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Laplacian energy and first Zagreb index of
Laplacian integral graphs

Abdul Hameed, Zia Ullah Khan and Mikhail Tyaglov

Abstract

The set Si,n = {0, 1, 2, ..., i−1, i+ 1, ..., n−1, n}, 1 6 i 6 n, is called
Laplacian realizable if there exists a simple connected undirected graph
whose Laplacian spectrum is Si,n. The existence of such graphs was
established by S. Fallat et all. In the present paper, we find the Lapla-
cian energy and first Zagreb index of graphs whose Laplacian spectrum
is Si,n.

1 Introduction

Let G = (V,E) be a simple undirected graph with the vertices set V (G) =
{v1, v2, ..., vn} and the edge set E(G), where by m = |E(G)| we denote the
size of G. If vi, vj ∈ V (G) then we say vi is adjacent to vj (vi ∼ vj) if they
share a common edge vivj . The Laplacian matrix associated with the graph
G is the n× n matrix L(G) = (aij) with entries

aij =


dvi
, if i = j,

−1, if i 6= j and vi ∼ vj ,
0, otherwise.

It is well known (see, e.g., [36]) that L(G) has a zero eigenvalue corre-
sponding to the eigenvector with equal entries, while other eigenvalues are
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non-negative. If 0 = µ1 6 µ2 6 · · · 6 µn are the eigenvalues of the Laplacian
matrix of G, then its Laplacian energy is defined as follows

LE(G) =

n∑
k=1

|µk − a| , (1)

where µk are the eigenvalues of the Laplacian matrix (Laplacian eigenvalues)
of G and a is the average degree of G:

a =
2m

n
=

1

n

n∑
k=1

dvk
=

1

n

n∑
k=1

µk. (2)

The Laplacian energy was relatively recently introduced by I. Gutman and
B. Zhou [29] and subsequently studied by many authors very actively, see,
e.g., [1, 12, 13, 19, 25, 39, 43, 45, 49, 52, 53]. The motivation for the Laplacian
energy LE(G) comes from ordinary graph energy [4, 5, 23, 24], the Laplacian
energy shares many properties (or very similar properties) with the ordinary
energy. However, there are many graphs whose Laplacian eigenvalues are
integer numbers. Such graphs are called Laplacian integral and their Laplacian
energy can be found explicitly. A well-known example is the Laplacian energy
of the complete graph Kn is LE(Kn) = 2(n − 1). In [1], the authors found
Laplacian energy of some Laplacian integral graphs. They discussed Laplacian
energy for those graphs which is obtained from complete graph Kn according
to certain rules.

In this paper, we deal with a certain class of Laplacian integral graphs.

Definition 1.1. If Laplacian eigenvalues of a graph G consist of the set

Si,n = {0, 1, 2, .., i− 1, i+ 1.., n− 1, n} for some i, 1 6 i 6 n, (3)

then we say that the graph G realizes Si,n. In this case, the set Si,n is called
Laplacian realizable.

Such graphs were introduced [17] and their construction was studied in detailed
there, see also Section 2 of the present work for some details.

Here we also discuss the first and the second Zagreb indices of the graphs
realizing Si,n. The first Zagreb index M1(G) of the graph G is equal to the
sum of the squares of the degrees of the vertices of graph G:

M1(G) =

n∑
k=1

d2
vk
. (4)
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The second Zagreb index M2(G) is the sum of the product of the degrees of
adjacent vertices in G. It can be expressed in mathematical form as follows

M2(G) =
∑

vivj∈E(G)

dvidvj (5)

The Zagreb indices M1 and M2 were introduced in [28] and elaborated in [27].
The basic properties of M1 and M2 up to year 2004 were summarized in [26,
42]. Recently the first Zagreb index was studied in [2, 8, 9, 31, 32, 34, 42, 46,
51], where one can find more references to the previous research in this area.
The Zagreb indices reflect the extent of branching of the molecular carbon-
atom skeleton, so they can be viewed as molecular structure-descriptors [3, 48].

Thus, in this paper, we investigate the Laplacian energy LE(G) and the
first Zagreb index of the graphs whose Laplacian matrices have the set Si,n

defined in (3) as its eigenvalues. We derive exact formulas for the Laplacian
energy, Theorems 3.5 and 3.7, and for the first Zagreb index, Theorem 4.1.
We also find the first Zagreb index for the complements of graphs realizing
Si,n and provide lower and upper bounds for the Laplacian energy of such
graphs, Theorem 3.9 and Corollary 3.6. In particular, we found out that the
Laplacian energy of graphs realizing Si,n does not exceed the first Zagreb
index of such graphs, Theorem 4.3. We also list all the L-borderenergetic and
L-equienergetic graphs realizing Si,n, see Definitions 2.9 and 2.10. As well, we
found some graphs in the family of Si,n with same number of spanning trees.
Unfortunately, we were not able to find an exact formula for the second Zagreb
index of such graphs but we found its values for graphs realizing Si,n up to
order n = 9, Table 1. We state an open problem to find the exact formula for
the second Zagreb index of graphs realizing Si,n. It is clear that these formula
must be a rational function of i and n.

Finally, we discuss a conjecture from [17] stating that the set Sn,n is not
Laplacian realizable, see Conjecture 2.6. We list some known results on this
conjecture. In particular, we prove that if such graphs exist, then they cannot
be the Cartesian product of two graphs. As well, we show for such graphs (if
any) the first Zagreb index coincides with the Zagreb of their complements
and pose another conjecture on the graphs realizing Sn,n (if any).

