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A new existence results on fractional
differential inclusions with state-dependent

delay and Mittag-Leffler kernel in Banach space

Mani Mallika Arjunan, Velusamy Kavitha and Dumitru Baleanu

Abstract

In this manuscript the existence of the fractional-order functional
differential inclusions [FFDI] with state-dependent delay [SDD] is in-
vestigated within the Mittag-Leffler kernel. We use both contractive
and condensing maps to prove the existence of mild solutions through
solution operator. Finally, an example is presented to illustrate the
theoretical findings.

1 Introduction

In this manuscript, we establish the existence of mild solutions of FFDI
with SDD and Mittag-Leffler kernel of the form

Dϑ
ABCp(ς) ∈ Ap(ς) + F (ς, pσ(ς,pς)), ς ∈ [0, ξ] (1.1)

p(ς) = ϕ(ς) ∈ B, (1.2)

where ξ > 0, ϑ ∈ (0, 1), A : D(A) ⊂ E → E is the infinitesimal generator of

an ϑ-resolvent family B̂ϑ(ς)ς≥0, the solution operator Bϑ(ς)ς≥0 is described on
a complex Banach space E,Dϑ

ABC is the Atangana-Baleanu-Caputo derivative,
F is a set-valued map and σ : [0, ξ] ×B → (−∞, ξ] are given functions that
satisfy a later-specified assumption.
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We assume that pς : (−∞, 0]→ E, pς(x) = p(ς + x), x ≤ 0, belongs to an
abstract phase space B.

Fractional differential equations, general enhancement of classical ordinary
and partial differential equations which allows the real (or) even complex num-
ber to be its order of differentiation. The main benefits of employing the
fractional derivatives is their ability to record their hereditary property of
various processes which is mainly because of the non-locality nature of the
operators. The hereditary property of fractional derivatives allows one to
model the materials with intermediate properties such as viscoelasticity of the
substances. The greatest breakthrough in the field of fractional differential
equation found in its application in the abundant fields of diverse nature such
as circuits in electrical engineering, control theory, statistical modeling, the
vibration of earthquake motions and so on. Many excellent monographs were
available which provides the essential conceptual tools to explore more hidden
applications of fractional differential equations. Similarly, one can locate the
distinguish properties of both classical and fractional differential representa-
tions, we refer to the monographs [32, 6] and the related research articles of
fractional differential systems are given in [1, 4, 5, 33, 28, 7, 23, 25].

In recent times, by noticing the aforementioned peculiar properties and
wide applicability of fractional derivatives in various scientific fields, it became
handy and more applicable to model the real world problems. The essential
thing to note is that the applications and outcomes of fractional derivatives and
integrals differ depending on the definitions used, such as Riemann-Liouville,
Hadamard, Grunwald Letnikov, Caputo, Riesz-Caputo, Chen, Weyl, Erd Iyi-
Kober, and so on. In 2015, Caputo and Fabrizio [12] proposed the recent def-
inition of non local derivatives with non-singular kernel in the non-necessarily
Banach space H1. This concept posed a significant barrier to its implemen-
tation, but it rapidly made its way into a variety of fields, including ther-
mal science and mechanical engineering, as well as groundwater research, see
[3, 10, 11] for further information, as well as the references therein. A year
later, the new definition of non-local derivatives with non singular kernel based
on the Mittag-Leffler function was proposed by Atangana and Baleanu. The
current concept confirmed the Caputo-Fabrizio’s concept which is depends on
exponential function. Atanganu-Baleanu definition achieved important appli-
cations in various fields established by the togetherness of strong relationship
in among fractional calculus and Mittag-Leffler function. For more reference,
the readers can see [7, 6, 2, 27].

In [15, 16], Gautam and Dabas proved the existence of mild solutions for
fractional integro-differential equations with SDD by using the applicable fixed
point theorem. In [31, 13], Das et al. investigated the class of second order
partial neutral differential equations with SDD in Banach spaces and proved
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the existence of mild solution for the considered system along with the help
of Hausdorff measures of non-compactness and Darbo fixed point theorem. In
[34], the authors researched the abstract fractional integro-differential inclu-
sions with infinite state-dependent delay in Banach spaces. In [36], the authors
studied the fractional neutral differential systems with SDD in Banach spaces
under non-compactness measure and showed its existence via contractive and
condensing maps. In recent times, Aiemene et al. [2] studied the controllabil-
ity results for fractional order semilinear differential equations with impulses
having finite delay in Banach spaces. Recently, Mallika Arjunan et al. [29, 30]
analyzed the existence results of various fractional differential systems through
A-B derivative under suitable fixed point theorem. To the best of our knowl-
edge, there is no results reported on the existence results for FFDI with SDD
and Mittag-Leffler kernel in B phase space contexts. This encouraged us to
investigate the existence results of the system (1.1) -(1.2) with SDD in Banach
spaces. The existence findings for (1.1)-(1.2) are presented for the first time
in this manuscript.

