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Periodic and Solitary Wave Solutions for the
One-Dimensional Cubic Nonlinear Schrödinger

Model

Ion Bica and Ana Mucalica

Abstract

Using a similar approach as Korteweg and de Vries, [19], we obtain
periodic solutions expressed in terms of the Jacobi elliptic function cn,
[3], for the self-focusing and defocusing one-dimensional cubic nonlinear
Schrödinger equations. We will show that solitary wave solutions are
recovered through a limiting process after the elliptic modulus of the
Jacobi elliptic function cn that describes the periodic solutions for the
self-focusing nonlinear Schrödinger model.

1 Introduction

The very well-known Korteweg-de Vries equation, [19], possesses periodic so-
lutions expressed in terms of the Jacobi elliptic function cn, [3]. Korteweg and
de Vries called these profiles cnoidal waves. They showed that in the limiting
case when the elliptic modulus approaches 1, Russell’s solitary wave (known
as soliton since 1972, [31]), [24], is recovered. Drazin, [10], gives an excel-
lent account for the Korteweg and de Vries’ cnoidal waves and how Russell’s
solitary wave is recovered from them.
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This paper will follow a similar type of thinking as Korteweg and de Vries
in 1895. We will obtain periodic solutions expressed in terms of the Jacobi
elliptic function cn for the nonlinear Schrödinger model (NLS) below,

iut ±
α

2
uxx − αu|u|2 = 0, α > 0 constant. (1)

The NLS model (1) we work within the present paper is suggested by the
works in [21], [23], and [32]. For the self-focusing NLS, we will derive solitary
wave solutions from the periodic solutions by considering a limiting process
onto the elliptic modulus of the Jacobi elliptic function cn.

It is important to note that the function u in the model (1) is complex-
valued. As explained in [11], the nonlinear model (1) is far from describing the
quantum state of a particle, as its linear counterpart does, i.e., Schrödinger’s
wave-equation for describing dispersive wave phenomena suitable for micro-
mechanical problems, [25]. Its typical physical applications are primarily in
nonlinear optics, [4], [5], [6], but the model can be used widely for other phe-
nomena like surface gravity waves in deepwater, as an example. An example
that refers to the dispersive hydrodynamics concerning this model is [8].

The results obtained in this paper align with the continuous endeavour
of studying the periodic wave nature and solitary wave nature described by
nonlinear Schrödinger models, two relevant examples being [27] and [30].

2 Periodic Solutions for Self-Focusing NLS

While the one-dimensional Schrödinger equation, [25], is universally known to
describe the wave function for a free particle, the NLS models are far from
representing the quantum state of a particle. It is already common knowledge
that the NLS models describe waves in nonlinear optics and deepwater. Thus,
the NLS models are subject to Galilean invariance, i.e., the laws of motion
of an object represent the same motion of the object in all inertial reference
frames. In this section, we are interested in obtaining periodic solutions for
the self-focusing NLS model (2) as follows.

We consider the self-focusing NLS

iut −
α

2
uxx − αu|u|2 = 0, α > 0 constant. (2)

Using separation of variables in (2)

u(x, t) = r(x)T (t), (3)
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such that r(x) is a real-valued function and T (t) is a complex-valued function
such that |T | = 1, we obtain

i T ′

T
=

α
2 r
′′ + αr3

r
= µ, µ constant, (4)

and we will be interested to analyze the case when µ > 0.
From (4) we obtain

T (t) = e−iµt, (5)

and the following second order nonlinear ordinary differential equation for
r = r(x)

r′′ +
2

α
r(αr2 − µ) = 0. (6)

Multiplying (6) by r′ and simplifying, we obtain

d

dx

(
(r′)

2

2
− µ

α
r2 +

1

2
r4

)
= 0. (7)

Integrating the equation (7), we readily obtain

(r′)
2 − 2µ

α
r2 + r4 = K, K integration constant. (8)

