constructing such
algebraic (hyper)structures would be complicated. Therefore we will employ
n-ary hyperstructures in which curves connecting n points will be approxi-
mated by n− 1 line segments as suggested in Fig 4.

Next, we denote by Sndisc the Cartesian product Sdisc × . . . × Sdisc, where
Sdisc appears n times. We define the n-ary hyperoperation f : Sndisc →
P∗(Sdisc) by:

f (discA1,r, . . . , discAn,r) = {discB,r | B ∈ |AiAi+1|, i ∈ {1, 2, . . . n− 1}} . (7)
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Figure 4: Trajectory: a curve approximated by line segments; the yellow area
corresponds to the trace left by the moving disc

Such a hyperoperation is obviously suitable for modelling trajectories of an
object in a given grid. Moreover, the parameter r is the width of the footprint
of the object, or rather the width the object needs to pass its trajectory.

Before giving a theorem for such an n-ary case, we recall one definition
and include two simple lemmas which will facilitate our proof of associativity.

Definition 4. Let (H, f) be an n-ary hypergroupoid. If there is {a1, . . . , an} ⊆
f(a1, . . . , an) for all (a1, . . . , an) ∈ Hn, we say that H, or f , is extensive.

Lemma 2. Sets f (discA1,r, . . . , discAn,r) depend on the order of points A1, . . . An.

Proof. Obvious, see Fig. 4.

Lemma 3. For hyperoperation f defined by (7) there is

f (discA1,r, . . . , discAn,r) = (8)

= discA1,r ◦ discA2,r ∪ discA2,r ◦ discA3,r ∪ . . . ∪ discAn−1,r ◦ discAn,r.

Proof. It can be easily seen that the result of the n-ary hyperoperation f is
the union of discs with circles on the broken line where the endpoint of each
line segment is the starting point of the following line segment.

Theorem 2. For all n > 2, the pair (Sdisc, f), where f : Sndisc → P∗(Sdisc), is
an n-ary hypergroup.

Proof. The associativity axiom holds – it is obvious thanks to Theorem 1 and
Lemma 3. Out of reasons analogous to the binary case, the reproductive axiom
follows from the extensivity of f . The fact that (Sdisc, f) is, for an arbitrary
arity n, extensive, is obvious.
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In the “Motivation” section we mention that, while driving, the car will
work with sections of the map only. Therefore, we are going to show that the
set Sdisc can be restricted as much as to a square of size 2r, where r is the
radius of discs that we work with. In the following theorem notice that subSdisc
is an arbitrary subset of Sdisc, i.e. the elements of subSdisc are discs. Therefore,
we have to speak of “the set of points being inside or on the boundary of the
discs”.

Theorem 3. If the set of points being inside or on the boundary of the discs
of subSdisc is a convex set, then the pair (subSdisc, f), where f is defined as (8),
is, for an arbitrary arity n, an n-ary subhypergroup of (Sdisc, f).

Proof. We must show that (subSdisc, f) is a subhypergroupoid of (Sdisc, f)
which is associative and reproductive. However, for all convex sets, all these
properties hold while for all nonconvex at least some do not – see Fig. 5 in
which f(A,B,C) 6⊆sub Sdisc.

Figure 5: A nonconvex set subSdisc (in blue) which is not a subhypergroupoid
of Sdisc (notice the line segment |AB|).

For our purposes it seems convenient to generalize the notions of reflex-
ive, invariant and invertible sets, well-established in the context of binary
hypergroups (or, generally speaking, binary hypercompositional structures),
to the context of n-ary hypergroups. In the following definition notice that
by f (perm{x1, . . . , xn}) we mean that f is applied on an arbitrary of all
possible permutations of elements {x1, . . . , xn} while f(perm{x1, . . . , xn, A︸ ︷︷ ︸

n

})

means that f is applied on an arbitrary of all possible choices of n − 1 el-
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ements from the set {x1, . . . , xn} and elements of a fixed set A, i.e. in fact
f(perm{x1, . . . , xn, A︸ ︷︷ ︸

n

}) =
⋃

ai∈A
f(perm{x1, . . . , xn, ai︸ ︷︷ ︸

n

}).