The results presented in this work may serve as model to compare for
studies of the Laplacian energy and Zagreb indices as Laplacian realizable
sets Si,n are unique for each n, and possess certain extremal properties. We
also believe that use of the Zagreb indices may contribute towards a proof of
Conjecture 2.6.

The paper is organized as follows. In Section 2, we give a list of some
definitions and known results we use in our work. Section 3 is devoted to the
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calculation of the Laplacian energy of graphs realizing Si,n. Here we provide
lower and upper bounds for the Laplacian energy of such graphs. In Section 4,
we compute the first Zagreb index M1(G) of graphs realizing Si,n and show
that the Laplacian energy of these graphs does not exceed the first Zagreb
index. In Section 5, we discuss Conjecture 2.6. Finally, Section 6 is devoted
to some open problems.

2 Preliminaries

The complement of a simple undirected graph G denoted by G is a simple
graph on the same set of vertices as G in which two vertices are adjacent if
and only if they are not adjacent in G. Given two disjoint graphs G1 and G2,
the union of these graphs, G1 ∪ G2, is the graph formed from the unions of
the edges and vertices of the graphs G1 and G2. The join of the graphs G1

and G2, G1 ∨ G2, is the graph formed from G1 ∪ G2 by adding all possible
edges between vertices in G1 and vertices in G2. Clearly, the complement of
G1 ∨G2 is a disconnected graph.

It is easy to see from the form of the Laplacian matrix that the Laplacian
spectrum of the union of two graphs is the union of their Laplacian spectra.
The Laplacian spectrum SL(G) of a graph G is the spectrum of the Laplacian
matrix of G. The following theorems provide information on the Laplacian
spectra of complements and joins of graphs, see e.g. [6, 36].

Theorem 2.1. Let G be a graph with n vertices with Laplacian eigenvalues

0 = µ1 6 µ2 6 µ3 6 · · · 6 µn−1 6 µn

Then the Laplacian eigenvalues of the complement of G are the following

0 6 n− µn 6 n− µn−1 6 · · · 6 n− µ3 6 n− µ2.

It is well known that the Laplacian spectrum of a graph provides some
information on the structure of the graph. For example, one can use it to
count the number of the spanning trees of the graph.

Definition 2.2. A spanning tree is a subgraph of G which includes all of the
vertices of G with minimum possible number of edges.

The following theorem in the presented form was proved in [33] (see [40]
for more reference).

Theorem 2.3. Let τ(G) be the number of spanning trees of a graph G, and µk

be its Laplacian eigenvalues. Then

τ(G) =
1

n

n∏
k=2

µk.
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We note that, in fact, this theorem is an equivalent form of Kirchhoff’s
matrix tree theorem, see, e.g. [36].

2.1 The graphs realizing Si,n

As we mentioned in Introduction, the graphs realizing Si,n were described in
detail in [17]. The authors of [17] described relations between i and n for Si,n

to be Laplacian realizable. Namely, they proved the following two theorems.

Theorem 2.4 ([17]). Let n > 2 and 1 6 i 6 n. Suppose that Si,n is Laplacian
realizable. If n ≡ 0 mod 4 or n ≡ 3 mod 4 then i is even, while if n ≡ 1
mod 4 or n ≡ 2 mod 4, then i is odd.

The following theorem completely describes the number of all Si,n realiz-
able graphs for i 6= n.

Theorem 2.5 ([17]). Suppose n > 2.

(i) If n ≡ 0 mod 4, then for each i = 1, 2, 3, . . . ,
n− 2

2
, S2i,n is Laplacian

realizable;

(ii) If n ≡ 1 mod 4, then for each i = 1, 2, 3, . . . ,
n− 1

2
, S2i−1,n is Laplacian

realizable;

(iii) If n ≡ 2 mod 4, then for each i = 1, 2, 3, . . . ,
n

2
, S2i−1,n is Laplacian

realizable;

(iv) If n ≡ 3 mod 4, then for i = 1, 2, . . . ,
n− 1

2
, S2i,n is Laplacian realiz-

able.

In [17], the authors also developed an algorithm for constructing the graphs
realizing Si,n except the set Sn,n. On the set Sn,n they conjectured the fol-
lowing.

Conjecture 2.6. The spectrum Sn,n is not Laplacian realizable for any n > 2.

This conjecture was proved to be true for n 6 11 in [17] and for n >
6, 649, 688, 933 in [21]. In fact, there exist other sufficient conditions for graphs
satisfying this conjecture, see Section 5.

We finish this section with counting the number of spanning trees of graphs
realizing Si,n. From Theorem 2.3, one immediately obtain the following for-
mula.
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Theorem 2.7. If Si,n, i < n, is Laplacian realizable, and G is a graph real-
izing Si,n, then

τ(G) =
(n− 1)!

i
(1)

where τ stands for the number of spanning trees. So if n > 5, then τ(G) is an
even number, while it is an odd number whenever 2 6 n 6 4.

This formula implies the following simple corollary.

Corollary 2.8. If n ≡ 2 mod 4 and Si,n is realizable for i < n, then

τ(S1,n) = τ(Sn,n+1) = (n− 1)!

where τ stands for the number of spanning trees.

2.2 The Laplacian Energy

The Laplacian energy of graphs possess many properties similar to the ordinary
energy [4, 5, 23, 24] as we mentioned in Introduction. There exist a number
of works studying graphs with the same Laplacian energy [14, 18, 35, 44], or
with the Laplacian energy equals the one of the complete graph Kn.

Definition 2.9. Two non-isomorphic graphs of same order are called L-
equienergetic if their Laplacian energies are equal.

