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Motion of Inextensible Quaternionic Curves
and Modified Korteweg-de Vries Equation

Kemal Eren

Abstract

Many curve evolutions have been determined which are integrable
in recent times. The motion of curves can be defined by certain in-
tegrable equations including the modified Korteweg-de Vries. In this
study, the quaternionic curves in 3 and 4-dimensional Euclidean spaces
have been considered and the motions of inextensible quaternionic curves
have been characterized by the modified Korteweg-de Vries (mKdV)
equations. For this purpose, the basic concepts of the quaternions and
quaternionic curves have been summarized. Then the evolutions of inex-
tensible quaternionic curves with reference to the Frenet formulae have
been obtained. Finally, the mKdV equations have been generated with
the help of their evolutions

1 Introduction

The obscurities of many physical events encountered in nature have been dis-
ambiguated by mathematical models. Problems describing the physical and
natural phenomena are usually expressed in nonlinear partial differential equa-
tions. The Korteweg-de Vries (KdV) equation is a fundamental differential
equation for modeling and describing waves in nature. Debuting of the KdV
equation was seen in the water waves observed by Scottish engineer J. Scott
Russell in 1834. After Russell, many researchers such as Stokes (1847) and
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Boussinesq (1872) mentioned these waves. One of the most important prop-
erties of these waves is that they collide and keep their shape after a collision.
Because of these properties, Kruskal and Zabusky (1965) called these waves
solitons. Soliton concept of waves expresses that they move like particles. Af-
ter Russell’s observations, Dutch mathematician Diederik Johannes Korteweg
and his student Gustav de Vries (1895) proposed a model to explain the ob-
served event. According to this model, a wave with a higher height than the
waves moving in shallow water moves faster, collides with the slight wave in
front, and passes it. However, the exciting thing about these two waves is that
each of them returns to the state before the collision [1, 2]. In addition, the
KdV equation is a critical nonlinear partial differential equation that corre-
sponds to physical systems such as shallow-water waves, large inner waves in
densely layered oceans, ionic sound waves in plasma, sound waves in crystal
lattices [3]. The standard KdV equation is a third-order nonlinear equation.
Furthermore, it was extended to higher odd orders. The family of third-order
KdV equation of the function u (x, t) is given by

ut + ϕ (u)ux + uxxx = 0,

where x is space and t is time variable, The coefficients of ϕ (u)ux and uxxx
can be constant numbers. By taking ϕ (u) = ρu2 in this last equation, the
equation of modified Korteweg-de Vries (mKdV) is defined as

ut + ρu2ux + uxxx = 0, (1)

where ρ is nonzero constant. The mKdV equation has applications in some
areas such as electrodynamics, traffic flow, electro-magnetic waves in size-
quantized films, elastic media, electric circuits, and multi-component plasmas
[4, 5]. The mKdV equation has been considered from different geometric and
algebraic perspectives in [6, 7, 8, 9, 10].
On the other hand, the quaternions were found in 1843 during the work of
Irish mathematician William Rowan Hamilton to generalize complex numbers
to 3-dimensional space. While finding quaternions, Hamilton first studied
complex numbers and then concluded that complex numbers consist of two
real numbers as algebra. Based on this result, Hamilton concentrated his
studies on the triple numbers as (q = q0 +q1e1 +q2e2), including two complex
numbers and one real number component. Although he defined addition and
multiplication on this system, he could not develop a method for division.
In the meantime, he realized that in the number system of these numbers,
the commutative property of multiplication does not occur. By giving up this
property of multiplication, he defined three imaginary units that are satisfying
e1

2 = e2
2 = e3

2 = −1. Thus, Hamilton discovered 4-dimensional division al-
gebra, and its elements are called quaternions [11]. The quaternion theory has



Motion of Inextensible Quaternionic Curves and Modified Korteweg-de Vries Equation 93

renewed itself over time and diversified. The base elements of the quaternions
discovered by Hamilton are imaginary, and their components are real numbers,
so they are called real quaternions. The real quaternions are the simplest in
terms of structure and lead to defining new types of quaternions [12, 13].
The Serret-Frenet formulas of a curve in 3-dimensional Euclidean space R3

have been re-derived by Bharathi and Nagaraj for quaternionic curves [14].
In recent years, the application areas of quaternions have spread to almost all
branches of science. It is seen that the quaternions are being used in a wide
range, including the investigation of molecular structures, DNA and protein
structures, the definition of eye movements, dynamics, astronomy, and optics,
etc. [15, 16, 17]. The carried-out studies are the source of our inspiration to
obtain the mKdv equation for the moving quaternionic curves.