Solving the equation (8) for r′ , we obtain

r′ = ±
√
P (r), P (r) = −r4 +

2µ

α
r2 +K. (9)

We are interested in the case when the polynomial P factors as follows

P (r) = (r2 + r1)(r2 − r2), 0 ≤ r1 < r2, r2 − r1 =
2µ

α
, K = r1r2. (10)

From (9) and (10), we obtain

dr√
(r2 + r1)(r2 − r2)

= ±dx. (11)

Integrating (11), we obtain∫ r

√
r2

dw√
(w2 + r1)(r2 − w2)

= ±(x+ C), C integration constant. (12)

Making the substitution

w =
√
r2 cos θ, (13)
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and performing all the calculations, the equation (12) becomes

∓
√
r1 + r2(x+ C) =

∫ φ

0

1√
1−m sin2 θ

dθ, m =
r2

r1 + r2

⇓

cn
(√
r1 + r2(x+ C)|m

)
= cosφ, (14)

where cn is the Jacobi elliptic function defined as follows, [3], [10],

cn(τ |m) = cosφ, τ =

∫ φ

0

dθ√
1−m sin2 θ

, m ∈ [0, 1]. (15)

As well, we used the fact that the cn function is an even function. Then,
referring back to the substitution (13), we finally obtain

r =
√
r2 cosφ =

√
r2 cn

(√
r1 + r2(x+ C)|m

)
. (16)

Thus, the solution we were looking for the equation (6) is

r(x) =
√
r2 cn

(√
r1 + r2(x+ C)|m

)
, m =

r2
r1 + r2

,

0 ≤ r1 < r2, r2 − r1 =
2µ

α
, C ∈ R.

(17)

From (3) and (17), the NLS (2) has the following solution

u(x, t) = r(x)e−iµt,

r(x) =
√
r2 cn

(√
r1 + r2(x+ C)|m

)
.

(18)

Applying scale symmetry, [22], onto the solution (18), we obtain the fol-
lowing scaled solution for the NLS (2)

u(x, t) 7−→ u(x, t|δ) = δu(δx, δ2t), δ 6= 0. (19)

The NLS (2) is Galilean invariant as follows: If u(x, t) is a solution of the
NLS (2) then we can obtain a new solution by changing the inertial reference
frame, and adding a phase factor as follows

u(x, t) 7−→ u(x, t|v) = u(x− vt, t)e−
i
2µλ

2v(x+C− vt2 ), λ =

√
2µ

α
, v ∈ R. (20)
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Applying the Galilean invariance (20) onto the scaled solution (19), we
obtain the following complex-valued solution of the NLS (2)

u(x, t) = δr(δ(x− vt))e−
i
4µ (2λ2v(x+C)−(λ2v2−4δ2µ2)t),

α > 0, µ > 0, λ =

√
2µ

α
, δ 6= 0, v ∈ R,

r(x) =
√
r2 cn

(√
r1 + r2(x+ C)|m

)
, m =

r2
r1 + r2

,

0 ≤ r1 < r2, r2 − r1 =
2µ

α
, C ∈ R.

(21)

Figure 1: Cnoidal wave of the NLS (2) for α = 0.2, µ = 1, δ = 0.1, v = 0.1,
r1 = 1, and C = 1.

Figure 1 illustrates the time evolution of a periodic solution for the NLS
(2) traveling from left to right with the velocity v = 0.1. Physically speaking,
the cnoidal wave depicted in Figure 1 is nothing else but the envelope of the
modulated carrier waves (i.e., the modulated oscillatory components) of the
solution (21). The envelope of the modulated carrier waves propagates with
the group velocity vg = v, and it is given by the graphs of the functions
±A = ±|u| = ±

√
uu. We will call the upper part of the envelope the profile

of a cnoidal wave, given by the formula below,

A(x, t) =

√
2µ

α
+ r1

∣∣∣∣∣δ cn

(√
2µ

α
+ 2r1 (δ(x− vt) + C)| 2µ+ αr1

2µ+ 2αr1

)∣∣∣∣∣ . (22)

Figure 2 illustrates the time evolution of the modulated carrier waves and
their envelope for the NLS (2), traveling from left to right with the group
velocity vg = 0.1.