A graph G on n vertices is said to be borderenergetic if its ordinary energy
equal to the energy of the complete graph Kn . I. Gutman and S. Gong [22]
introduced the concept of borderenergetic graphs. F. Tura in [50] developed
the concept of L-borderenergetic graphs.

Definition 2.10. A graph G is called L-borderenergetic if its Laplacian energy
equals the Laplacian energy of the complete graph, i.e., LE(G) = LE(Kn) =
2(n− 1).

Many authors have presented different families of graphs with same Lapla-
cian energy as that of the complete graph Kn. For recent investigations of
this quantity see [15, 16, 47]. In Section 3, we study L-equienergetic and
L-borderenergetic graphs realizing Si,n.

In the present work, we also find the upper and lower bounds for the
Laplacian energy of graphs realizing Si,n, see Section 3. There exist bounds
for the Laplacian energy of an arbitrary simple connected graph.

Definition 2.11. The maximum degree of G denoted by ∆(G) is the degree of
the vertex with greatest number of edges incident to it, whereas the minimum
degree denoted by δ(G) is the degree of the vertex with smallest number of
edges incident to it.
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The following theorems provide lower and upper bounds for the Laplacian
energy of a graph.

Theorem 2.12 ([11]). Let G be a connected graph of order n with m edges
and maximum degree ∆. Then

LE(G) > 2

(
∆ + 1− a

)
,

with equality if and only if G is isomorphic to K1,n−1. Here a is the average
degree of the graph G defined in (2).

Theorem 2.13 ([11]). Let G be a graph of order n and of size m, m >
n

2
.

Then

LE(G) 6 4m− 2∆− 4m

n
+ 2.

Here the equality holds if and only if G is isomorphic K1,n−1 or G is isomor-

phic K1,∆ ∪Kn−∆−1,
n

2
6 ∆ 6 n− 2.

2.3 Zagreb indices

As we announced in Introduction, in the present work we deal with the first
and second Zagreb indices, see (4)–(5). Note that the Zagreb indices can also
be expressed by the following formulæ [28]

M1(G) =
∑

uv∈E(G)

(du + dv), M2(G) =
1

2

n∑
i=1

d2
viai

where ai is the average degree of the vertices adjacent to vertex vi. We can
also represent the first Zagreb index in a similar way.

M1(G) =

n∑
i=1

dviai =

n∑
i=1

d2
vi .

For more detail and applications, we refer the readers to see [7, 8, 30, 34].
The next theorem provides the lower and upper bound for the first Zargeb

index of an arbitrary simple graph.

Theorem 2.14 ([31, 32, 46]). Let G be a simple graph of order n and size m.
Then the following hold

•
M1

(
G
)

= M1(G) + n(n− 1)2 − 4m(n− 1),

where G is the complement of the graph G.
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•
M1(G) >

4m2

n
.

The equality is attained if and only if the graph G is regular.

•
M1(G) 6 2m(∆ + δ)− n∆δ,

where ∆ and δ is the maximum and minimum degrees of the graph G,
respectively.

Moreover, I. Gutman and B. Zhou [29] found upper bounds for the Lapla-
cian energy of an arbitrary graph G with use of the first Zagreb index. As it
was shown in [11], the best Gutman-Zhou’s estimate is the following.

LE(G) 6
2m

n
+

√
(n− 1)

(
2m+M1(G)− 4m2

n
− 4m2

n2

)
, (2)

where n and m are the order and the size of the graph G, respectively.

3 Laplacian Energy of graphs realizing Si,n

In the present section, we find the Laplacian energy of graphs realizing the
sets Si,n and count the number of L-equienergetic graphs realizing these sets.

3.1 Formulas for Laplacian Energy

First, we give a general form for the Laplacian energy of graphs realizing Si,n.

Lemma 3.1. Let Si,n be Laplacian realizable. Suppose that G be a connected
graph of order n > 2 realizing Si,n, 1 6 i 6 n. Then the Laplacian energy of
G has the following form

LE(G) = 2 min (T (n, a), 0)− 2T (bac, a), (1)

where

T (m,α) =
m∑

k=0

(k − α) = (m+ 1)
(m

2
− α

)
, m ∈ N, α ∈ R, (2)

and a is defined in (2).

We remind the reader that the case i = n does not exist conjecturally, see
Conjecture 2.6. However, we have to include this case into our study unless
the conjecture is proved (if any).
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Proof. Let 1 6 i 6 n. By Definition 1.1, we have that the list of eigenvalues
of the Laplacian matrix of G is the following

{µ1, . . . , µn} = {0, 1, 2, . . . , n} \ {i}, 1 6 i 6 n.

Thus, from (2) and (1), we obtain

a =
1

n

(
n∑

k=1

k − i

)
=
n+ 1

2
− i

n
, (3)

and

LE(G) =

n∑
k=0

|k − a| − |i− a| .

This formulas imply the following

LE(G) = −
bac∑
k=0

(k − a) +

n∑
k=bac+1

(k − a)− |i− a| = −
bac∑
k=0

(k − a)+

+

n∑
k=bac+1

(k − a) +

bac∑
k=0

(k − a)−
bac∑
k=0

(k − a)− |i− a| =

= −2T (bac, a) + T (n, a)− |i− a| ,

(4)

where T is defined in (2), and

T (n, a) = (n+ 1)

(
n

2
−
(
n+ 1

2
− i

n

))
=

(2i− n)(n+ 1)

2n
.

At the same time,

i− a = i−
(
n+ 1

2
− i

n

)
=

(2i− n)(n+ 1)

2n
.