Now we will move on to a description of the work. We give some fundamen-
tal concepts on A-B fractional derivatives, phase space axioms (B), sectorial
operator in Section 2. The proof of our main findings and an example are
given in Section 3.

2 Preliminaries

This part covers the fundamental definitions and results of the sectorial
operator, set-valued mappings, measures of non-compactness [MNC], phase
space axioms, and A-B fractional derivative, which will aid us in proving our
key conclusions.

Let (E, ‖ · ‖E) be a complex Banach space. L(E) is the Banach space of all
bounded linear operators from X into X with ‖ · ‖L(E) as the corresponding
norm.

C ([0, ξ], E) is the Banach space of all continuous functions from [0, ξ] into
E with the norm

‖p‖C ([0,ξ],E) = sup{‖p(ς)‖ : ς ∈ [0, ξ]}.

The functions p : [0, ξ]→ E that are integrable in the Bochner notion with
regard to the Lebesgue measure, equipped with

‖p‖1 =

∫ ξ

0

‖p(x)||dx

is denoted by L1([0, ξ], E).
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Here, we recall some fundamental definition of Atangnan-Baleanu frac-
tional derivative.

Definition 2.1. [7] The A-B fractional integral of order ϑ ∈ (0, 1) of a func-
tion r : (d, ξ)→ R is described by

ABIϑd+r(ς) =
1− ϑ
B(ϑ)

r(ς) +
ϑ

B(ϑ)Γ(ϑ)

∫ ς

d

(ς − x)ϑ−1r(x)dx,

where B(ϑ) = (1 − ϑ) + ϑ
Γ(ϑ) is the normalising function that fulfills the re-

quirement B(0) = B(1) = 1.

Definition 2.2. [7] For r ∈ H1(d, ξ), d < ξ, the A-B fractional derivative of
order ϑ ∈ (0, 1) of a function r in Caputo sense is characterized by

ABCDϑ
d+r(ς) =

B(ϑ)

1− ϑ

∫ ς

d

r′(s)Eϑ

(
− ϑ

1− ϑ
(ς − x)ϑ

)
dx

for each ς ∈ (d, ξ). Here Eϑ is the Mittag-Leffler function.

We recommend readers to refer the following papers to prevent repeats
of several definitions used in this paper: sectorial operator [18] and solution
operator (see Definition 2.7 in [30]).

We urge that the reader to read [32, 2, 25, 7, 29, 35] for additional detail
on this topic and its uses.

2.1 Set-valued maps and MNC

Assume that Θ is a metric space. All through this manuscript, P(Θ) de-
notes a list of all nonempty subsets of Θ, whereas Pb(Θ) denotes a list of all
bounded nonempty subsets of Θ.

The idea of measure of non-compactness underpins several of our find-
ings. With this purpose, we will remember a some characteristics of this idea
next. As for basic information, the reader will refer [9, 14, 24, 34]. We just
use Hausdorff measure of non-compactness [HMNC] concept throughout this
manuscript.

Definition 2.3 ([9, 14] (HMNC)). Let U be a family of bounded subset of Θ.
Then HMNC is described by

β(U) := inf{δ > 0 : U = ∪ki=1Ui with diam(Ui) ≤ δ for i = 1, 2, . . . , k}.

Lemma 2.1 ([9, 14]). For any bounded sets U,U1 and U2 of Θ, we obtain

(i) β(U) = 0 iff U is totally bounded;
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(ii) β(U) = β(U), where U means the closure of U;

(iii) For each U1 ⊂ U2 implies β(U1) ≤ β(U2);

(iv) β(U1 + U2) ≤ β(U1) + β(U2);

(v) β(U1 ∪ U2) = max{β(U1), β(U2)};

(vi) β(λU) = |λ|β(U) for any λ ∈ R.

(vii) β(U) = β(co(U)).

Let Y be a normed space. In order to signify the subsequent set listing, we
now utilizing the terminology ν(Y) and Mν(Y):

(i) ν(Y) = {D ∈ P(Y) : D is convex };

(ii) Mν(Y) = {D ∈ ν(Y) : D is compact}.

Definition 2.4. A condensing map with regard to η (abbreviated, η-condensing)
is a set-valued map Υ : Θ → P(Y) if for any bounded set D ⊂ Θ, η(D) >
0, η(Υ(D)) < η(D).

Remark 2.1. We can see that Υ is closed if Υ : Θ→Mν(Y) is u.s.c.