When a dispersive harmonic wave of the NLS model (2) is subject to the
cubic nonlinearity u|u|2, the wave will be subject to a ”force” that will act
against the dispersion process. In other words, the nonlinearity will cancel out
the dispersive effect so that the wave will steepen its wavefront. When the wave
reaches a ”perfect” balance between dispersion and nonlinearity, its oscillatory
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Figure 2: Modulated carrier waves and their envelope for the NLS (2) with
α = 0.2, µ = 1, δ = 0.1, v = 0.1, r1 = 1, and C = 1.

components will become modulated waves with a localized shaped envelope
that decays at infinity. In other words, they will become wave packets. The
envelope of these modulated carrier waves is known as the profile of a solitary
wave, or a soliton. In the next section, we will obtain solitary wave solutions
for the self-focusing NLS model (2) through a limiting process for the elliptic
modulus, m, in (21).

3 Solitary Wave Solutions for Self-Focusing NLS

Taking the limiting process r1 −→ 0 in (21), the elliptic modulus m will
approach 1, and the solution (21) will have the profile of a solitary wave given
by the formula below,

u(x, t) = δr(δ(x− vt))e−
i
4µ (2λ2v(x+C)−(λ2v2−4δ2µ2)t),

r(x) = λ sech (λ(x+ C)) , λ =

√
2µ

α
, δ 6= 0, v ∈ R, C ∈ R.

(23)

The solitary wave described by formula (23), i.e., the profile of the complex-
valued function u, A = |u| =

√
uu, satisfies the expected boundary conditions

mentioned below,

Ax(−C/δ + vt, t) = 0,

A(x, t)→ 0 as |x| → ∞.
(24)

The dispersion and the nonlinearity of the solitary wave described by the
formula (23) are in ”perfect” balance, and its oscillatory components are mod-
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ulated carrier waves given by

Re (u(x, t)) = λδ
cos
(

1
2µλ

2v(x+ C)−
(

1
4µλ

2v2 − δ2µ
)
t
)

cosh (λ(δ(x− vt) + C))
,

Im (u(x, t)) = −λδ
sin
(

1
2µλ

2v(x+ C)−
(

1
4µλ

2v2 − δ2µ
)
t
)

cosh (λ(δ(x− vt) + C))
,

λ =

√
2µ

α
, δ 6= 0, v ∈ R, C ∈ R.

(25)

The envelope of the modulated carrier waves (25) propagates with the
group velocity vg = v, and it is given by the graphs of the functions ±A =
±|u| = ±

√
uu. We will call the upper part of the envelope the profile of

a solitary wave. These types of solitary waves are known in the nonlinear
dispersive waves literature as ”bright” solitons, [31], [1], [2].

Figure 3: Solitary wave of the NLS (2) for α = 2, µ = 1, δ = 0.02, vg = 0.1,
and C = 0.

Figure 3 illustrates the time evolution of a solitary wave of the NLS (2)
traveling from left to right with the group velocity vg = 0.1.

Figure 4 illustrates the time evolution of the modulated carrier waves (25)
and their envelope for the NLS (2) traveling from left to right with the group
velocity vg = 0.1.
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Figure 4: Modulated carrier waves and solitary wave for the NLS (2) for α = 2,
µ = 1, δ = 0.02, vg = 0.1, and C = 0.

4 Singular Periodic Solutions for Defocusing NLS

We consider the defocusing NLS

iut +
α

2
uxx − αu|u|2 = 0, α > 0 constant. (26)

In this section, we are interested in obtaining singular periodic solutions
for the model (26) as follows.