Definition 5. Let (H, f) be an n-ary hypergrupoid and A a non-empty subset
of H. We say that A is:

• reflexive in H if, for all (x1, . . . , xn) ∈ Hn, the fact that f(x1, . . . , xn)∩
A 6= ∅ implies that f (perm{x1, . . . , xn}) ∩A 6= ∅.

• invariant (or normal) in H if, for all (x1, . . . , xn) ∈ Hn, all the sets
f(perm{x1, . . . , xn, A︸ ︷︷ ︸

n

}) are the same.

• invertibile in H if, for all (x1, . . . , xn) ∈ Hn, the fact that

x1 ∈ f(A, x2, . . . , xn)

implies that, simultaneously,

x2 ∈ f(A, x1, x3, . . . , xn), . . . , xn−1 ∈ f(A, x1, x2, . . . , xn−2, xn).

In the “Motivation” section we regard a hyperoperation as a tool to model
the trajectory of an autonomous vehicle by means of a certain section of an
HD map. Assume that this section is rather small – call it a microsection.
Thus, the trajectory from point A to C via B can be described by means
of f (discA,r, discB,r, discC,r). Such a microsection can be represented by
the carrier set of an n-ary hypergroup (subSdisc, f). However, not all sets
f (perm{x1, . . . , xn}) are meaningful in the context of trajectories.

Therefore, we introduce the notion of weak reflexivity, in which we do not
require the property to hold for all sets f (perm{x1, . . . , xn}) but only for two
specific ones: the forward and backward trajectory.

Definition 6. Let (H, f) be an n-ary hypergrupoid and A a non-empty subset
of H. We say that A is weak reflexive in H if, for all (x1, . . . , xn) ∈ Hn, the
fact that f(x1, x2 . . . , xn−1, xn) ∩ A 6= ∅ implies that f(xn, xn−1 . . . , x2, x1) ∩
A 6= ∅.

Lemma 4. For an arbitrary arity n ≥ 2, in an n-ary hypergroup (Sdisc, f),
where f : Sndisc → P∗(Sdisc), there is f(x1, x2, . . . xn−1, xn) =
= f(xn, xn−1, . . . , x2, x1).

Proof. Obvious using mathematical induction.
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Remark 3. In Lemma 4 holds for “the way there and back again (in the
same footsteps)”. Obviously, two arbitrary permutations are not the same.
Providing an example is trivial.

Corolary 1. An arbitrary subset of subSdisc is weak reflexive in (Sdisc, f),
where f : Sndisc → P∗(Sdisc).

Proof. Obvious due to Lemma 4.

Notice that since we are discussing a binary case in the following theorem,
we could have used “◦” instead of f .

Theorem 4. For arity n = 2 of f , an arbitrary set subSdisc is invariant in
(Sdisc, f).

Proof. For an arbitrary discA,r ∈ Sdisc and an arbitrary subset subSdisc ⊆ Sdisc
there is

f(discA,r, subSdisc) =
⋃

discB,r∈subSdisc

f(discA,r, discB,r) =

=
⋃

discB,r∈subSdisc

{discC,r ∈ Sdisc|C ∈ |AB|, for all discB,r ∈sub Sdisc} =

⋃
discB,r∈subSdisc

f(discB,r, discA,r, ) = f(subSdisc, discA,r, )

Thus subSdisc is invariant in (Sdisc, f).

Definition 7. Let (H, f) be an n-ary hypergroupoid and A a non-empty subset
of H. We say that A is weakly invariant in H if, for all (x1, . . . , xn) ∈ Hn,
there is

f(A, x1, x2 . . . , xn−1, xn) ∩ f(x1, A, x2 . . . , xn−1, xn) ∩ . . . (9)

. . . ∩ f(x1, x2 . . . , xn−1A, xn) ∩ f(x1, x2 . . . , xn−1, xn, A) 6= ∅.

Theorem 5. Let (Sdisc, f) be an n-ary hypergroupoid and A a non-empty
subset of Sdisc. If f is extensive, then A is weakly invariant in Sdisc.