2 Preliminaries

Below, we give the basic notions of the theory of quaternions. More compre-
hensive information on quaternions and quaternionic curves are available in
[11] and [14].
A quaternion q is defined as the sum of a scalar q0 and a vector q = (q1, q2, q3)
such as

q = q0 + q = q0 + q1e1 + q2e2 + q3e3

where {ei| 1 ≤ i ≤ 3} is the standard orthonormal basis for R3, and it is used
to represent the orientation of a rigid body or coordinate frame in R3. For
a real quaternion q, the components q0, q1, q2 and q3 are real numbers and
ei, (1 ≤ i ≤ 3) are quaternionic units that satisfy the non-commutative multi-
plication rules ei × ej = ek = −ej × ei and ei × ei = −1 for all 1 ≤ i, j, k ≤ 3
where × denotes cross product of vectors in R3. The complex conjugate of a
quaternion q, denoted q̄, is defined by

q̄ = q0 − q or q̄ = q0 − q1e1 − q2e2 − q3e3.

If we get two quaternions p = p0 + p and q = q0 + q, then their quaternionic
product is defined as follows;

p× q = p0q0 − 〈p,q〉+ p0q + q0p + p× q,

where 〈, 〉 denotes the inner product in R3. Let Q denotes the quaternion set.
Now, we can define the quaternion inner product by the following form

f : Q×Q→ R
(p, q)→ f (p, q) = 1

2 (p× q̄ + q × p̄)
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which is a real-valued, symmetric, and bilinear form. In addition, the norm of
a quaternion q is given by

‖q‖2 = f (q, q) = q × q̄ = q̄ × q = q0
2 + q1

2 + q2
2 + q3

2.

Also, if ‖q‖ = 1, then the quaternion q is called unit quaternion. The inverse
of a quaternion q with a nonzero norm is expressed by

q−1 = q̄
‖q‖2 .

The three-dimensional Euclidean space R3 is identified by the space of the
spatial quaternions {q ∈ Q| q + q = 0} where Q denotes quaternion set [14].

Definition 1. A spatial quaternionic curve α is defined by

α : I → Q,

s → α(s) =
3∑
i=1

αi (s) ei

where I = [0, 1] is an interval in real line R and s ∈ [0, 1] is the arc-length
parameter [14].

Let α be a spatial quaternionic curve with the arc-length parameter
s ∈ I = [0, 1]. Then the FrenetSerret vectors (also commonly referred to
as the Frenet vectors) of the curve α at a point α (s) are

t (s) = α′ (s) ,n (s) = α′′(s)
‖α′′(s)‖ ,b (s) = t (s)× n (s) .

Here the vectors t, n, and b are called unit tangent, unit principal normal,
and unit binormal vectors of the quaternionic curve α, respectively [14]. This
identification produces the Frenet formulas given in the following theorem:

Theorem 1. Let {t,n,b} be Frenet frame and {k, r} be curvatures of a quater-
nionic curve α in R3 with arc-length parameter s ∈ I = [0, 1]. Then, the
relationship between the Frenet vectors and the curvatures are given as

ts = kn,
ns = −kt + rb,
bs = −rn,

(2)

where k is the principal curvature and r is the torsion of α [14].

On the other hand, four-dimensional Euclidean space R4 is identified by
the space of the quaternions.

Definition 2. A quaternionic curve β is defined by
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β : I → Q,

s → β(s) =
3∑
i=0

βi (s) ei

where I = [0, 1] is an interval in the real line R. Let s ∈ [0, 1] be the arc-length
parameter such that the tangent T = β′ (s) has unit magnitude [14].

The Frenet formulas of the quaternionic curve β are given in the following
theorem:

Theorem 2. Let β be a quaternionic curve with the arc-length parameter
s ∈ I = [0, 1] in R4. If {T,N,B,E} denotes the Frenet frame of β, then the
relationship between the Frenet vectors and the curvatures of β is given by

Ts = κN,
Ns = −κT + kB,
Bs = −kN + (r − κ) E,
Es = − (r − κ) B,

(3)

where κ = ‖T′‖, N = t×T,B = n×T,E = b×T. Here κ, k, and (r − κ) are
called the principal curvature, torsion, and bitorsion of β, respectively [14].

3 The mKdV equation by the motion of inextensible
quaternionic curves

In this section, the mKdV equation is obtained by the motions of inextensible
quaternionic curves in both 3 and 4-dimensional Euclidean spaces.

3.1 Spatial inextensible quaternionic curves in R3

Let α = α (s) be a spatial quaternionic curve in R3 and α (s, t) denotes the
position vector of the curve α (s) at time t. The time evolution of the Frenet
frame {t,n,b} of α is written in the following form

tt = δ1n + δ2b,
nt = −δ1t + γ1b,
bt = −δ2t− γ1n,

(4)

where δ1, δ2 and γ1 are smooth functions of s and t.
The symmetry of the second-order derivatives with respect to the arc-

length parameter s and time t implies that the quaternionic curve α has to be
inextensible [9]. Accordingly, using the conditions tts = tst, nts = nst, and
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bts = bst for the spatial inextensible quaternionic curve, one easily obtains
from the equations (2) and (4) the following relations;

δ1s = kt + rδ2, (5)

δ2s = kγ1 − rδ1, (6)

γ1s = rt − kδ2. (7)

Thus, we can give the following theorem.