Theorem 2.1 ([Corollary 3.3.1], [24]). Suppose Υ : N → Mν(N) is a upper
semi-continuous β-condensing multivalued map, then Fix(Υ) = {z ∈ Υ(z)} is
a nonempty compact set, where N be a convex closed subset of Y.

Now, we collect some measure β properties from[34, Lemma 2.1-2.4] that
will be used to verify our key findings.

We call a set Ω ⊆ L1([0, ξ], E) is uniformly integrable if γ > 0 ∈ L1([0, ξ])
in a way that ‖p(ς)‖ ≤ γ(ς) a.e. for ς ∈ [0, ξ] and all p ∈ Ω.

2.2 Phase space axioms

To employ delay criteria, we must first establish the phase space axioms B
introduced by Hale and Kato in [20] and utilize the terminology used in [22].
As a result, (B, ‖ · ‖B) is a semi-normed linear space of functions mapping
(−∞, 0] into E and satisfying the axioms below.

If p :] −∞, ξ] → E, ξ > 0, is such that p0 ∈ B, then for all ς ∈ [0, ξ], the
subsequent assumptions hold:

(C1) pς ∈ B,
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(C2) ‖pς‖B ≤ Q1(ς) sup
0≤x≤ς

‖p(x)‖+Q2(ς) ‖p0‖B ,

(C3) ‖p(ς)‖ ≤W ‖pς‖B, where W > 0 is a constant and Q1 : [0,∞)→ [0,∞)
is continuous, Q2 : [0,∞) → [0,∞) is locally bounded, and Q1, Q2 are
independent of p(·). Furthermore, ‖ϕ(0)‖ ≤W‖ϕ‖B for every ϕ ∈ B.

(C4) pς is a B-valued continuous function on [0, ξ] and B is complete. For
more details, see [19].

Now, we define the space

Yϕ([0, ξ], E) = {κ ∈ C ([0, ξ], E) : κ(0) = ϕ(0)}.

For more details on phase space axioms and its examples, we suggest the
reader to refer [22, 19, 26].

3 Main results

The existence findings for the inclusions (1.1)-(1.2) under contractive and
condensing maps are presented and proved in this part.

We begin by imposing some appropriate constraints on the set-valued map
F .

F (i) For any ω ∈ B, the function F (·, ω) : [0, ξ]→Mν(E) permits a strongly
measurable selection.

F (ii) The function F (ς, ·) : B → Mν(E) is upper semi-continuous for every
ς ∈ [0, ξ].

F (iii) We can find a function γ ∈ L1([0, ξ]) in a way that

‖F (ς, ω)‖ := sup{‖f‖ : f ∈ F (ς, ω)} ≤ γ(ς)Φ (‖ω‖B) , a.e. ς ∈ [0, ξ],

where Φ : [0,∞)→ [0,∞) is continuous non-decreasing function.

In addition, we suppose that σ : [0, ξ]×B → [0,∞) is a continuous function
in a way that σ(ς, ω) ≤ ς for all ς ≥ 0 and ω ∈ B.

Remark 3.1. In view of F (i) and F (ii), we notice that the set

ΥF ,σ,κ = {p ∈ L1([0, ξ], E) : p(ς) ∈ F (ς, κσ(ς,κς))} 6= ∅,

and ΥF ,σ,κ is convex.

We can now describe the mild solution for the inclusions (1.1)-(1.2).
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Definition 3.1. A function κ : (−∞, ξ] → E is called a mild solution of the
inclusions (1.1)-(1.2) if the subsequent holds: p0 = ϕ ∈ B on (−∞, 0], the
restriction of κ(·) to the interval [0, ξ] is continuous and satisfies the following
integral equation:

κ(ς) =


ϕ(ς), ς ∈ (−∞, 0]

SBϑ(ς)ϕ(0) +
ST(1− ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0

(ς − s)ϑ−1p(s)ds

+
ϑS2

B(ϑ)

∫ ς

0

B̂ϑ(ς − s)p(s)ds, p ∈ ΥF ,σ,κ, and all ς ∈ [0, ξ],

(3.1)

where S = ζ(ζI −A)−1 and T = −γ̃A(ζI −A)−1 with ζ = B(ϑ)
1−ϑ , γ̃ = ϑ

1−ϑ and

Bϑ(ς) = Eϑ(−Tςϑ) =
1

2πi

∫
Γ

exςxϑ−1(xϑI − T)−1dx, (3.2)

B̂ϑ(ς) = ςϑ−1Eϑ,ϑ(−Tςϑ) =
1

2πi

∫
Γ

exς(xϑI − T)−1dx, (3.3)

Γ denotes the Bromwich path [8].

Remark 3.2. We must first establish the operator estimates described in (3.2)
and (3.3) before we can present and prove the major conclusions of this section.