Thus, we have
i− a = T (n, a),

so
T (n, a)− |i− a| = T (n, a)− |T (n, a)| = 2 min (T (n, a), 0) . (5)

Now from (4)–(5), we get (1), as required.

Note that almost all graphs whose Laplacian spectrum is a set Si,n for
some i and n, i 6 n, have non-integer average degree.
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Lemma 3.2. Let n > 2 be an even number, and let Si,n be Laplacian real-
izable. Then among graphs realizing Si,n for various i, the only graph having
integer average degree is anti-regular graph whose Laplacian spectrum is Sn

2 ,n
.

We remind the reader that a graph is called anti-regular (denoted as An) if
its vertex degrees attains (n−1) distinct value or if G has exactly two vertices
of the same degree. Its Laplacian spectrum is the set S⌊

n+1
2

⌋
,n

, see [37, 38].

Proof. Let n = 2l, l ∈ N. Suppose that the Laplacian spectrum of a given
graph G is Si,n. From (3) it follows that

a = l +
1

2
− i

2l
. (6)

Since i 6 n, we have
i

2l
6 1,

so a is integer if and only if
i

2l
=

1

2
, that is, i = l =

n

2
.

Lemma 3.3. Let n > 1 be an odd number, and let the set Si,n be Laplacian
realizable. Then among graphs realizing Si,n for various i, the only graphs
having integer average degree are graphs with Laplacian spectrum Sn,n.

We remind the reader that conjecturally the set Sn,n is not Laplacian
realizable according to Conjecture 2.6.

Proof. Let n = 2l− 1, l ∈ N. Suppose that the Laplacian spectrum of a given
graph G is Si,n. From (3) it follows that

a = l − i

2l − 1
.

So, if 1 6 i < n, we get
i

2l − 1
< 1, and a is non-integer. Thus, it is integer if

and only if i = 2l − 1 = n.

Lemmas 3.2–3.3 imply the following simple observation.

Corollary 3.4. The only graph realizing Si,n with i = a is the anti-regular
graph with the Laplacian spectrum Sn

2 ,n
for even n.

Now we are in a position to find formulas for the Laplacian energy of
graphs realizing Si,n. We consider the cases of even and odd order of the
graph separately.
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Theorem 3.5. Let n > 2 be an even number, and let the set Si,n be Laplacian
realizable. If G realizes Si,n, then the Laplacian energy of G is given by the
following formula.

LE(G) =


(n

2

)2

+ i for i 6
n

2
,

(n
2

)2

+ n− i for i >
n

2
.

(7)

Proof. Suppose first that G realizes Sn
2 ,n

. By Corollary 3.4, we have i = a, so

from (1)–(2) it follows that

LE (G) = −2T (bac, a) = −2(a+ 1)

(
−a

2

)
=
n(n+ 2)

4
=
(n

2

)2

+
n

2
, (8)

since a = i =
n

2
is integer for even n.

Suppose now that i >
n

2
, and G realizes Si,n. Then

1

2
− i

n
< 0,

and the formula (6) implies

bac =
n

2
− 1.

Thus, from (2) and (3) we obtain

T (bac, a) =
n

2

(
n

4
− 1

2
− n+ 1

2
+
i

n

)
=
n

2

(
i

n
− n

4
− 1

)
,

and

T (n, a) = (n+ 1)

(
n

2
− n+ 1

2
+
i

n

)
= (n+ 1)

(
i

n
− 1

2

)
> 0.

By (1) one gets

LE(G) = −2T (bac, a) = −n
(
i

n
− n

4
− 1

)
=
(n

2

)2

+ n− i, (9)

whenever i >
n

2
.

Finally, if i <
n

2
and G realizes Si,n, then

1

2
− i

n
> 0,
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so
bac =

n

2
,

and

T (bac, a) =
(n

2
+ 1
)(n

4
− n+ 1

2
+
i

n

)
=
(n

2
+ 1
)( i

n
− n

4
− 1

2

)
,

T (n, a) = (n+ 1)

(
i

n
− 1

2

)
< 0.

So from (1) it follows that

LE(G) = 2T (n, a)− 2T (bac, a) =

= 2(n+ 1)

(
i

n
− 1

2

)
− (n+ 2)

(
i

n
− n

4
− 1

2

)
=
(n

2

)2

+ i,
(10)

whenever i <
n

2
.

Now the formulas (8)–(10) imply (7), as required.

From (7) it is easy to see that the Laplacian energy LE(Si,n) is integer for
any even n. Also this formula shows that if G realizes S1,2, then LE(G) =
LE(K2) = 2 , and if G realizes S2,4, then LE(G) = LE(K4) = 6.

As well, (7) gives that if G realizes S1,6 or S5,6, then LE(G) = LE(K6) =
10. It turns out the aforementioned graphs are the only L-borderenergetic
graphs among all graphs realizing Si,n.

Corollary 3.6. Let G be a connected graph of order n = 2l, l ∈ N. If G
realizes Si,n, then its Laplacian energy is an even integer number, and the
following inequality holds

LE(Kn) 6 LE(G). (11)

Here the equality holds if and only if n 6 6, and G does not realize S3,6. Here
Kn is the complete graph of order n.

Proof. From Theorem 2.5 it follows that not every set Si,n is realizable. To
study the parity of the Laplacian energy of Si,n-realizable graphs, we consider
the cases n = 4m and n = 4m− 2, m ∈ N, separately.