Theorem 3. Let α(s, t) be a position vector of a moving spatial inextensi-
ble quaternionic curve α in R3, then the time evolution of the Frenet frame
{t,n,b} is t

n
b


t

=

 0 δ1 δ2
−δ1 0 γ1

−δ2 −γ1 0

 t
n
b

 ,
such that

δ1 = f1k + f2s − f3r, δ2 = f2r + f3s,
γ1 = 1

k ((f2r + f3s) + r (f1k + f2s − f3r))

where f1, f2 and f3 are the components of velocity vector of α and k, r are
the principal curvature and torsion of α, respectively.

Proof. Let α be a moving spatial inextensible quaternionic curve and f1, f2

and f3 be the components of velocity vector α. If we denote the velocity vector
as v = αt, then we can write

v = f1t + f2n + f3b, (8)

If we take the derivative of v = αt and αs = t with respect to s and t, we have

vs = αts = (f1s − f2k) t + (f1k + f2s − f3r) n + (f2r + f3s) b

and
αst = tt = δ1n + δ2b.

Then by using the compatibility conditions αts = αst of inextensibility, we
find

(f1s − f2k) t + (f1k + f2s − f3r) n + (f2r + f3s) b = δ1n + δ2b.

From here, the following statements are satisfied;

f1s − f2k = 0, (9)
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f1k + f2s − f3r = δ1, (10)

f2r + f3s = δ2. (11)

By substituting the equations (10) and (11) into (6), we obtain the smooth
function γ1 as follows

γ1 =
1

k
((f2r + f3s) + r (f1k + f2s − f3r)) . (12)

This completes the proof.

Also, we can determine the time evolution of the curvature k and the
torsion r of the moving spatial inextensible quaternionic curve α with respect
to the components of velocity f1, f2 and f3. By substituting the formulas (10)
and (11) into (5) and (7), the following corollary is obvious.

Corollary 1. The time evolutions of the curvature k and the torsion r of the
moving spatial inextensible quaternionic curve α are given by

kt = (f1k − f2s − f3r)s − r (f2r + f3s) (13)

and
rt = γ1s + k (f2r + f3s) . (14)

Theorem 4. Let α(s, t) be a position vector of the spatial inextensible quater-
nionic curve α. If the time evolution of α is given by t

n
b


t

=

 0 −k
3

2 − kss f3s
k3

2 + kss 0 f3ss

k

−f3s − f3ss

k 0


 t

n
b

 ,
then α satisfies the mKdV equation kt + ksss + 3

2k
2ks = 0.

Proof. If we consider δ1 = −k
3

2 − kss, δ2 = f3s, γ1 = f3ss

k , then f2 = −ks and
the torsion of the moving inextensible spatial inextensible quaternionic curve α

vanishes, i.e., r = 0. Then from the equation (9), we find that f1 = −k
2

2 +c1 (t)
where c1 (t) is arbitrary. Since r = 0, the quaternionic inextensible curve α is
a planar quaternionic curve for all time t. Here, if c1 (t) = 0, then from the

last equation, it is f1 = −k
2

2 .

By considering (13) and (14) with f1 = −k
2

2 and f2 = −ks, the mKdV equa-
tion related to arc-lengthed spatial inextensible quaternionic curve α(s) =
3∑
i=1

αi (s) ei in R3 is obtained as kt+ksss+ 3
2k

2ks = 0. Also,
(
f3ss

k

)
s

= −kf3s

is satisfied for the binormal component of the velocity of the moving inexten-
sible quaternionic curve.
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3.2 Inextensible quaternionic curves in R4

Let β = β (s) be a quaternionic curve in R4 and β (s, t) be the position vector
of the curve β (s) at time t.

The time evolution of the Frenet frame {T,N,B,E} can be written in the
following form

Tt = λ1N + λ2B + λ3E,
Nt = −λ1T + µ1B + µ2E,
Bt = −λ2T− µ1N + η1E,
Et = −λ3T− µ2N− η1B,

(15)

where λi, µi and ηi (1 ≤ i ≤ 3) are smooth functions of s and t.

If β is an inextensible quaternionic curve in R4, then there are the condi-
tions Tts = Tst, Nts = Nst, Bts = Bst, and Ets = Est. From the equations
(3) and (15), we get

λ1s = κt + kλ2,
λ2s = κµ1 − kλ1 + (r − κ)λ3,
λ3s = κµ2 − (r − κ)λ2,
µ1s = kt − κλ2 + (r − κ)µ2,
µ2s = kη1 − κλ3 − (r − κ)µ1,
η1s = (r − κ)t − kµ2.