If ϑ ∈ (0, 1) and A ∈ A ϑ(α̃0, ω0), then for any p ∈ E and ς > 0, we

have ‖Bϑ(ς)‖ ≤ Λ̂eως and ‖B̂ϑ(ς)‖ ≤ Ceως(1 + ςϑ−1), for every ς > 0, ω >

ω0. Hence, we get ‖Bϑ(ς)‖ ≤ M̂B and ‖B̂ϑ(ς)‖ ≤ ςϑ−1M̂B̂. Since M̂B =

sup
0≤ς≤ξ

‖Bϑ(ς)‖ and M̂B̂ = sup
0≤ς≤ξ

Ceως(1 + ς1−ϑ). For additional details, see

[35, 25, 18].

To establish our findings, we must examine an integral operator given on
the set ΥF ,σ,κ for functions κ ∈ Yϕ([0, ξ], E). We begin by discussing the
characteristics of ΥF ,σ,κ. The first outcome determines that ΥF ,σ,κ is closed.
In specific, we recall the property from [34, Lemma 3.1].

Just from the other side, as a result of F (iii), the set ΥF ,σ,κ is uniformly
integrable on [0, ξ], i.e., we can find a function γσ,κ > 0 ∈ L1([0, ξ]) in ways
that ‖p(ς)‖ ≤ γσ,κ(ς) a.e. for ς ∈ [0, ξ] and all p ∈ ΥF ,σ,κ.

We introduce now the operator Υ : L1([0, ξ], E)→ C ([0, ξ], E) given by

Υp(ς) =
ST(1− ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0

(ς − s)ϑ−1p(s)ds+
ϑS2

B(ϑ)

∫ ς

0

B̂ϑ(ς − s)p(s)ds.

This is obvious that Υ is a bounded linear operator. With the use of Υ,
we may develop the set-valued map Υ̃ : Yϕ([0, ξ], E) → ν(C ([0, ξ];E)) given
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by
Υ̃(κ) = Υ (ΥF ,σ,κ) .

Based on the above discussions, now, we state the following crucial lemma
from [34, Lemma 3.2].

Lemma 3.1. Consider a set-valued map F : [0, ξ]×B →Mν(E) and suppose

F satisfies F (i)−F (iii). Then Υ̃ is a upper semi-continuous map with convex
compact values.

First, we characterize the solution map for the system (1.1)-(1.2) as below.
Let κ ∈ Yϕ([0, ξ], E). For simplicity, we described κ(·) with its extension

to (−∞, ξ] supplied by κ(y) = ϕ(y) for all y ≤ 0. Utilizing this terminology,
Υ∗(ξ) is defined as the set generated by all z functions given by

z(ς) = SBϑ(ς)ϕ(0) +
ST(1− ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0

(ς − s)ϑ−1p(s)ds

+
ϑS2

B(ϑ)

∫ ς

0

B̂ϑ(ς − s)p(s)ds, p ∈ ΥF ,σ,κ. (3.4)

Through our assumptions, it indicates that z ∈ Yϕ([0, ξ], E). Hence, Υ∗ :
Yϕ([0, ξ], E) → P (Yϕ([0, ξ], E)) . Moreover, it is obvious that κ(·) is a mild
solution of the inclusions (1.1)-(1.2) if and only if κ(·) is a fixed point of Υ∗.

Our existence result is based on the contractive maps. Pcb(E) denotes the
listing of closed bounded subsets of E and by dH the Hausdorff metric in
Pcb(E).

Theorem 3.1. Assume that assumptions F (i),F (iii) are satisfied. Further,
suppose that the subsequent assumptions hold:

(A1) We can find a constant LF > 0 in a way that

dH (F (ς, ω1) ,F (ς, ω2)) ≤ LF ‖ω1 − ω2‖B

for all ς ∈ [0, ξ] and all ω1, ω2 ∈ B.

(A2) We can find a positive function σ̃ ∈ L1([0, ξ]) and every Q > 0, there

exists a positive constant L̃F (Q) > 0 in a way that

dH (F (ς, κς2) ,F (ς, κς1)) ≤ L̃F (q)σ̃(ς) |ς2 − ς1| ,

for all ς1, ς2 ∈ [0, ξ] and κ : (−∞, ξ] → E in a way that κ0 ∈ B, κ :
[0, ξ]→ E is continuous, and max

0≤ς≤ξ
‖κς‖B ≤ Q.
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(A3) There is a constant Lσ > 0 such that

|σ (ς, ω1)− σ (ς, ω2)| ≤ Lσ ‖ω1 − ω2‖B , ω1, ω2 ∈ B.

(A4) There exist constants µ, µ in a way that ‖S‖ ≤ µ and ‖T‖ ≤ µ for the
bounded linear operators S and T.