Using separation of variables in (26)

u(x, t) = r(x)T (t), (27)

such that r(x) is a real-valued function and T (t) is a complex-valued function
such that |T | = 1, we obtain

i T ′

T
=
−α2 r

′′ + αr3

r
= µ, µ constant, (28)

and we will be interested to analyze the case when µ > 0.
From (28) we obtain

T (t) = e−iµt, (29)

and the following second order nonlinear ordinary differential equation for
r = r(x)

r′′ +
2

α
r(µ− αr2) = 0. (30)

Multiplying (30) by r′ and simplifying, we obtain

d

dx

(
(r′)

2

2
+
µ

α
r2 − 1

2
r4

)
= 0. (31)
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Integrating the equation (31), we readily obtain

(r′)
2

+
2µ

α
r2 − r4 = K, K integration constant. (32)

Solving for r′ the equation (32), we obtain

r′ = ±
√
P (r), P (r) = r4 − 2µ

α
r2 +K. (33)

We are interested in the case when the polynomial P factors as follows

P (r) = (r2 + r1)(r2 − r2), 0 ≤ r1 < r2, r2 − r1 =
2µ

α
, K = −r1r2. (34)

From (33) and (34), we obtain

dr√
(r2 + r1)(r2 − r2)

= ±dx. (35)

Integrating (35), we obtain∫ r

√
r2

dw√
(w2 + r1)(w2 − r2)

= ±(x+ C), C integration constant. (36)

Making the substitution

w =
√
r2 sec θ, (37)

and performing all the calculations, the equation (36) becomes

±
√
r1 + r2(x+ C) =

∫ φ

0

1√
1−m sin2 θ

dθ, m =
r1

r1 + r2

⇓
cn
(√
r1 + r2(x+ C)|m

)
= cosφ, (38)

where we used the fact that the cn function is an even function. Then, referring
back to the substitution (37), we finally obtain

r =

√
r2

cosφ
=

√
r2

cn (
√
r1 + r2(x+ C)|m)

. (39)

Thus, the solution we were looking for the equation (30) is

r(x) =

√
r2

cn (
√
r1 + r2(x+ C)|m)

, m =
r1

r1 + r2
,

0 ≤ r1 < r2, r2 − r1 =
2µ

α
, C ∈ R.

(40)
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From (27) and (40), the NLS (26) has the following solution

u(x, t) = r(x)e−iµt,

r(x) =

√
r2

cn (
√
r1 + r2(x+ C)|m)

,
(41)

which is a complex-valued singular periodic solution for the NLS (26).
Applying scale symmetry, [22], onto the solution (41), we obtain the fol-

lowing scaled solution for the NLS (26)

u(x, t) 7−→ u(x, t|δ) = δu(δx, δ2t), δ 6= 0. (42)

The NLS (26) is Galilean invariant as follows: If u(x, t) is a solution of the
NLS (26) then we can obtain a new solution by changing the inertial reference
frame, and adding a phase factor as follows

u(x, t) 7−→ u(x, t|v) = u(x− vt, t)e
i
2µλ

2v(x+C− vt2 ), λ =

√
2µ

α
, v ∈ R. (43)

Applying the Galilean invariance (43) onto the scaled solution (42), we
obtain the complex-valued singular periodic solution for the NLS (26)

u(x, t) = δr(δ(x− vt))e
i
4µ (2λ2v(x+C)−(λ2v2+4δ2µ2)t),

α > 0, µ > 0, λ =

√
2µ

α
, δ 6= 0, v ∈ R,

r(x) =

√
r2

cn (
√
r1 + r2(x+ C)|m)

, m =
r1

r1 + r2
,

0 ≤ r1 < r2, r2 − r1 =
2µ

α
, C ∈ R.