(16)

Theorem 5. Let β(s, t) be the position vector of an inextensible quaternionic
curve β in R4. If the time evolution of the Frenet frame {T,N,B,E} of β
satisfies 

T
N
B
E


t

=


0 λ1 λ2 λ3

−λ1 0 µ1 µ2

−λ2 −µ1 0 η1

−λ3 −µ2 −η1 0




T
N
B
E

 ,
where

λ1 = −κ
3

2 − κss,
λ2 = g3s − (r − κ) g4,
λ3 = g4s + (r − κ) g3,
µ1 = 1

κ ((r − κ) ((r − κ) g3 + g4s)− (g3s − (r − κ) g4)s) ,
µ2 = 1

κ (((r − κ) g3 + g4s)s + (r − κ) (g3s − (r − κ) g4)) ,
η1 =

∫
(r − κ)tds,

and κ, (r − κ) are the curvatures, and gi (3 ≤ i ≤ 4) are the components of the
velocity vector of β, respectively, then the curvature of β provides the mKdV
equation

κt + κsss +
3

2
κ2κs = 0.
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Proof. Let β be a moving inextensible quaternionic curve in R4. If we denote
the velocity vector of β by u = βt, then it can be written as

u = g1T + g2N + g3B + g4E, (17)

where gi (1 ≤ i ≤ 4) are the components of the velocity vectors of the moving
quaternionic curve β.

If we take the derivatives of u = βt and βs = T with respect to s and t,
respectively, we have

us = βts = (g1s − κg2) T+(κg1 + g2s − kg3) N+(kg2 + g3s − (r − κ) g4) B+((r − κ) g3 + g4s) E

and
βst = λ1N + λ2B + λ3E.

By using the compatibility conditions βts = βst, we find that the following
statements are satisfied;

g1s − κg2 = 0,
κg1 + g2s − kg3 = λ1,
kg2 + g3s − (r − κ) g4 = λ2,
(r − κ) g3 + g4s = λ3.

(18)

Substituting the formulas (18) into the equations (16), the time evolution of
the curvatures κ, k and (r − κ) of the moving quaternionic curve β are found
as

κt = (κg1 + g2s − kg3)s − k (kg2 + g3s − (r − κ) g4) ,
kt = µ1s + κ (kg2 + g3s − (r − κ) g4)− (r − κ)µ2,
(r − κ)t = η1s + kµ2.

(19)

On the other hand, considering the equations (16) and (18) together, we can
see that the smooth functions µ1, µ2 and η1 of β satisfy the equalities

µ1 = 1
κ

(
−k (κg1 + g2s − kg3) + (r − κ) ((r − κ) g3 + g4s)
−(kg2 + g3s − (r − κ) g4)s

)
,

µ2 = 1
κ (((r − κ) g3 + g4s)s + (r − κ) kg2 + g3s − (r − κ) g4) ,

η1 =
∫

(r − κ)t − k
(

1
κ

(
((r − κ) g3 + g4s)s + (r − κ) kg2

+g3s − (r − κ) g4

))
ds.

(20)

So by the hypothesis g2 = −κs and the curvature k of the moving inextensible
quaternionic curve β vanishes, i.e., k = 0. Then from equation (18), we find

g1 = −κ
2

2 + c2 (t) ,
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where c2 (t) is arbitrary. Here, if c2 (t) = 0, then from the last equation, we

get g1 = −κ
2

2 . For g1 = −κ
2

2 , g2 = −κs and k = 0. Also, substituting the

equations g1 = −κ
2

2 and g2 = −κs, k = 0 into equation (19), we obtain the

mKdV equation related to arc-lengthed quaternionic curve β(s) =
3∑
i=0

βi (s) ei

in R4 with curvatures {κ, k, (r − κ)} is found as κt + κsss + 3
2κ

2κs = 0.

4 Conclusions

A curve evolution is called integrable if the motion is defined by an integrable
partial differential equation. The integrable evolutions of curves have been
studied widely in recent times. The motion of curves can be defined by in-
tegrable equations including mKdV equations. The mKdV equations have
been studied in detail by algebraic and geometric approaches, but the motions
of inextensible quaternionic curves have not been studied in terms of mKdV
equations. In this regard, we obtained the mKdV equation under certain
conditions by using the evolution of the curvatures of the inextensible quater-
nionic curves in 3 and 4-dimensional Euclidean spaces. For this purpose, we
expressed the evolution equations related to the Frenet frames and curvatures
of the inextensible quaternionic curves. The obtained relations may be used
in the study of physical phenomena including the motions of particles under
certain conditions.
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