If there exists Q > 0 in ways that

(Q∗1µM̂BW +Q∗2)‖ϕ‖B +Q∗1γ
∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ ≤ Q,

(3.5)

and [
Q∗1

[
LF + L̃F (Q)Lσσ̃

∗
]( µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

]
< 1, (3.6)

where Q∗1 = sup
x∈[0,ξ]

Q1(x) and Q∗2 = sup
x∈[0,ξ]

Q2(x), then there exists a mild

solution of the inclusions (1.1)-(1.2).

Proof. In view of Lemma 3.1 and our assumptions that Υ∗ is upper semi-
continuous set-valued map with convex compact values.

Let BQ = {κ ∈ Yϕ([0, ξ], E) : ‖κς‖B ≤ Q, 0 ≤ ς ≤ ξ} . It is obvious that
BQ is a complete metric space. Furthermore, Υ∗κ ⊆ BQ for all κ ∈ BQ. As
a matter of truth, if z(ς) = SBϑ(ς)ϕ(0) + Υp(ς), for p ∈ ΥF ,σ,κ, and denote
γ∗ = sup

0<s<ξ
γ(s), it follows from F (iii) that

‖z(α)‖ =

∥∥∥∥∥SBϑ(ς)ϕ(0) +
ST(1− ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0

(ς − s)ϑ−1p(s)ds

+
ϑS2

B(ϑ)

∫ ς

0

B̂ϑ(ς − s)p(s)ds

∥∥∥∥∥
≤ µM̂BW‖ϕ‖B +

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)∫ ς

0

(ς − s)ϑ−1‖p(s)‖ds

≤ µM̂BW‖ϕ‖B

+

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)∫ ς

0

(ς − s)ϑ−1γ(s)Φ(‖κσ(s,κs)‖B)ds

≤ µM̂BW‖ϕ‖B + γ∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)∫ ς

0

(ς − s)ϑ−1ds
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≤ µM̂BW‖ϕ‖B + γ∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)
ξϑ

ϑ

= µM̂BW‖ϕ‖B + γ∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

which suggest that

‖zς‖B ≤ Q∗1

[
µM̂BW‖ϕ‖B + γ∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

]
+Q∗2‖ϕ‖B

≤ (Q∗1µM̂BW +Q∗2)‖ϕ‖B +Q∗1γ
∗Φ(Q)

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

and utilizing (3.5), we get the affirmation.
Next we demonstrate that a contraction map is defined by Υ∗ described

on BQ.
Indeed, let κ` ∈ BQ, z` ∈ Υ∗κ`, z`(ς) = SBϑ(ς)ϕ(0) + Υp`(ς), for ` = 1, 2.

We can use [34, Lemma 3.3] to find out if there are any p2 ∈ ΥF ,σ,κ2 that
fulfills ∥∥p1(s)− p2(s)

∥∥ = d
(
p1(s),F

(
s, κ2

σ(s,κ2
s)

))
, a. e.

This means that

d
(
z1,Υ∗κ2

)
= inf
p2∈ΥF,σ,κ2

∥∥Υ
(
p1 − p2

)∥∥
≤

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)
inf

p2∈ΥF,σ,κ2

sup
0≤ς≤ξ

∫ ς

0

(ς − s)ϑ−1
∥∥p1(s)− p2(s)

∥∥ ds
≤

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)
sup

0≤ς≤ξ

∫ ς

0

(ς − s)ϑ−1
∥∥p1(s)− p2(s)

∥∥ ds. (3.7)

Now,

d
(
p1(s),F

(
s, κ2

σ(s,κ2
s)

))
≤ dH

(
F
(
s, κ1

σ(s,κ1
s)

)
,F

(
s, κ2

σ(s,κ1
s)

))
+ dH

(
F
(
s, κ2

σ(s,κ1
s)

)
,F

(
s, κ2

σ(s,κ2
s)

))
≤

2∑
i=1

Ii, (3.8)
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where

I1 = dH

(
F
(
s, κ1

σ(s,κ1
s)

)
,F

(
s, κ2

σ(s,κ1
s)

))
;

I2 = dH

(
F
(
s, κ2

σ(s,κ1
s)

)
,F

(
s, κ2

σ(s,κ2
s)

))
.

By using the assumption (A1), we can find the estimation of I1 as

I1 ≤ LF

∥∥∥κ1
σ(s,κ1

s)
− κ2

σ(s,κ1
s)

∥∥∥
B

≤ LFQ1

(
σ
(
s, κ1

s

))
max

0≤δ≤σ(s,κ1
s)

∥∥κ1(δ)− κ2(δ)
∥∥

≤ LFQ
∗
1 max

0≤δ≤s

∥∥κ1(δ)− κ2(δ)
∥∥ . (3.9)

By utilizing the assumptions (A2)-(A3), we can find the estimation of I2
as

I2 ≤ L̃F (Q)σ̃(s)|σ(s, κ1
s)− σ(s, κ2

s)|

≤ L̃F (Q)σ̃(s)Lσ‖κ1
s − κ2

s‖B
≤ L̃F (Q)σ̃(s)LσQ

∗
1 max

0≤δ≤s
‖κ1(δ)− κ2(δ)‖

≤ L̃F (Q)σ̃∗LσQ
∗
1 max

0≤δ≤s
‖κ1(δ)− κ2(δ)‖, (3.10)

where σ̃∗ = sup
0<s<ξ

σ̃(s).