Suppose first that n = 4m. Then by Theorem 2.5, the set Si,4m is realizable
if and only if i is an even number. Now if i = 2l, then from (7) for any graph
G realizing S2l,4m we obtain

LE(G) =


(2m)2 + 2l for 1 6 l 6 m,

(2m+ 1)2 − (2l + 1) for m 6 l 6 2m.

(12)
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Analogously, if n = 4m− 2, then by Theorem 2.5, the set Si,4m−2 is realizable
if and only if i is an odd number. If i = 2l− 1, then from (7) for any graph G
realizing S2l−1,4m−2 one gets

LE(G) =


(2m− 1)

2
+ 2l − 1 for 1 6 l 6 m,

(2m)2 − 2l for m 6 l 6 2m− 1.

(13)

From the formulas (12)–(13) it follows that if n is even, then the Laplacian
energy of any graph realizing Si,n is even.

Before proving inequality (11), we note that

LE(Kn) = 2(n− 1). (14)

This formula follows immediately from the fact that the Laplacian spectrum
of the complete graph Kn is {0, n, . . . , n︸ ︷︷ ︸

n−1

} and from the formulas (1)–(2).

We also note that it is sufficient to prove the inequality (11) only for i 6
n

2
,

since the Laplacian energy of any graph realizing Si,n equals the Laplacian

energy of any graph realizing Sn−i,n by (7). So let i 6
n

2
, then according

to (7), if G realizes Si,n, then the following holds

LE(G)− LE(Kn) =
n2

4
+ i− 2(n− 1) =

(n
2
− 2
)2

+ i− 2.

This formula shows that in (11) the strict inequality holds for any n > 8
and for n = 6 and i = 3. By Theorem 2.5, we have that for n 6 5 and for
n = 6, i 6= 3 the only Laplacian realizable sets are S1,2, S2,4, S1,6, and S5,6. It
is easy to see that for all graphs realizing these sets, there is equality in (11),
as required.

Now we are in a position to find the Laplacian energy of graphs realizing
Si,n with odd n. The case n = 1 is trivial. So we omit it from our consideration.

Theorem 3.7. Let n > 3 be an odd number. Then the Laplacian energy of
any graph G realizing Si,n is given by the following formula.

LE(G) =


(n+ 1)

(
n− 1

4
+
i

n

)
for i 6

n− 1

2
,

(n+ 1)

(
n+ 3

4
− i

n

)
for i >

n+ 1

2
.

(15)
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Proof. Indeed, from (2) and (3) it follows that

T (n, a) < 0 if i <
n+ 1

2
,

T (n, a) > 0 if i >
n+ 1

2
.

(16)

Moreover, since n is odd, the formula (3) implies

bac =
n+ 1

2
− 1 =

n− 1

2

for any i, 1 6 i 6 n.

Let i >
n+ 1

2
. Then for any graph G realizing Si,n we have

LE(G) = −2T (bac, a) = (2a− bac)(bac+ 1) =

=
n+ 1

2

(
n+ 1− 2i

n
− n− 1

2

)
= (n+ 1)

(
n+ 3

4
− i

n

)
.

If i <
n+ 1

2
, so, in fact, i 6

n− 1

2
, then by (1) and (16),for any graph G

realizing Si,n one obtains

LE(G) = 2T (n, a)− 2T (bac, a) =

= (n+ 1)(n− 2a) + (n+ 1)

(
n+ 3

4
− i

n

)
= (n+ 1)

(
n− 1

4
+
i

n

)
.

Remark 3.8. Theorem 3.7 shows that the Laplacian energy of any graph
realizing Si,n is non-integer rational number whenever n is odd.

Thus, Theorem 3.5 and 3.7, and Corollary 3.6 imply the following general
fact.

Theorem 3.9. Let G realize Si,n, n > 2. If Si,n is not S2,3 or S1,5, then the
following inequalities are fulfilled.

2(n− 1) 6 LE(G) 6
n(n+ 2)

4
. (17)

Here the lower bound is achieved if G realizes S1,2, S2,4, S1,6, or S5,6 only,
while the upper bound is achieved if G is the anti-regular graph An.
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Proof. If n is even, the statement of the theorem follows from Theorem 3.5,
Corollary 3.6, and identity (14), since for the anti-regular graph An whose
spectrum is S⌊

n+1
2

⌋
,n

, one has

LE(An) =
n(n+ 2)

4

by (7), and for any graph G realizing Si,n, the following inequality holds

LE (G) 6 LE(An)

for 1 6 i 6 n.

Let now n be an odd number. From (15) it follows that if a graph G1

realizes Sn−1
2 ,n

and a graph G2 realizes Sn+1
2 ,n

, then

LE(G1) = LE(G2) =
(n2 − 1)(n+ 2)

4n
<
n2(n+ 2)

4n
=
n(n+ 2)

4
,

and LE(G) 6 LE(G1) for any graph G realizing Si,n with 1 6 i 6 n. Thus,
the upper bound in (17) for odd n is established completely, as well.

Let now n be odd and n > 7. From (15), it follows that the Laplacian

energy of graphs realizing Si,n increases as i increases for 1 6 i 6
n− 1

2
, and

decreases as i increases for
n− 1

2
6 i 6 n. Since the Laplacian energy of a

graph realizing S1,n is greater than the Laplacian energy of a graph realizing
Sn,n, we obtain that for any graph G realizing Si,n with odd n > 7, the
following holds

LE(G) >
(n+ 1)(n− 1)

4
>

8(n− 1)

4
= 2(n− 1)

where
(n+ 1)(n− 1)

4
is the Laplacian energy of a graph realizing Sn,n. Here

the lower bound can be achieved only if n = 7, that is, if G realizes S7,7 that
is impossible since S7,7 is not Laplacian realizable, see Section 5 for references
and explanations. Consequently, the lower bound in (17) is is not achieved for
odd n > 7.