(44)

Regarding the singularities in the solution (44), we use the fact that the
cn function is periodic with period 4K, and it has simple zeros at ±K, [29],
where K is the constant given by the following integral

K =

∫ 1

0

dt√
(1− t2)(1−m2t2)

, m ∈ [0, 1]. (45)

Thus, the singularities in the solution (44) within a period of the cn func-
tion will be at the following x-values, where cn(±K|m) = 0,{

x

∣∣∣∣x = vt+
1

δ

(
± K

2
√
r1 + r2

− C
)
, t ∈ R, v ∈ R

}
. (46)
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The simplest case for determining the singularities in the solution (44) is
when m = 0, cn (

√
r1 + r2(δ(x− vt) + C)|0) = cos (

√
r1 + r2(δ(x− vt) + C)),

and the set of singularities will be at the following x-values{
x

∣∣∣∣x = vt+
1

δ

(
(2n+ 1)π

2
√
r1 + r2

− C
)
, t ∈ R, v ∈ R, n ∈ Z

}
. (47)

The dispersion and the nonlinearity are not in balance in the formula (44).
The steepening of the wavefronts, due to nonlinearity, of the oscillatory com-
ponents of the nonlinear dispersive waves given by (44) is so strong that the
dispersive effect almost diminishes, and the waves will develop singularities.
The oscillatory components given by (44) represent modulated singular carrier
waves. The envelope of these modulated singular carrier waves propagates with
the group velocity vg = v, and it is represented by the graphs of the functions
±A = ±|u| = ±

√
uu. We will call the upper part of the envelope a singular

periodic profile of the NLS (26) given by the formula below,

A(x, t) =

√
2µ

α
+ r1

∣∣∣∣∣∣∣∣
δ

cn

(√
2µ
α + 2r1 (δ(x− vt) + C)| αr1

2µ+2αr1

)
∣∣∣∣∣∣∣∣ . (48)

It is important to notice that the singularities in the solution (44), the
modulated singular carrier waves given by (44), and the envelope (48) travel
with the group velocity vg = v. If the singularities in the solution (44) did
not display a regular pattern, the solutions would not be of much interest to
study because their behaviour would indicate a level of randomness that could
potentially conceal the behaviour of the nonlinear process.

Figure 5 illustrates the time evolution of a singular periodic profile of the
NLS (26) traveling from left to right with the group velocity vg = 3.5.

Figure 5: Singular periodic profile of the NLS (26) for α = 0.5, µ = 1, δ = 0.92,
C = 0, and vg = 3.5.

Figure 6 illustrates the time evolution of modulated singular carrier waves
and their envelope for the NLS (26) traveling from left to right with the group
velocity vg = 3.5.
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Figure 6: Modulated singular carrier waves and their envelope for the NLS
(26) for α = 0.5, µ = 1, δ = 0.92, C = 0, and vg = 3.5.

The strong effect of nonlinearity on the dispersive effect shows in the time
evolution of the modulated singular carrier waves given by (44), which prop-
agate as the process described by (26) would almost be ”dispersive-free.”

Figure 7: Modulated singular carrier waves, Re(u), for the NLS (26) for α =
0.5, µ = 1, δ = 0.92, C = 0, and vg = 3.5.

Figures 7 and 8 show the strong effect of nonlinearity onto the oscillatory
components given by (44).

Figure 8: Modulated singular carrier waves, Im(u), for the NLS (26) for α =
0.5, µ = 1, δ = 0.92, C = 0, and vg = 3.5.

Haines, [14], describes the water-air interface (the free surface) as a ”vir-
tually” complete barrier for sound waves, like a reflective hard surface. Sound
waves originating from underneath the free surface are ”trapped” in the water
medium and, if properly started, they will experience a process of reflection
(at the free surface) and refraction (due to the gradient) ”bouncing” up and
down with very steep gradients at the water-air interface. Suppose the sound
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wave originates from above the sonic layer depth (SLD), and the gradient is
steep. In that case, the wave will refract upward until it hits the free surface,
after which it ”bounces” back (i.e., reflects) to refract upward again by its
gradient. The type of propagation of a sound wave in between the water-air
interface and the sonic layer depth, in underwater acoustics, is called surface
duct sound propagation, [28]. The surface duct sound propagation belongs to
the general class of sound propagation in ducts, [26]. The duct surface be-
tween the water-air interface and the sonic layer depth varies, and the authors
in [16] provide examples for SLD estimations. Figure (9) shows similarities