By substituting the equations (3.9) and (3.10) in (3.8), we obtain∥∥p1(s)− p2(s)
∥∥ ≤ Q∗1 [LF + L̃F (Q)Lσσ̃

∗
]

max
0≤δ≤s

∥∥κ1(δ)− κ2(δ)
∥∥ . (3.11)

By substituting the equation (3.11) in (3.7), we get

d
(
z1,Υ∗κ2

)
≤

[
Q∗1

[
LF + L̃F (Q)Lσσ̃

∗
]( µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

]
(×)‖κ1 − κ2‖∞.

Continuing to estimate d
(
z2,Υ∗κ1

)
as above, and applying that

dH
(
Υ∗κ1,Υ∗κ2

)
= max

{
sup

z1∈Υ∗κ1

d
(
z1,Υ∗κ2

)
, sup
z2∈Υ∗κ2

d
(
z2,Υ∗κ1

)}
,
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we come to the conclusion that

d
(
Υ∗κ1,Υ∗κ2

)
≤

[
Q∗1

[
LF + L̃F (Q)Lσσ̃

∗
]( µµ(1− ϑ)

B(ϑ)Γ(ϑ+ 1)
+
M̂B̂µ

2

B(ϑ)

)
ξϑ

]
(×)d(κ1, κ2).

As a result, by (3.6), the map Υ∗ is a contraction on BQ. From [17, Theorem
1.2.3.1], we realize that the operator Υ∗ has a fixed point κ ∈ BQ.

Example 3.1.

We develop a class of functions F in this illustration that fulfill all of the
previous assumptions. Consider the phase space B = C0 × Lq(g,E), 1 < q <
∞ as described in [34, Example 2.1]. Let q̃ be the conjugate exponent of q.

Define a function F0 : [0, ξ]×B → E by

F0(ς, ω) = σ̃(ς)W̃

(∫ 0

−∞
e(η)ω(η)dη

)
, ς ∈ [0, ξ], ω ∈ B,

where σ̃ ∈ L1([0, ξ]), W̃ : E → E is a map that fulfills the Lipschitz assumption

‖W̃ (u)− W̃ (v)‖ ≤ L
W̃
‖u− v‖, L

W̃
≥ 0; u, v ∈ E

and e : (−∞, 0]→ (−∞, 0) is a function that fulfills the assumptions:

(i) Let e ∈ C 1 and L 1
e : (−∞, 0]→ [0,∞) is a continuous function in a way

that |e′(η)| ≤ L 1
e (s), η ≤ s ≤ 0, and

ν1 =

(∫ 0

−∞

∣∣L 1
e (η)

∣∣q̃
g(η)q̃−1

dη

)1/q̃

<∞.

(ii) ν =

(∫ 0

−∞

|e(η)|q̃

g(η)q̃−1
dη

)1/q̃

<∞.

We describe G : B → E by

G(ω) =

∫ 0

−∞
e(η)ω(η)dη.
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Given (ii), we may deduce that G(ω) is properly described and

‖G(ω)‖ ≤
∫ 0

−∞
|e(η)|‖ω(η)‖dη

≤
∫ 0

−∞

|e(η)|
g(η)1/q

g(η)1/q‖ω(η)‖dη

≤
(∫ 0

−∞

|e(η)|q̃

g(η)q̃/q
dη

)1/q̃ (∫ 0

−∞
g(η)‖ω(η)‖qdη

)1/q

≤ ν‖ω‖B.

Assume that C ⊆ E is a convex compact set with 0 ∈ C . Further, we describe

F (z, ω) = F0(ς, ω) + C , ς ∈ [0, ξ], ω ∈ B.

From this, we notice that F fulfills F (i). Utilizing [14, Proposition 1.1],
we can see that F is upper semi-continuous implying that F satisfies F (ii).
Further,

‖F (ς, ω)‖ = sup{‖ν‖ : ν ∈ F (ς, ω)} ≤ ‖F0(ς, ω)‖+ sup
κ∈C
‖κ‖

≤ |σ̃(ς)|
[
L
W̃
ν‖ω‖B + ‖W̃ (0)‖

]
+ sup
κ∈C
‖κ‖

≤ γ(ς)Φ (‖ω‖B) , a.e. ς ∈ [0, ξ], ω ∈ B,

thinking γ = |σ̃(ς)| ∈ L1([0, ξ]) and a continuous function Φ : [0,∞)→ [0,∞),
described by

Φ(ς) =
[
L
W̃
ν‖ω‖B + ‖W̃ (0)‖

]
+ |σ̃(ς)|−1 sup

κ∈C
‖κ‖.