Proof. Suppose that in (Sdisc, f) there is (x1, . . . , xn) ∈ f(x1, . . . , xn) for all
(x1, . . . , xn) ∈ Sndisc. Further, suppose an arbitrary set A ⊆ Sdisc. Recall that
f(perm{x1, . . . , xn, A︸ ︷︷ ︸

n

}) =
⋃

ai∈A
f(perm{x1, . . . , xn, ai︸ ︷︷ ︸

n

}). Then there is

{(x1, . . . , xn, ai) | ai ∈ A} ⊆ f(perm{x1, . . . , xn, A︸ ︷︷ ︸
n

}).
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In other words,

f(A, x1, x2 . . . , xn−1, xn) ∩ f(x1, A, x2 . . . , xn−1, xn) ∩ . . .
f(x1, x2 . . . , , xn−1A, xn) ∩ f(x1, x2 . . . , xn−1, xn, A) = T, (10)

where T = {(x1, . . . , xn)} ∪A.

Figure 6: Weakly invariant subhypergroup: in fact, the line segments are
places where discs with the same diameters as those with centers x, y, z are
positioned; one can see that the intersection of all highlighted sets is T only.
Notice that, once again, only line segments along which the discs move are
depicted for clarity reasons.

Theorem 6. Regardless of the arity of f , no subhypergroupoid (subSdisc, f) of
(Sdisc, f) is invertible in (Sdisc, f).

Proof. Suppose that for some discB,r ∈sub Sdisc there is

discB,r ∈ f(discA1,r, discA2,r, . . . , discAn,r, A),

where B and Ai, i = 1, 2, . . . , n are points while A is a set. This means, by
Lemma 3, that discB,r ∈ discA1,r ◦discA2,r∪discA2,r ◦discA3,r∪. . .∪discAn,r ◦
A. In other words,

B ∈ |A1A2| ∨B ∈ |A2A3| ∨ . . . ∨B ∈ |AnX|,
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where discX,r ∈ A. Yet if B is a point of a line segment |AiAi+1|, i =
1, 2, . . . , n − 1, then Ai 6∈ |BAi+1|, which means that at least one of the
conditions in the definition of invertibility is brokem. See also Fig. 7.

Figure 7: Broken invertibility; notice that in this depicted – binary – case, f
could be substituted by “◦”

5 Suggestions for future research

In the context of HD maps, the hyperoperation discA,r ◦ discB,r means mod-
elling the trajectory of a vehicle from A to B. Thus, when describing the
trajectory the vehicle has already passed in order to get to A, one can use
the fraction discA,r/discB,r = {discC,r | discA,r ∈ discC,r ◦ discB,r}. This is
depicted in Fig. 8, where the vehicle is moving from left to the right. The
yellow area is discA,r ◦ discB,r and the blue area, i.e. the path the vehicle al-
ready passed in order to get to A, is discA,r/discB,r. The blue area continues
beyond the figure (this is suggested by the red arrow). Given such fractions
it seems very relevant to study the transposition axiom and n-ary equivalents
of transposition hypergroups.

Notice that the some attempts to study n-ary transposition can be seen
in [20, 21]. Below we propose a new definition that seems to be useful in future
considerations, which might be the direction of some future research.

Definition 8. An n-ary hypergrup (H, f) is called transposition n-ary hyper-
group if the n-ary transposition axiom holds, i.e. if for all a, b, c, d, x1, . . . , xn ∈
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rBA r

Figure 8: A vehicle moving from left to the right along a crossroads

H the fact that
a/(x1, . . . , xn) ≈ (y1, . . . yn) \ b (11)

impies that each set f(perm{y1, . . . , yn, a︸ ︷︷ ︸
n

}) has a nonempty intersection with

each set f(perm{x1, . . . , xn, b︸ ︷︷ ︸
n

}).

Sets a/(x1, . . . , xn) = {c ∈ H,xi ∈ f(xi−11 , c, xni+1)} and (y1, . . . yn) \ b =

{d ∈ H, yi ∈ f(yi−11 , d, yni+1)} are called left and right extensions or fractions,
respectively.
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