If n 6 5 is odd, then the only Laplacian realizable sets are the exceptional
ones S2,3, S3,3, S1,5, or S5,5, according to Theorem 2.5. However, some known
results [17] on Conjecture 2.6 give us that S3,3 and S5,5 are not Laplacian
realizable, see Proposition 2.5.
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Now (15) shows that if G realizes S2,3, then

LE(G) =
10

3
< 4 = LE (K3) ,

and if G realizes S1,5, then

LE(G) =
36

5
< 8 = LE(K5).

Therefore, for graphs realizing S2,3 and S1,5 the lower bound in (17) does not
hold.

3.2 L-equienergetic graphs realizing Si,n

In the present section, we count the number of L-equienergetic graphs realizing
Si,n (see Definition 2.9). From Theorems 2.5, 3.5, and 3.7, for odd n there
are no L-equienergetic graphs realizing Si,n, so in this section, we set n to be
even.

Theorem 3.10. Let n be an even number. There exist exactly

⌊
n− 2

4

⌋
pairs

of L-equienergetic graphs realizing Si,n.

Proof. Let n = 4m. Then from (12) it follows that if G1 and G2 realize
the sets S2l,4m and S4m−2l,4m, respectively, then LE(G1) = LE(G2) for l =
1, . . . ,m− 1.

Analogously, if n = 4m − 2, and if G1 and G2 realize the sets S2l−1,4m−2

and S4m−2l−1,4m−2, respectively, then LE(G1) = LE(G2) for l = 1, . . . ,m−1.
Thus, we get that if n is even (4m or 4m− 2), then there are exactly

m− 1 =

⌊
n− 2

4

⌋
pairs of L-equienergetic graphs realizing Si,n, as required.

Remark 3.11. Note that if n is even, and if graphs G1 and G2 realize Si,n and
Sk,n, respectively, then G1 and G2 are L-equienergetic if and only if i+k = n.
Additionally, (3) implies that in this case

a(G1) + a(G2) =
n+ 1

2
− i

n
+
n+ 1

2
− n− i

n
= n.
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4 The first Zagreb index for Si,n realizable graph

In this section, we find the first Zagreb index M1(G) for graphs realizing Si,n.
We remind the reader that the first Zagreb index is defined by the formula (4).

M1(G) =

n∑
k=1

d2
vk

(1)

At first, we establish the general form for M1(G) of graphs realizing Si,n.

Theorem 4.1. Suppose n > 2. If G is a graph of order n realizing Si,n for
certain i, 1 6 i 6 n, then

M1(G) =
n(n− 1)(n+ 1)

3
− i(i− 1). (2)

Before proving this theorem, we remind the reader that the case i = n
conjecturally does not exist.

Proof. Given a graph G, its Laplacian eigenvalues satisfy the following well-
known relation [36]

Tr(L) =

n∑
k=1

µk =

n∑
k=1

dvk = 2m, (3)

where m = |E(G)| is the number of edges (size of G) and Tr(L) denotes trace
of L(G). So we have

Tr
(
L2
)

= Tr
[
(D −A)2

]
= Tr

(
D2
)

+ Tr
(
A2
)
− 2Tr(DA),

where D is the vertex degree diagonal matrix of the graph G, and A is its
adjacency matrix. Since Tr(DA) = 0, by (3) we obtain

Tr
(
L2
)

=

n∑
k=1

d2
vk

+ 2m =

n∑
k=1

d2
vk

+

n∑
k=1

µk, (4)

where m is the size of the graph, and µk, k = 1, . . . , n, are the eigenvalues
of L. Thus, formulas (1) and (4) imply

M1(G) =

n∑
k=1

d2
vk

= Tr
(
L2
)
−

n∑
k=1

µk. (5)
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If G realizes Si,n, than for the trace of the square of the Laplacian matrix
of G, we get

Tr
(
L2
)

=

n∑
k=1

µ2
k =

n∑
k=0

k2 − i2 =
n(n+ 1)(2n+ 1)

6
− i2, (6)

while the sum of its eigenvalues of L(G) is given by the following formula

n∑
k=1

µk =

n∑
k=1

k − i =
n(n+ 1)

2
− i. (7)

Now from (4)–(7), we obtain (2) for any i, 1 6 i 6 n.

Remark 4.2. From (2) it is easy to see if G realizes Si,n, then its first Zagreb
index is an even integer number. Moreover, formula (2) shows that the first
Zagreb index of Si,n-realizable graphs is a decreasing function of i for a fixed
n.

Note that if G realizes Si,n then its Laplacian energy does not exceed its
first Zagreb index.

Theorem 4.3. Let n > 2, and let a graph G of order n realizes Si,n. Then
the following inequality is true.

LE(G) 6M1(G). (8)

Here the equality holds if and only if n = 2 and i = 1 (the complete graph K2).

Proof. Suppose first that n is an even number. Graphs realizing the sets Si,n

and Sn−i,n are L-equienergetic by (7). Moreover, for graphs realizing Si,n the
first Zagreb index is a decreasing function of i for a fixed n whenever 1 6 i 6 n,

see Remark 4.2. Consequently, it is sufficient to prove inequality (8) for i >
n

2
.