This delivers that F fulfills the assumption F (iii).
Next, we show that F fulfills the assumptions (A1) and (A2). Since

dH (F (ς, ω1) ,F (ς, ω2)) ≤ ‖F (ς, ω1)−F (ς, ω2)‖
≤ |σ̃(ς)|L

W̃
ν ‖ω1 − ω2‖B .

From this, we conclude that F fulfills (A1). Let κ : (−∞, ξ] → E be a
function in a way that κ0 = ϕ, κ : [0, ξ] → E is continuous, and ‖κς‖B ≤ Q
for all 0 ≤ ς ≤ ξ. Taking 0 ≤ ς1 < ς2 ≤ τ, we obtain

dH (F (ς, κς2) ,F (ς, κς1))

≤ |σ̃(ς)| ‖F0 (ς, κς2)−F0 (ς, κς1)‖

≤ |σ̃(ς)|L
W̃

∥∥∥∥∫ 0

−∞
e(η)κ (ς2 + η) dη −

∫ 0

−∞
e(η)κ (ς1 + η) dη

∥∥∥∥ . (3.12)



A NEW EXISTENCE RESULTS ON FRACTIONAL DIFFERENTIAL INCLUSIONS
WITH STATE-DEPENDENT DELAY AND MITTAG-LEFFLER KERNEL IN
BANACH SPACE 18

Moreover, since∫ 0

−∞
e(η)κ (ς2 + η) dη −

∫ 0

−∞
e(η)κ (ς1 + η) dη

=

∫ ς2

−∞
e (s− ς2)κ(s)ds−

∫ ς1

−∞
e (s− ς1)κ(s)ds

=

∫ 0

−∞
[e (s− ς2)− e (s− ς1)]ϕ(s)ds+

∫ ς1

0

[e (s− ς2)− e (s− ς1)]κ(s)ds

+

∫ ς2

ς1

e (s− ς2)κ(s)ds

and using (i) we sustain∥∥∥∥∫ 0

−∞
e(η)κ (ς2 + η) dη −

∫ 0

−∞
e(η)κ (ς1 + η) dη

∥∥∥∥
≤

(
ν1 + L 1

e (0)ξ +W sup
−ξ≤η≤0

|e(η)|

)
(ς2 − ς1)Q. (3.13)

From (3.12) and (3.13) we infer that (A2) is fulfilled.
Further, in this section, as an application on Theorem 3.1, we consider the

following system

Dϑ
ABCp(ς) = Ap(ς) + F (ς, pσ(ς,pς)), ς ∈ [0, ξ] (3.14)

p(α) = ϕ(ς) ∈ B. (3.15)

Here, the function F : [0, ξ] ×B → E is single-valued. The other functions
are identical to those specified in (1.1)-(1.2).

The subsequent conclusion can be drawn as a result of Theorem 3.1.

Corollary 3.1. Let assumptions (A3)-(A4) be hold. In addition, we assume
that the following assumptions are fulfilled:

(i) For every ω ∈ B, F (·, ω) : [0, ξ]→ E is strongly measurable.

(ii) We can find a constant LF > 0 in a way that

‖F (ς, ω1)−F (ς, ω2)‖ ≤ LF ‖ω1 − ω2‖B

for all ς ∈ [0, ξ] and all ω1, ω2 ∈ B.

(iii) We can find a positive function σ̃ ∈ L1([0, ξ]) and every Q > 0, there

exists a positive constant L̃F (Q) > 0 in a way that

‖F (ς, κς2)−F (ς, κς1)‖ ≤ L̃F (Q)σ̃(ς) |ς2 − ς1|
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for all ς1, ς2 ∈ [0, ξ] and κ : (−∞, ξ] → E in a way that κ0 ∈ B, κ :
[0, ξ]→ E is continuous, and max

0≤ς≤ξ
‖κς‖B ≤ Q.

(iv) We can find a function γ ∈ L1([0, ξ]) in a way that

‖F (ς, ω)‖ ≤ γ(ς)Φ (‖ω‖B) , a.e. ς ∈ [0, ξ], ω ∈ B,

where Φ : [0,∞)→ [0,∞) is continuous non-decreasing function.

If assumptions (3.5) and (3.6) are fulfilled, a unique mild solution to the
system (3.14)-(3.15) is available.

We can now prove the section’s main result without the assumptions (3.5)
and (3.6).