Figure 9: Scenario of singular profiles of the NLS (26) as sound waves
propagating in the duct channel between water-air interface and SLD for
α = 0.05, 0.1, 0.5, δ = 0.5, 0.92, 1.2, µ = 1, C = 0, and vg = 1.

of the singular periodic profiles (48) with the duct sound propagation found
in oceanographic literature, [7]. We interpret the wave refracted/reflected at
the water-air interface with a very steep gradient when the profile (48) be-
comes singular. The refraction/reflection points along the water-air interface
are given by the set of singular points (47).

5 Summary and Discussions

The NLS models (2) and (26) are of great interest in studying nonlinear waves
emerging from areas of Physics such as nonlinear optics and deepwater wave
propagation phenomena. Zakharov and Shabat described the solitary wave
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profiles for the NLS models in 1972, [31]. They used the scattering method to
obtain them, [13], [20]. Peregrine, [23], gives an account of solutions for the
nonlinear Schrödinger equations up to the time when the article was published.
Eighteen years later, in [17], the author mentioned the surging importance of
studying these models, with their widespread applications in Physics mainly.

In this paper, we succeeded in using elliptic functions and obtaining pe-
riodic solutions for both self-focusing and defocusing nonlinear Schrödinger
models (2) and (26). An essential aspect of these periodic solutions is that
they correlate rather interestingly; the periodic solutions for the defocusing
NLS model are ”reciprocals” of the periodic solutions for the self-focusing
NLS and vice-versa. The relevance in looking for periodic profiles for these
models resonates with the facts described in [17]. Two examples of works on
periodic solutions and solitary wave solutions for different NLS models are [27]
and [30]. As well, the authors of [27] used similar techniques for finding exact
solutions for the nonlinear Schrödinger model in an optical fiber. In the end,
we used a classic technique, i.e., the Fourier method, in approaching the NLS
model.

One significant contribution of this article is that we obtained the solitary
wave solution for the self-focusing nonlinear Schrödinger model (2) through
a limiting process using a sequence of periodic waves, i.e., the cnoidal waves.
So far, consulting available literature, we did not find studies on obtaining
the solitary wave for the self-focusing nonlinear Schrödinger model through a
limiting process using a sequence of cnoidal waves. Our question was: ”Could
the solitary wave of the self-focusing nonlinear Schrödinger model be obtained
similarly as Korteweg and de Vies obtained the solitary wave solution for their
famous KdV model, [19]?” As described by Korteweg and de Vries, the solitary
wave formation in shallow water is a consequence of a limiting process using
a sequence of cnoidal waves. It was a ”curiosity” question to see whether
the deepwater scenario modeled by the self-focusing nonlinear Schrödinger
equation would reveal a similar process.

Note: We read extensive literature on this subject, but we cannot say we
read everything, as it is simply impossible.

Another significant contribution of this article is that we succeeded in ob-
taining ”well-behaved” singular solutions for the defocusing nonlinear
Schrödinger model (26). The applicability of the singular solutions (44) in un-
derwater acoustic, as explained in Section 4, may be very realistic because the
water-air interface behaves as a virtually impenetrable surface for the sound
waves hitting it with a very steep gradient. The periodicity of the singular
profiles (48) agrees as well with the fact that the sound trapped in the duct
surface will propagate for as long as its physical properties will allow it. The
physical properties of sound propagation trapped in the duct surface depend
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on the depth of the duct surface and the frequency of the sound, [14].
Our interest in discovering and studying singular solutions for the NLS

model (1) aligns with the systematic interest by scientists to study them, [9],
[12], [15], [21].

Because of the high nonlinearity displayed by the solutions (44), the sin-
gular periodic profile (48) may explain the periodic train of mechanical waves
that create the so-called ocean swell. As well, they may explain wavebreaking
is hydrodynamics, [18]. Still, these matters require further investigation, and
they are brought here only as observations.
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