So, let G realize Si,n for some i >
n

2
. Then according to (7) and (2), we

have

M1(G)− LE(G) =
n(n2 − 1)

3
− i(i− 1)− n2

4
− n+ i =

=
n(n2 − 1)

3
− n2

4
− n− i2 + 2i >

>
n(n2 − 1)

3
− n2

4
− n− n2 + 2n =

n

12
(4n2 − 15n+ 8) > 0
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for any n > 4. Thus, we have

M1(G)− LE(G) > 0

whenever n > 4 and i >
n

2
, if G realizes Si,n. So, strict inequality (8) holds

for even n > 4.
If n = 2, then by Theorem 2.5 the only graph realizing Si,2 is K2 realizing

S1,2, and from (7) and (2) we have

LE(K2) = M1(K2) = 2,

as required.

Assume now that n is odd. We remind the reader that sets Si,n are Lapla-
cian realizable not for all i, 1 6 i 6 n, according to Theorem 2.5. However,
we prove that inequality (8) is true for any i, even if Si,n is not Laplacian
realizable.

From (15) it follows that graphs realizing Si,n and Sn−i,n are L-equiener-
getic. Moreover, the first Zagreb index of graphs realizing Si,n is a decreasing

function of i whenever 1 6 i 6 n. Thus, it is enough to consider
n+ 1

2
6 i 6 n.

So for a graph G realizing Si,n, we have

M1(G)− LE(G) =
n(n2 − 1)

3
− i(i− 1)− (n+ 1)

(
n+ 3

4
− i

n

)
=

=
(n+ 1)(4n2 − 7n+ 9)

12
− i2 +

(
2 +

1

n

)
i >

>
(n+ 1)(4n2 − 7n+ 9)

12
− n2 + 2n+ 1 =

(n− 1)(n− 3)(4n+ 1)

12
> 0

for any odd n > 5. Thus, we have

M1(G)− LE(G) > 0.

whenever n > 5 and i >
n+ 1

2
if G realizes Si,n. Consequently, strict inequal-

ity (8) holds for odd n > 5.
If now n = 3, then Theorem 2.5 states that the only graph realizing Si,3 is

K1,2 (complete bipartite graph) which realizes S2,3, and from (15) and (2) we
have

10

3
= LE(K1,2) < M1(K1,2) = 6.

Thus, in (8) equality holds if and only if n = 2 and i = 1.
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Remark 4.4. It is interesting to compare the upper bound (2) with (8) which
does not depend on the number of edges. We postpone such a comparison for
another project.

Finally, we find first Zagreb index for the complements of graphs realizing
Si,n.

Theorem 4.5. Let a graph G realize Si,n, n > 2. Then the first Zagreb index
of its complement G is given by the following formula.

M1

(
G
)

=
n(n− 1)(n− 5)

3
+ i(2n− i− 1). (9)

Proof. Indeed, from Theorem 2.14, it follows that

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1),

where m is the size of the graph G. Now (3) and (7) imply

2m =
n(n+ 1)

2
− i,

so from (2) one has

M1

(
G
)

=
n(n− 1)(n+ 1)

3
− i(i− 1)+

+n(n− 1)2 − 2(n− 1)

(
n(n+ 1)

2
− i
)
.

(10)

Simplifying (10) we get (9), as required.

Remark 4.6. From (9) it is easy to see that the first Zagreb index of the com-
plement of the graph G realizing Si,n is even integer. Moreover, Theorem 4.5
shows that the first Zagreb index of the complement of graphs realizing Si,n

is an increasing function of i for a fixed n whenever i = 1, . . . , n.

5 The Sn,n-conjecture and properties of graphs realizing
Sn,n

In the present section, we briefly survey known necessary conditions for graphs
to realize the set Sn,n and provide a couple of new observation on the graph
realizing Sn,n.

As we mentioned in Section 2, in the work [17] it was conjectured that the
spectrum Sn,n is not Laplacian realizable for any n > 2. In that paper the
authors observed a few simple facts.
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Proposition 5.1 ([17]). If G realizes Sn,n, then the following conditions hold.

• The number of edges of G and G equals

m =
n(n− 1)

4
; (1)

• n ≡ 0, 1 mod 4;

• n is not a prime number.

All these facts can be easily established, and we provide their proofs here for
completeness. Indeed, (1) follows immediately from the formula (3). Since m
must be integer, one gets that if a graph G of order n realizes Sn,n, then
n = 0 or 1 mod 4.

Additionally, from (1) we have that the number of spanning trees of a
graph realizing Sn,n is given by the following formula

(n− 1)!

n
.

Since this number must be integer, we obtain that n cannot be prime whenever
the given graph realizes Sn,n.

In [41], the authors proved that if graph realizing Sn,n exists it must have
diameter at most 6. Recently, this result was improved by K.C. Das, S.G. Lee,
and G.S. Cheon [10] who showed that if G realizes Sn,n, then both graphs G
and G must have diameter 3.

Additionally, in [17] and [21] the following facts were established.

Proposition 5.2. If a graph G of order n realizes Sn,n, then

• 2 6 δ 6 ∆ 6 n − 3, where δ and ∆ are the minimum and maximum
vertex degree of the graph G, respectively;

• 12 6 n 6 6, 649, 688, 932.

Moreover, Theorem 2.1 implies the following.

Proposition 5.3. A graph G of order n realizes Sn,n if and only if its com-
plement G realizes Sn,n.

From (2) and (9) it follows that if a graph G realizes Sn,n, then

M1(G) = M1

(
G
)

=
n(n− 1)(n− 2)

3
.
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In fact, the formula for M1(G) was found in [17], as well, but the authors did
not mention Zagreb indices in that paper.