Theorem 3.2. Assume that assumptions F (i) − F (iii) are satisfied. In
addition, we also assume that the subsequent assumption holds.

F (iv) Let u(·) be a positive integrable function on [0, ξ] in ways that

χ (F (ς, Vs)) ≤ u(ς) sup
0≤x≤s

χ({κ(x) : κ ∈ Q}), a.e. ς ∈ [0, ξ]

for all bounded sets V ⊆ Yϕ([0, ξ], E), where Vx = {κx : κ ∈ V } .
If [

2

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)(∫ ξ

0

(ξ − s)ϑ−1u(s)ds

)]
< 1, (3.16)

then Υ∗ : Yϕ([0, ξ], E)→Mν (Yϕ([0, ξ], E)) given by (3.4) is upper semi-
continuous and β-condensing.

Proof. According to our hypothesis, the operator Υ∗ is a upper semi-continuous
set-valued map with convex compact values. Demonstrating that Υ∗ is β-
condensing is still required. Let K ⊂ Yϕ([0, ξ], E) be a bounded set in a way
that β(Υ∗(K)) ≥ β(K). In view of [21, Lemma 2.9], we can find a sequence
(zn)n in Υ∗(K) in a way that β(Υ∗(K)) = β ({zn : n ∈ N}). We may write
zn ∈ Υ∗κn, for some κn ∈ K.

Utilizing (3.4), we can calculate β ({zn : n ∈ N}), we have

zn(ς) = SBϑ(ς)ϕ(0) + Ξ(pn)(ς),

where

Ξ(pn)(ς) =
ST(1− ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0

(ς − s)ϑ−1pn(s)ds+
ϑS2

B(ϑ)

∫ ς

0

B̂ϑ(ς − s)pn(s)ds
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for pn ∈ Υ∗F ,σ,κn .
Then, we obtain

β ({zn(·) : n ∈ N}) ≤ β ({Ξ (pn) (·) : n ∈ N}) .

Since pn ∈ Υ∗F ,σ,κn , for ς ∈ [0, ξ], we sustain pn(ς) ∈ F

(
ς, κn

σ(ς,κnς )

)
. Thus

{pn : n ∈ N} is uniformly integrable and from F (iv), we have

χ ({pn(ς) : n ∈ N}) ≤ u(ς) sup
0≤x≤σ(ς,κnς )

χ ({κn(x) : n ∈ N})

≤ u(ς)β ({κn : n ∈ N}) .

We may deduce from this estimation and from [24] that

β ({Ξ (pn) (·) : n ∈ N})

≤ 2

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)
β ({κn : n ∈ N})

∫ ξ

0

(ξ − s)ϑ−1u(s)ds.

Consequently, after compiling these information, we arrive at

β(K) ≤ β(Υ∗(K))

= β ({zn : n ∈ N})

≤ 2

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)(∫ ξ

0

(ξ − s)ϑ−1u(s)ds

)
β ({κn : n ∈ N})

=

[
2

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)(∫ ξ

0

(ξ − s)ϑ−1u(s)ds

)]
β(K).

Thus

β(K)

[
1− 2

(
µµ(1− ϑ)

B(ϑ)Γ(ϑ)
+
M̂B̂ϑµ

2

B(ϑ)

)(∫ ξ

0

(ξ − s)ϑ−1u(s)ds

)]
≤ 0.

From (3.16), we conclude that β(K) = 0 and hence Υ∗ is a β-condensing
map. The proof is now completed.

Example 3.2.

Now, we need to prove that the function F fulfills F (iv). For this, by
thinking of Example 3.1, assume V ⊆ Yϕ([0, ξ], E) be a bounded set and
Vs = {κs : κ ∈ V } . Using the characteristics stated in preliminaries, it is easy
to demonstrate that

χ (F (ς, Vs)) ≤ ν|σ̃(ς)|L
W̃
β(K).

Thus the function F fulfills F (iv).
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Conclusion

The power law has been used to produce fractional order derivatives if
Caputo and Riemann-Liouville are considered to be convolutions. It is not
always possible to find power law behaviour in nature. In this study, we
used their [7] new result to our differential inclusions (1.1)-(1.2). Theorem 3.1
is proved to investigate the existence of the addressing model (1.1)-(1.2) by
means of contractive and condensing map. Next, in Example 3.1, we show
that the function F fulfill the assumptions F (i) − F (iii), (A1) and (A2).
We establish the existence result for the equation (3.14)-(3.15) as a result of
Theorem 3.1. The main outcome of this manuscript is derived in Theorem 3.2
and further, we also verified the assumption F (iv) in Example 3.2. With an
appropriate fixed point theorem, the effectiveness of such existing research may
be developed to approximate controllability with non-instantaneous impulses
for different models.
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