At the same time, in [2] it was proved that M1(G) and M1(G) are equal if
and only if G and G have the same number of edges, so we have

e
(
G
)

= e(Kn)− e(G) =
n(n− 1)

4
,

where

e(Kn) =
n(n− 1)

2
.

is the number of edges of the complete graph Kn.
It is clear [20, p. 107] that the necessary condition for a graph G to be self-

complementary, i.e., G ∼= G (G is isomorphic to G), is that the number of edges
of the graph G is equal the half of the edges of the complete graph Kn. This
fact suggests considering the self-complement graphs as potential candidates
to realize Sn,n. However, calculations show that self-complementary graphs of
order up to 12 (inclusive) do not realize Sn,n. On the base of these calculations
we conjecture the following.

Conjecture 5.4. Any Laplacian integral self-complementary graph has at
least one multiple eigenvalue.

In other word, we conjecture that Sn,n-realizable graph are not self-comple-
mentary (if exist).

At the end of this section, we establish one more simple fact about graphs
that can potentially realize Sn,n. This fact is related to one more operation
on graphs called the Cartesian product (see, e.g., [36] and references there).

Definition 5.5. The Cartesian product of the graphs G1 and G2 denoted by
G1 ×G2 having vertex set is the cartesian product V (G1)× V (G2). Suppose
v1, v2 ∈ V (G1) and u1, u2 ∈ V (G2), then the vertices (v1, u1) and (v2, u2) of
G1 ×G2 are adjacent if and only if one of the following conditions holds

• v1 = v2 and u1u2 ∈ E(G2);

• u1=u2 and v1v2 ∈ E(G1).

The Laplacian spectrum of graph Cartesian product is given by the follow-
ing theorem, see, e.g., [36].

Theorem 5.6. Let G1 and G2 be graphs with Laplacian spectra SL(G1) =
{λ1, λ2, . . . , λn−1, λn} and SL(G2) = {µ1, µ2, . . . , µm−1, µm}. Then

SL(G1 ×G2) = {λi + µk, 1 6 i 6 n, 1 6 k 6 m}.
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Now for graphs realizing the set Sn,n we have the following fact.

Proposition 5.7. If G realizes Sn,n, then G is not a Cartesian product of
graphs.

Proof. If G = G1 × G2 and G realizes Sn,n, then the Laplacian spectra of
graphs G1 and G2 do not contain multiple eigenvalues, since the set Sn,n

does not contain repeated numbers, and since the Laplacian eigenvalues of
both graphs G1 and G2 belong to the Laplacian spectrum of G according to
Theorem 5.6.

So, if G = G1 ×G2 and G realizes Sn,n, then G1 realizes some set

Sl,m = {0, 1, 2, . . . , l − 1, l + 1, . . . ,m− 1,m},

and G2 realizes some set

Sp,q = {0, 1, 2, . . . , p− 1, p+ 1, . . . , q − 1, q}.

By Theorem 5.6, the Laplacian spectrum contains the eigenvalue (l−1)+(p+
1) = p+ l and the eigenvalue (l + 1) + (p− 1) = p+ l, that is, the eigenvalue
p + l is of multiplicity at least 2. We get a contradiction, since the set Sn,n

does not contain repeated numbers.

6 Conclusion and open problems

In this work, we found the Laplacian energy and the first Zagreb index for the
graphs whose Laplacian spectrum is of the form {0, 1, . . . , i−1, i+1, . . . , n} for
some i, 1 6 i 6 n−1. We also gave lower and upper bounds for the Laplacian
energy and a relation between the first Zagreb index and the Laplacian energy
of graphs realizing Si,n. Additionally, we discuss some aspects of the Sn,n-
conjecture, Conjecture 2.6, stating that graphs realizing Sn,n do not exist.
Finally, we proved that if a graph realizes Sn,n, then it is not a Cartesian
product of two graphs.

Together with the first Zagreb index of graphs realizing Si,n we tried to find
the second Zagreb index. Unfortunately, we were unable to find an explicit
formula for the second Zagreb index of graphs realizing Si,n. We suppose that
it should be a rational function of i and n. Some values of the second Zagreb
index of graphs realizing Si,n are represented in Table 1.

Table 1. Second Zagreb index of graphs realizing Si,n
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Second Zagreb index M2(G)
i\n 1 2 3 4 5 6 7 8 9
1 1 57 120 623
2 4 19 224 389
3 44 106 619
4 192 354
5 71 560
6 141 290
7 474
8
9

Thus, we would like to pose the following problem.

Problem 1. Find the formula for the second Zagreb index of graphs realiz-
ing Si,n.

One more problem we are interesting in is stated in Conjecture 5.4. If
this conjecture is true, then graphs realizing Sn,n are not self-complementary.
However, if such graphs do not exist, then Conjecture 5.4 is true. For instance,
it is true for n < 12 and n > 6, 649, 688, 932 according to Proposition 5.2.
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[32] Ilić A, Stevanović D. On comparing Zagreb indices. MATCH Communica-
tions in Mathematical and in Computer Chemistry 2009;62 (4): 681–687.



LAPLACIAN ENERGY OF LAPLACIAN INTEGRAL GRAPHS 159

[33] Kel’mans AK. The number of trees of a graph I. Automat. Remote Control
1966; 26: 2118–2129 (1966).

[34] Khalifeh MH, Yousefi-Azari H, Ashrafi A. The first and second Zagreb
indices of some graph operations. Discrete applied mathematics 2009; 157
(4): 804–811. doi: 10.1016/j.dam.2008.06.015.
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